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INTRODUCTION

Anthropogenic eutrophication has been linked to
worldwide increases in harmful algal bloom (HAB)
frequency and intensity in recent decades (Honjo
1993, Anderson et al. 2002, Glibert et al. 2005, Halle-
graeff 2010). In response to these observations, a
great deal of research has focused on the influence of
changing nutrient availability on algal bloom estab-
lishment and growth. Eutrophication, however, is
only one of multiple global anthropogenic biogeo-
chemical impacts.

In addition to disturbance of natural nutrient
cycles, humans are also causing a massive perturba-
tion of the global carbon cycle. The atmospheric par-
tial pressure of CO2 (pCO2) has risen by >30% due
to the burning of fossil fuels, deforestation, indus -
trialization, and cement production (IPCC 2007).
These already elevated current CO2 levels will ap -
proximately double from ~385 to 750−800 ppm by
2100, and ocean pH will consequently decrease by as
much as 0.77 units over the next several hundred
years (Caldeira & Wickett 2003), with unknown con-
sequences for many pH-sensitive marine organisms
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(Royal Society 2005, Orr et al. 2005, Hoegh-Guldberg
& Bruno 2010). We know that ocean acidification can
have potentially far-reaching consequences for the
physiology of many algal groups, including altered
growth and carbon fixation rates, shifts in nutrient
uptake, changes in elemental ratios, and increased
sensitivity to ultraviolet radiation (Riebesell 2004,
Fu et al. 2007, 2008a,b, 2010, Feng et al. 2008, 2009,
2010, Hutchins et al. 2007, 2009, Riebesell et al. 2007,
2008, Rost et al. 2008, Beardall et al. 2009a, Gao et al.
2012a, this Theme Section). These physiological re -
sponses may be reflected at the ecosystem level
through changes in algal competitive interactions,
ecological dominance, and overall community struc-
ture (Tortell et al. 2002, Riebesell 2004, Hare et al.
2007, Feng et al. 2009, 2010).

Primary producers including HAB species must
adjust not only to altered seawater carbonate chem-
istry, but also to numerous other concurrent environ-
mental changes. Over the next 50 to 100 yr, green-
house warming will increase average sea surface
temperatures by as much as 5°C, and increased pre-
cipitation, runoff, and ice melting will lower surface
salinities in many parts of the ocean (Bopp et al. 2001,
Sarmiento et al. 2002). The combined influence of
warming and freshening on the density of seawater
will cause much of the surface ocean to become
more stratified, driving fundamental shifts in key bio -
logical variables such as nutrient supplies and light
exposure regimes (Boyd & Doney 2003, Boyd et al.
2008, 2010, Cermeño et al. 2008, Hutchins et al.
2009). As a consequence of these environmental
changes,  marine ecosystems all over the world are
currently changing at an alarming rate. Long-term
data sets from around the world suggest that ongoing
changes in coastal and estuarine phytoplankton com-
munities are likely due to the combination of climate
shifts and other anthropogenic influences (Edwards
et al. 2006, Smetacek & Cloern 2008).

Only a few studies to date have directly addressed
the implications of ocean global change for HAB spe-
cies, and most of these have considered the effects
of warming (Peperzak 2003, 2005, Cloern et al. 2005,
Moore et al. 2008, 2009, Paerl & Huisman 2008).
However, it is virtually certain that harmful blooms
of the future will also be simultaneously affected
by interactions with the complex network of other
changing environmental variables discussed above.
Recent evidence demonstrates that some coastal eco-
systems and estuaries are already experiencing sig-
nificant levels of anthropogenic acidification (Feely
et al. 2008, Cai et al. 2011). Since HABs often occur in
these types of ecosystems, there is an urgent need to

investigate how they will respond to changing CO2

and/or pH both alone and in combination with other
variables. Accurately predicting the responses of HABs
to these many interacting anthropogenic changes is
a top priority for everyone who must deal with the
negative impacts of toxic algal blooms, including
marine resource managers, policy makers, govern-
mental management agencies, and marine resource
users such as the seafood harvesting and aquaculture
industries. The goal of this review is to summarize
the effects of rising pCO2 in concert with other global
change factors on the physiological and ecological
responses these organisms.

Our review is intended to expand on the excellent
recent review of HABs and global change by Halle-
graeff (2010), by focusing on how we may apply the
results of a large body of prior work on environmen-
tal perturbation effects on HABs to understand their
responses to a rapidly changing ocean. Equally im -
portantly, we also emphasize the results of new ex -
periments specifically targeting global change effects
on HABs in this rapidly expanding field. First, we
briefly review the relevant literature on the effects
of individual global change-relevant variables on
growth and toxicity, including nutrients, tempera-
ture, solar radiation, and salinity. In the final sections
of our review, we cover the limited but particularly
important body of HAB-related research examining
multivariate interactions between these environmen-
tal factors and CO2-driven ocean acidification.

EFFECTS OF INDIVIDUAL GLOBAL CHANGE
FACTORS ON HARMFUL ALGAE

pCO2/pH

Despite the extensive recent research effort that
has been directed toward understanding ocean acid-
ification effects on diverse marine organisms, only a
handful of studies have so far addressed how CO2

or pH changes affect HAB physiology and toxicity.
Some bloom-forming dinoflagellates may especially
benefit from higher pCO2, due in part to their CO2-
fixing enzyme, a type II Rubisco (ribulose-1,5-bis-
phosphate carbo xylase-oxygenase; Tortell 2000, Rost
et al. 2003). Type II Rubisco has a low affinity for car-
boxylation and is therefore extremely inefficient at
processing CO2 at present-day atmospheric concen-
trations, com pared to the type I Rubisco found in
most other algae. Dinoflagellates overcome this limi-
tation, in part, by compartmentalizing Rubisco within
the chloroplast to avoid photorespiration (Jenks &
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Gibbs 2000, Nassoury et al. 2001). This low-affinity
CO2-fixing system may also be compensated for by
efficient carbon-concentrating mechanisms (CCMs)
such as various forms of carbonic anhydrase (CA),
which allow algae to access the much more abundant
pool of HCO3

− in seawater. These adaptations allow
some dinoflagellates to grow rapidly at present day
pCO2 levels, and it is unknown for most species
whether elevated CO2 will enhance growth further
by offsetting the physiological constraints of their
type II Rubisco.

Dason et al. (2004) showed that the marine dino -
flagellates Amphidinium carterae and Heterocapsa
oceanica do not possess an external CA, and thus
their photosynthesis is dependent on free CO2 alone.
Consequently, the growth of these 2 species is sug-
gested to be CO2-limited (Colman et al. 2002, Dason
et al. 2004), and their growth could potentially be
stimulated by increasing CO2 concentrations in the
future ocean. In contrast, the growth rates of 3 other
marine dinoflagellates (Prorocentrum minimum, H.
triquetra, and Ceratium lineatum) are most likely
not limited by dissolved inorganic carbon, since they
preferentially take up HCO3

− instead of CO2 to sup-
port photosynthesis (Rost et al. 2006). This obser -
vation is supported by the finding that increasing
CO2 does not significantly affect the growth rate of
another isolate of P. minimum (Fu et al. 2008a).

Because phycotoxin biosynthesis is directly linked
to the autotrophic metabolism of most HAB species, it
is perhaps not entirely surprising to find that chang-
ing CO2 availability can also affect cellular toxicity.
Photosynthesis is not only the essential process in pri-
mary metabolism, but is also required for toxin pro-
duction (Pan et al. 1996a). For example, the yield of
saxitoxin per cell in the dinoflagellate Alexandrium
catenella is proportional to hours of daylight (Proc-
tor et al. 1975). Also, A. minutum is not capable of
producing saxitoxin after a 22 d incubation period in
the dark, while  parallel light-grown cultures pro-
duced 1.17 µg per 10 000 algal cells (Maas & Brooks
2010).

pCO2 and/or pH changes affect toxicity of the
diatom genus Pseudo-nitzschia, which causes no -
toriously damaging blooms along the Pacific coast
of North America and elsewhere around the world
(Scholin et al. 2000, Trainer et al. 2000, 2009,
 Schnetzer et al. 2007). Two recent studies have
examined the influence of seawater pH on the toxi -
city of cultures of Pseudo-nitzschia spp.: Sun et al.
(2011) and Tatters et al. (2012) found that domoic
acid concentrations increase dramatically in treat-
ments combining high pCO2/low pH (adjusted by

bubbling the seawater with CO2-enriched air) with
nutrient limitation. The authors speculated that pCO2-
induced domoic acid production is perhaps a conse-
quence of an excess in carbon supply when elevated
CO2 occurs together with nutrient-limited growth
conditions. Interestingly though, 2 previous studies
found results that differ from these 2 recent studies,
in that domoic acid levels increased instead at higher
pHs (e.g. lower pCO2; Lundholm et al. 2004, Trim-
born et al. 2008). It is worth noting that unlike the 2
more recent studies, in these earlier experiments pH
was adjusted by HCl and NaOH addition rather than
by CO2 bubbling. The 2 recent multivariate studies,
and possible reasons for these apparently contradic-
tory results, are considered further in the ‘Interactive
effects of CO2 and nutrients’ section below. Despite
the differences in their findings, all 4 of these studies
support the suggestion that pCO2/pH can strongly
influence the production of domoic acid by this glob-
ally distributed diatom genus.

The impact of elevated CO2 on the growth of CCM-
utilizing diatoms versus algal species without a CCM
(Riebesell 2004) suggests that those species which
lack CA will likely benefit most from rising CO2  levels.
Notably, the raphidophyte Heterosigma akashiwo
does not appear to use CA (Nimer et al. 1997), sug-
gesting that it may be especially favored by rising
CO2 levels. In fact, the growth of H. akashiwo is
 significantly stimulated by increasing CO2, again
achieved by bubbling the seawater with air/CO2

mixtures (Fu et al. 2008a). However, this finding may
not apply to all raphidophytes. For instance, the
growth of Chattonella marina is not affected by pH
over a range from 7.5 to 8.5 (adjusted by acid and
base additions), although growth greatly decreases
at pH values over 9.0 (Liu et al. 2007). Coupled with
these reduced growth rates, rates of ichthyotoxic
reactive oxygen species (ROS) production by C.
marina also increase at this elevated pH, but remain
stable within the pH range of 7.5 to 8.5. Liu et al.
(2007) suggested that high pH may enhance the
activities of enzymes that regulate ROS production,
and/or that high pH may reduce iron bioavailability
to the algae.

The prymnesiophyte Phaeocystis globosa can form
massive harmful blooms in temperate areas such as
the North Sea. Recent evidence suggests that its
physiological responses to changing pCO2 may be
dependent on its polymorphic life history, which
alternates between solitary flagellated cells and
colonies composed of numerous cells embedded in a
gelatinous matrix. Wang et al. (2010) demonstrated
that bubbling P. globosa cultures with elevated CO2

209
A

ut
ho

r c
op

y



Mar Ecol Prog Ser 470: 207–233, 2012

stimulates the formation and growth rates of
colonies, but the growth rates of solitary cells are
unchanged. Based on the observed in creases in
colony formation, these authors suggest that future
rising CO2 may affect carbon and sulfur cycles as
well as marine trophic structure both locally and
regionally. However, a natural assemblage of the
closely related polar species P. antarctica is relatively
unaffected by extended incubation at elevated pCO2

(Feng et al. 2010).
This short list summarizes the published studies on

HAB species responses to ocean acidification in iso-
lation; these experiments and a few others examining
rising pCO2 in combination with other variables are
summarized in Table 1 and are reviewed below. This
surprising paucity of information on high pCO2/low
pH effects needs to be remedied by further studies
using a variety of environmentally relevant species,
thus there is likely to be new information available
on this subject within the next few years.

Temperature

Temperature is probably the most widely recog-
nized component of climate change and also plays a
crucial role in determining potential algal growth
rates. Consequently, temperature can influence com-
munity dynamics of harmful bloom species relative
to their competitors and grazers. In diatoms, for ex -
ample, nitrate uptake and reduction decline rapidly
at elevated temperatures (Lomas & Glibert 1999),
potentially favoring competing algae. Likewise, tem-
perature can differentially impact the growth rate,
pigment content, light-harvesting capacity, and pho to -
synthetic carbon fixation of many microalgae (Sosik
& Mitchell 1994, Coles & Jones 2000, Anning et al.
2001, Stramski et al. 2002).

Increasing sea surface temperatures are already
leading to prolonged and more intense temperatures
during bloom seasons (Peperzak 2003, 2005, Edwards
et al. 2006, Hallegraeff 2010, Paerl & Scott 2010), and
this trend is likely to continue with the potential for
establishment of temporally and spatially expanded
bloom windows (Fig. 1; Moore et al. 2008). Many
HABs have a window of temperature that is reached
and often exceeded within a given year (Gobler et
al. 2005, Moore et al. 2008). Therefore, in some
cases increasing temperature may not intensify
HABs throughout the growing season, but perhaps
instead change the timing of their initiation and
 termination during the annual seasonal cycle. Warm
water temperatures, calm conditions, and accompa-

nying stratification seem to promote the proliferation
of many microalgae, including several harmful spe-
cies (Paerl & Scott 2010). Cellular toxicity can also be
sensitive to rising temperature. For instance, cultures
and field samples of Karlodinium veneficum exhibit
increased cellular toxicity at temperatures >25°C
(Kempton et al. 2002, Adolf et al. 2009).

The relationship between HABs and warming is
not always straightforward. As toxic diatoms of the
genus Pseudo-nitzschia typically respond to seasonal
patterns, temperature is likely a critical driver in their
bloom development. Depending on geographical
region, seasonal blooms have been correlated with
pulses of cool, nutrient-rich upwelled water (Horner
et. al 1997, Trainer et al. 2002, Kudela et al. 2010),
and also with warmer, stratified conditions (Bird &
Wright 1989, Buck et al. 1992, Horner et al. 1997,
Scholin et al. 2000). In the laboratory, growth rates
of a temperate isolate of P. pseudodelicatissima in -
crease up to 25°C (Lundholm et al. 1997). Tempera-
ture could also play a role in regulation of enzymatic
pathways involved in domoic acid biosynthesis by
Pseudo-nitzschia. Although there have been labora-
tory studies of Pseudo-nitzschia spp. growth rates as
a function of temperature (Lundholm et al. 1997,
Thessen et al. 2009), effects on domoic acid pro -
duction have been examined surprisingly seldom.
In 2 culture studies, warmer temperatures were not
demonstrated to accelerate domoic acid production
(Lundholm et al. 1994, Bates et al. 1998). Similarly,
little or no correlation was observed between cellular
domoic acid and temperature during field observa-
tions in Chesapeake Bay and the northern Gulf of
Mexico (Thessen & Stoecker 2008, MacIntyre et al.
2011).

Temperature shifts may affect the spread of
Pseudo-nitzschia to new habitats. The persistent
 seasonal nature of these blooms once seed popula-
tions become established in supportive areas can be
quite remarkable. For instance, recent data from Bar-
ron et al. (2010) suggest that cooling waters of the
North Pacific influenced by the negative Pacific
Decadal Oscillation have coincided with the sudden
1999 appearance of P. australis and P. multiseries in
the sedimentary record of California’s Santa Barbara
basin. These HAB diatoms remained significantly
more abundant relative to other diatoms such as
Chaetoceros and Rhizosolenia spp. as of 2003. Al -
though blooms of toxic Pseudo-nitzschia spp. are
now a common annual feature of this region, this
study could also be taken to suggest that long-term
warming trends might contract the ranges of these
organisms.
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Proliferation of paralytic shellfish poisoning (PSP)-
producing dinoflagellates of the genus Alexandrium
also tends to be seasonally and regionally specific. As
described by Anderson et al. (2012, p. 29)

Overall, the Alexandrium species that have been
studied in detail have proven to be remarkably resili-
ent and capable of colonizing a wide spectrum of
habitats and hydrographic regimes. It is thus of no
surprise that the  biogeographic range of these species
has expanded in recent times and that associated PSP
outbreaks remain a significant global problem.

Once cyst beds become established in a given
locality, temperature may determine periods of
excystment and vegetative growth (Anderson et al.
2005). Annual variability in PSP-contaminated shell-
fish could result from either changing seasonal inci-
dence of toxic Alexandrium blooms, variations in tox-
icity by resident dinoflagellates, or a combination of
both (Siu et al. 1997). Arguably, each of these scenar-
ios could be temperature-related. Correlations
between cooler temperature and enhanced Alexan-
drium toxicity have been reported by numerous cul-
ture and field investigations (e.g. Hall et al. 1982,
Ogata et al. 1987, Cembella et al. 1988, Anderson et
al. 1990). In contrast, enhanced toxicity at median or
increased temperature is less common but has also
been documented (Siu et al. 1997, Etheridge &
Roesler 2005, Lim et al. 2006).

Pyrodinium bahamense var. bahamense and var.
compressum, 2 other PSP-producing dinoflagellates,

are commonly found in tropical/sub-tropical waters
(Usup et al. 2012). The western Atlantic form of P.
bahamense was formerly thought not to produce
the neurotoxins associated with PSP, but recently,
accumulated saxitoxins have been found in puffer
fish in the Indian River Lagoon in Florida (Landsberg
et al. 2006). These results show that P. bahamense
is a putative saxitoxin source. As with other dinofla-
gellates, laboratory studies have dem onstrated that
they have broad temperature windows, e.g. 22 to
35°C (Usup et al. 1995) and 23 to 37°C (Gedaria
et al. 2007). The distribution of P. bahamense var.
bahamense in coastal waters of Florida suggests that
the minimum temperature that limits its occurrence
is 20°C (Phlips et al. 2006). These temperature toler-
ances support po tential climate-related range ex -
pansion (Usup et al. 2012). Although the majority
of environmental variables examined influence the
PSP toxin profile, not total toxin content, one study
demonstrated increased toxicity at low temperature
(Usup et al. 1994).

The increased abundance, geographical range ex -
pansion, and growing severity of ciguatera fish poi-
soning occurrences are likely indicators that several
members of the benthic/epiphytic dinoflagellate genus
Gambierdiscus are responding to warming sea sur-
face temperatures and habitat transformation by con-
current spreading of the marine macroalgae with
which they are associated (Morton et al. 1992, Hales
et al. 1999, Chateau-Degat et al. 2005, Parsons et al.
2012). One culture study examining effects of tem-
perature on ciguatoxins of G. toxicus demonstrated a
positive correlation (Bomber et al. 1988). The range
of Gambierdiscus is rapidly expanding along with
another toxic dinoflagellate genus, Ostreopsis, which
is not closely related to Gambierdiscus and produces
quite different toxins, but also shares a benthic/
epiphytic lifestyle (Tindall & Morton 1998, Rhodes
2011, Parsons et al. 2012). The majority of laboratory
experiments examining temperature suggest that
Os treopsis grow more efficiently at high tempera-
tures, but are more toxic at lower temperatures (Shears
& Ross 2009, Granéli et al. 2011, Rhodes 2011).

Growth and toxicity of other HAB dinoflagellates
can also be positively or negatively related to sea -
water warming. Temperature affects toxicity in some
diarrhetic shellfish poisoning (DSP)-producing Pro-
rocentrum spp. (Morton et al. 1994) and Dino physis
spp. (Kamiyama et al. 2010, Tong et al. 2011). In a
study by Peperzak (2003), P. micans and P. minimum
doubled their growth rates in simulated warm strati-
fied conditions. The majority of studies on yesso -
toxin and analogues produced by Protoceratium reti -
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culatum suggest that toxicity in creases with temper-
ature (Guerrini et al. 2007, Paz et al. 2007). The
brevetoxin-producing dinoflagellate Karenia brevis,
which causes mass mortality of marine life in the Gulf
of Mexico, has been observed in the field between
7 and 34°C (Brand et al. 2012). However, optimal
growth in laboratory cultures is between 22 and 29°C
(Magana & Villareal 2006, Vargo 2009). The closely
related K. mikimotoi has also been found over a
wide range of temperatures (4 to 32°C; Gentien 1998,
Brand et al. 2012). Toxin production in K. brevis
demonstrates a trend of slightly higher toxicity at
low temperatures that impair growth (Lamberto et al.
2004), suggesting the possibility of reduced breve-
toxin impacts in a future warming ocean.

A recent 50 yr time series study in the northeast
Atlantic and North Sea shows that phytoplankton
community structure has shifted away from dino -
flagellates, including harmful species such as some
Prorocentrum spp. and non-harmful taxa such as
Cera tixum fuca, and towards diatoms such as
the potentially toxic Pseudo-nitzschia spp. and non-
HABs such as Thalassio sira spp. (Hinder et al. 2012).
The combined effects of increasing sea surface tem-
perature and increasingly windy conditions in sum-
mer were suggested to be the main reasons for this
observation. However, Hinder et al.’s (2012) results
do not neces sarily apply to many HAB  species, since
the survey focused on an open ocean phytoplankton
community, and most HABs occur in estuaries or
coastal waters. Local physical dynamics in these 2
regions are completely different. Nutrients are gen-
erally much more enriched in estuaries than in the
open ocean, and estuaries and bays are usually less
affected by wind-driven physics. Some harmful taxa
are warm-water species and hence slightly increas-
ing temperature may favor their growth, in particular
many dinoflagellates. Calm winds and warmer tem-
peratures will stratify the water column and suppress
mixing long enough for motile dinoflagellates to
grow and accumulate in surface waters, and hence
allow them to bloom.

Recent data link harmful dinoflagellate blooms to
warmer temperatures. For instance, increasing tem-
perature stimulates blooms of the toxic dinoflagellate
Alexandrium in Puget Sound in Washington state
(Moore et al. 2009). A large unprecedented dinofla-
gellate bloom was observed in San Francisco Bay in
September 2004, and one of the conditions that was
thought to have caused this bloom was high air
 temperatures (Cloern et al. 2005). Although the study
by Hinder et al. (2012) convincingly dem onstrated
multi-decadal changes in oceanic plankton commu-

nities due to altered ocean temperature and mixing,
whether climate change will similarly affect the
abundance or distribution of nearshore and estuarine
HABs is far from clear.

Nutrients

Future climate variations such as changing storm
frequencies and wind patterns will affect coastal
water column dynamics, including frequency and
intensity of upwelling events, tidal mixing, and
mixed layer depths (Doney et al. 2009, Hallegraeff
2010). Both warming and freshening of the surface
ocean from increased precipitation will promote
increased seasonal water column stratification in
coastal waters (Hallegraeff 2010, Paerl & Scott 2010),
as well as increases in permanent stratification in the
open ocean gyres (Gentien et al. 2005, Polovina et al.
2008). The implications of this increased stratification
for HABs are likely profound, since many coastal and
offshore blooms depend on vertical mixing to supply
nutrients from below (Cermeño et al. 2008, Boyd et
al. 2010). More rapid depletion of surface nutrients
and concurrent decreases in replenishment from
deeper water will likely favor pico- and nano-size
species (Hallegraeff 2010). Reductions in bioavail-
able silicate (Goffart et al. 2002) may also lead to
decreased diatom abundance (Hallegraeff 2010),
which could inhibit harmful blooms in some cases (e.g.
those of the toxic diatom genus Pseudo-nitzschia),
and promote them in others (e.g. when non-toxic
diatom species are important competitors with toxic
dinoflagellates).

In a classic aquatic ecology paper, Margalef (1978)
suggested that diatoms are best adapted to nutrient-
enriched, well-mixed water columns, while dinofla-
gellates dominate in stratified, more oligotrophic
environments. More recently, it has been repeatedly
suggested that motile species such as many harmful
dinoflagellates and raphidophytes have a distinct
advantage in obtaining nutrients by vertical migra-
tion (Smayda 1997, Handy et al. 2005, Hallegraeff
2010, Paerl & Scott 2010); thus enhanced stratifica-
tion could offer these groups a competitive advan-
tage. For instance, Alexandrium tamarense cells liv-
ing in N-limited waters are likely able to sustain
growth and moderate toxicity if they are able to per-
form diel vertical migration to N-rich depths (Mac -
Intyre et al. 1997). Along with many other genera
(Gentien et al. 2005), blooms of Alexandrium are
usually found subsurface under stratified conditions
(Cembella & Therriault 1989).
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The mixotrophic capabilities of many dinoflagel-
lates (Stoecker 1999, Glibert & Burkholder 2011) may
afford these organisms even more flexibility under
future stratified, low-nutrient conditions (Caron &
Hutchins in press). Growth rates of some faculta-
tively mixotrophic harmful species increase when
they are supplemented with prey (Adolf et al. 2006,
Glibert et al. 2009). This alternative metabolic strat-
egy would offer a potential for broader niches and
alternative resource exploitation under both nutri-
ent-poor and eutrophic conditions.

Of course, in many coastal and estuarine regimes,
cultural eutrophication may be more important than
increased stratification in determining future nutri-
ent availability. In particular, in future climate re -
gimes, some regions of North America are predicted
to experience either more precipitation, or the same
amount of precipitation delivered in fewer and thus
larger pulses (IPCC 2007). This could result in heav-
ier and more intense nutrient loading to coastal and
estuarine ecosystems, and this perhaps stimulation of
HAB events.

In addition to generally increased nutrient load-
ing, coastal ecosystems can also experience unbal-
anced nutrient ratios from anthropogenic inputs,
potentially leading to limitation by either phospho-
rus (P) (high N:P ratios) or nitrogen (N) (low N:P
ratios) (Smayda 1997). These skewed nutrient ratios
can have significant but genera-specific effects on
physiological characteristics, in particular their cel-
lular toxicity. For instance, Guerrini et al. (2007)
found that yessotoxin production by the dinoflagel-
late Protoceratium re ticulatum is stimulated by P
limitation, but not by N limitation. Likewise, saxi-
toxin-producing members of the dinoflagellate genus
Alexandrium demonstrate increased toxicity only
under P limitation (Boyer et al. 1987, Anderson et al.
1990, Siu et al. 1997). In contrast, for the dinoflagel-
late Karlodinium veneficum, karlotoxin concentra-
tions increase significantly under conditions of either
N or P limitation (Adolf et al. 2009). In the dinofla-
gellate Prorocentrum lima, N and P limitation both
in crease cellular concentrations of the toxin okadaic
acid (Vanucci et al. 2010), but in Dinophysis acumi-
nata, okadaic acid levels increased only under N
 limitation (Johansson et al. 1996). Intracellular con-
centrations of domoic acid in some toxic Pseudo-
nitzschia species are enhanced by Si and P limita-
tion, but not by N limitation (Bates et al. 1991, Pan
et al. 1996b,c). Often, the synthesis of N-rich toxins
such as domoic acid and PSPs is reduced with N
limitation (Boyer et al. 1987, Bates et al. 1991), while
that of  toxins containing no N, such as yessotoxins

and karlotoxins, are less dependent on the availa -
bility of this nutrient (Adolf et al. 2009).

In addition to various limiting nutrient scenarios,
the chemical form or speciation of nutrients can also
affect algal toxicity. The bloom-forming dinoflagel-
late Karenia brevis shows little response of breve-
toxin production to nutrient limitation (Lekan &
Tomas 2010), but is enhanced when grown on urea
versus nitrate (Shimizu et al. 1995). N spe ciation can
also have implications for toxicity in Alexandrium
spp., since saxitoxin production is enhanced when
cultures are grown on ammonium as opposed to
either nitrate or urea (Levasseur et al. 1995, John
& Flynn 2000, Hamasaki et al. 2001). In natural
blooms of the diatom Pseudo-nitzschia, domoic acid
levels increase with N source in the order urea >
nitrate > ammonium (Armstrong Howard et al.
2007). However, a recent Pseudo-nitzschia spp. lab-
oratory study showed that N sources may affect cel-
lular domoic acid content in species- or strain-spe-
cific ways (Thessen et al. 2009). That work (op.cit.)
suggests that there is no general trend regarding
effects of N source on cellular domoic acid levels,
and that it is consequently important to consider
intra- and interspecies variability in ecophysiology
and toxicity.

Ocean acidification may be relevant to this de -
pen dency of HAB toxicity on specific N sources,
since low pH has been shown to inhibit nitrification
and so could ultimately shift the speciation of the
overall ocean N inventory away from nitrate and
towards reduced species such as ammonium and
organic nitrogen (Hutchins et al. 2009, Beman et
al. 2011). A model of the North Sea at 1000 ppm
CO2 suggests that ammonia oxidation rates could
be in hibited by as much as 20%, resulting in a de -
crease of the nitrate to total dissolved inorganic
ratio by up to 10% (Blackford & Gilbert 2007).
Such a substantial shift in the chemical form of
N supplied to phytoplankton communities under
acidified conditions could potentially favor smaller
organisms that are more competitive for ammo-
nium, such as pico eukaryotes and cyanobacteria,
as well as some HAB species such as dinoflagel-
lates and raphidophytes.

Solar irradiance

Light is obviously a key factor affecting the physio-
logical responses of all photoautotrophs, including
HAB species. Irradiance regimes will change for pri-
mary producers in many areas of the future ocean due
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to the increased stratification and mixed layer shoaling
(discussed in the ‘Nutrients’ section above). Phyto-
plankton circulating in a shallower mixed layer will
necessarily be exposed to higher mean daily doses of
photosynthetically active radiation (PAR; Boyd et al.
2010), as well as to more potentially deleterious ultra-
violet (UV) radiation (Gao et al. 2012a; UV is consid-
ered further in the ‘Interactive effects’ section below).

In general, it should not be surprising that in the
absence of other limiting factors, HAB growth in -
creases with PAR, within physiologically tolerable
limits. For instance, light-dependent growth kinetics
occur in many species of Alexandrium (Anderson et
al. 1984, Maranda et al. 1985, Ogata et al. 1987, 1989,
Parkhill & Cembella 1999, Lim et al. 2006). Laabir et
al. (2011) found a positive relationship between light
intensity and growth rates and biomass of a Mediter-
ranean Alexandrium cate nella isolate up to 90 µmol
photons m−2 s−1; photoinhibition was not observed
until a light intensity of 260 µmol photons m−2 s−1 was
reached. Another A. catenella culture showed no
sign of photoinhibition up to 800 µmol photons m−2

s−1 (Carignan et al. 2002). These results support the
suggestion that the genus Alexandrium is adapted
to high light (Smayda 2008), which could provide it
with a competitive advantage in future shallower
mixed layers.

Baek et al. (2008) showed that optimal growth rates
of the bloom-forming dinoflagellates Ceratium furca
and C. fusus occur at irradiances ranging from 216 to
796 µmol photons m−2 s−1. Like Alexandrium, these
results indicate that Ceratium is well-adapted to in -
tense light levels and hence has an advantage in
highly transparent or shallow mixed layers (Baek et
al. 2008).

Similarly, increasing light intensity stimulates the
growth of the estuarine raphidophytes Heterosigma
akashiwo and Chattonella subsalsa, which exhibit
maximum growth rates over a light range of 100 to
600 µmol photons m−2 s−1; no sign of photoinhibition
was observed for either species even at the highest
light intensity tested, >600 µmol m−2 s−1 (Zhang et
al. 2006). These results support the suggestion that
raphi dophycean flagellates generally can tolerate
and even prefer very high light intensities (Kahn et
al. 1998). Another recent study demonstrated that
light effects on the growth of H. akashiwo are tem-
perature-dependent (Martinez et al. 2010). They also
found  differences in growth responses to light be -
tween H. akashiwo strains, suggesting that light
could play a role in intraspecific dominance shifts
and that generalizations for the whole genus may
need to be made cautiously.

In contrast to these HAB species, there is evidence
that the dinoflagellate Karenia brevis appears to be
relatively low-light adapted. This species has a low
light saturation point of around 65 µmol m−2 s−1

(Shanley & Vargo 1993, Magana & Villareal 2006),
and its light compensation point is around 20 to
30 µmol m−2 s−1 (Wilson & Collier 1955, Aldrich 1962,
Eng-Wilmot et al. 1977). Brown tides (Aureococcus
and Aureoumbra) are another group of HABs that
benefit from low light, as both genera commonly
bloom in severely light-attenuated environments
(Gobler & Sunda 2012). These 2 genera can attain
nearly maximum growth rates under a light intensity
of 50 µmol m−2 s−1 at 20°C (MacIntyre et al. 2004).
Consistent with their low light adaption, genetic evi-
dence for adaptation to low light was obtained from
the Aureococcus genome (Gobler et al. 2011). These
results suggest that both K. brevis and brown tides
have an advantage when growing at depth, and also
may have a competitive advantage during dense
self-shaded blooms. This trait, however, means that
they may not benefit from future increases in mean
light exposures as much as many other non-HAB
taxa.

Light is required for production of many algal tox-
ins, including PSPs, domoic acid, and DSP toxins
(Proctor et al. 1975, Bates et al. 1991, Pan et al. 1996a,
Carneiro et al. 2009, Tong et al. 2011). Parkhill &
Cembella (1999) and Etheridge & Roesler (2005)
revealed that the highest cellular toxin levels in
Alexandrium tamarense and A. fundyense were ob -
served at light intensities between 100 and 150 µmol
photons m−2 s−1. Analysis of PSP composition in
Alexandrium demonstrated that toxin composition
did not vary with increasing light (Boyer et al. 1987,
Cembella et al. 1987, Ogata et al. 1987, Oshima et al.
1990, Cembella & Destombe 1996, Parkhill & Cem-
bella 1999, Lim et al. 2006), suggesting that light
 regulated the total toxin concentrations rather than
changing the toxin profiles. In contrast to these
observations of toxin stimulation by increasing light,
an inverse relationship between cellular toxicity and
light-dependent growth was also documented (Ogata
et al. 1987, Hamasaki et al. 2001, Cembella 1998).
There appears to be no general trend that applies to
the effect of light on the production of PSPs in all
Alexandrium species and strains, and in general the
effect of light variation on toxicity is less remarkable
compared to other factors such as temperature, salin-
ity, and nutrients (Ogata et al. 1987, Lim et al. 2006).
Thus, the responses of these dinoflagellates to any
future increases in irradiance doses due to mixed
layer shoaling are difficult to predict.
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The responses of toxicity to light are also complex
in HAB raphidophytes. In Heterosigma, there is an
inverse relationship between light-limited growth rates
and toxicity (Ono et al. 2000). Conversely, hemolytic
activity of Fibrocapsa japonica is positively affected
by light (de Boer et al. 2009). Other studies with
Chattonella marina have related light intensity posi-
tively to its ichthyotoxicity (Ishimatsu et al. 1996,
Marshall et al. 2001). Similar results were also ob -
served by Oda et al. (1997) and Marshall et al. (2001,
2005), who reported that light is also involved in
the production of ROS by raphidophytes, including
F. japonica.

The influence of light on the growth and toxin pro-
duction of dinoflagellates has been more extensively
investigated compared to toxic diatoms. Several stud-
ies have documented physiological responses of
Pseudo-nitzschia spp. to light intensity (Bates et al.
1991, Whyte et al. 1995, Pan et al. 1996a, Fehling et
al. 2005, Thessen et al. 2009), but only one of these
described light as a basic requirement for domoic
acid production (Bates et al. 1991). Domoic acid pro-
duction by Pseudo-nitzschia is inhibited in darkness,
but resumes soon after cultures are shifted into the
light (Bates et al. 1991). Although cultures of P. seri-
ata exposed to a long photoperiod (18 h light: 6 h
dark) compared to a short photoperiod (9 h light: 15 h
dark) have higher growth rates, biomass, and total
domoic acid production, their cellular domoic acid
content is reduced (Fehling et al. 2005).

The majority of published studies showing light-
regulated growth and toxin production in HAB
 species have been done with laboratory cultures.
Recently, however, field observations assessing the
environmental factors regulating Pseudo-nitzschia
blooms in the northern Gulf of Mexico have found
that the mean cell toxin quotas and abundance of
Pseudo-nitzschia species were strongly correlated with
several factors, including high irradiance (Fig. 2C,D;
MacIntyre et al. 2011).

Salinity

Altered future rainfall and climate patterns could
significantly increase salinity variability in coastal
areas, and especially in estuaries (Hallegraeff 2010,
Paerl & Scott 2010). Such salinity fluctuations may
favor halotolerant and euryhaline organisms such as
many HAB dinoflagellates and raphidophytes. For
instance, many species of the dinoflagellate Proro-
centrum are euryhaline in culture and in nature
(Grzebyk & Berland 1996). In a clonal culture of P.

lima, growth rate and toxicity were inversely corre-
lated with salinity (Morton et al. 1994). In the dinofla-
gellate Karlodinium veneficum, re duced growth
rates due to low salinity significantly enhance cellu-
lar toxin quotas (Adolf et al. 2009). However, the
diatom Pseudo-nitzschia multiseries demonstrates
reduced growth rates and cell-normalized toxicity at

216

Fig 2. Pseudo-nitzschia spp. Environmental correlations
with abundance of domoic acid-producing diatoms in sam-
ples in which domoic acid was detected across an estuarine
salinity gradient in the Gulf of Mexico. Plotted against salin-
ity are (A) total dissolved inorganic carbon (DIC), (B) silicate
concentrations, (C) mean down-welling photosynthetically
active radiation (PAR) in the water column, and (D) Pseudo-
nitzschia spp. abundance. ND: counts that were  below the
limit of detection; R-values represent correlation coefficients
for each entire data set (from MacIntyre et al. 2011, used 

by permission)
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lower salinities; at full seawater salinity, toxicity
increases several fold (Doucette et al. 2008). Species-
specific salinity-related growth tolerances have been
re ported by several investigators for this diatom
genus (Jackson et al. 1992, Lundholm et al. 1994,
1997, Thessen et al. 2005).

Dense proliferations of Alexandrium cells normally
occur in coastal zones. Consistent observations within
estuaries, and the generally wide salinity tolerance of
this genus, suggest that salinity is an influential
growth factor (Franks & Anderson 1992, Parkhill &
Cembella 1999, Lim & Ogata 2005). Reported rela-
tionships between toxicity and salinity range from
inverse (Grzebyk et al. 2003, Lim & Ogata 2005) to no
difference (Anderson et al. 1990) to positive (White
1978, Lim & Ogata 2005). For instance, Grzebyk et al.
(2003) reported that a clone of A. minutum grew most
favorably at salinity 20 to 37, but toxicity was highest
at salinity 15.

A range of responses of growth and toxicity to
changing salinity has also been reported in other
dinoflagellates. One study on Pyrodinium bahamense
revealed a high tolerance to salinity changes, but
natural blooms are usually encountered only at sal -
inities of 20 or more (Usup et al. 2012). Guerrini et
al. (2007) reported that Protoceratium reticulatum
grows over a salinity range of 22 to 42, with the high-
est yessotoxin concentration at salinity 32. Paz et
al. (2007) also reported that yessotoxin production
decreased with increasing salinity in this species.
Toxicity in this species was demonstrated to be
 relatively unchanged above sal inity 24, but was
enhanced 3-fold at salinity 20 (Usup et al. 1994).
Karenia brevis is thought to tolerate a range of salin-
ities (18−45) but seems to grow best in full-salinity
seawater (Magana & Villareal 2006, Brand et al.
2012). However, a recent laboratory study by Errera
& Campbell (2011) demonstrated a close connection
between salinity and brevetoxin production by K.
brevis. Three of 4 clones of K. brevis responded to
hypoosmotic shock dramatically: cellular breve-
toxin quota increased by 14-fold, while cell volume
remained unchanged. This study implies that breve-
toxin production by K. brevis may be affected by
variations in salinity due to semi-daily tidal rhythms,
and that this species could be come more toxic if
future precipitation increases result in lower salini-
ties in the coastal regions where it blooms. K miki -
motoi exhibits a similar salinity tolerance of 9 to 35
(Gentien 1998, Vargo 2009, Brand et al. 2012).

Benthic and epiphytic HABs can also be affected
by salinity. For instance, in Gambierdiscus, both
growth and toxicity respond to salinity changes. In

general, members of this genus grow optimally at or
near full-strength seawater, but can tolerate mild
fluctuations (Parsons et al. 2012), and toxicity is
 partially determined by salinity (Bomber et al. 1988,
Roeder et al. 2010). The effects of salinity on the eco-
logically similar genus Ostreopsis are quite variable,
ranging from negative to positive correlations with
growth and toxicity (Pistocchi et al. 2011). A Mediter-
ranean O. ovata isolate displays optimal growth rates
at high salinity (36−40), but toxicity is highest at
salinity 32 (Pezzolesi et al. 2012). While there is an
evident lack of consistency in the responses of these
various HAB species to changing salinity, species-spe-
cific increases or decreases in toxicity and growth
rate are commonly reported and may become im -
portant to consider under future changing precipita-
tion and eva poration regimes in coastal areas and
estuaries.

INTERACTIVE EFFECTS OF CO2 AND OTHER
ENVIRONMENTAL VARIABLES ON HABs

CO2 and temperature 

As discussed above, rising temperature may in -
crease the bloom frequencies of cyanobacteria
and dinoflagellates relative to other algae such as
diatoms (reviewed by Beardall et al. 2009b). Al -
though a number of studies have determined how
global warming affects various harmful species,
very little is known about the effects of rising tem-
perature in concert with rising CO2 on their physio -
logy or ecology. To our knowledge, only 1 published
study has focused on interactive effects of CO2 and
temperature increases in HAB species. Fu et al.
(2007) compared the combined effects of CO2 and
temperature on cultures of the raphidophyte Het-
erosigma akashiwo and the dinoflagellate Prorocen-
trum minimum isolated from the same Delaware In -
land Bays (USA) estuary. Max imum light-saturated
photosynthetic rates (PB

max) increase in H. akashi wo
only with simultaneous CO2 and temperature in -
creases (Fig. 3A), whereas PB

max in P. minimum
responds significantly to CO2 en richment, with or
without increased temperature (Fig. 3B; Fu et al.
2007). CO2 availability and temperature also have
pronounced effects on cellular C and N content in
H. akashiwo, but not in P. minimum. Evidently,
there can be major differences in re sponses to com-
bined warming and acidification even between 2
HAB species that commonly bloom to gether in the
same body of water.
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Heterosigma akashiwo is not the only HAB species
likely to benefit from a greenhouse climate regime.
Our preliminary experiments with Chattonella sub-
salsa, another bloom-forming raphidophyte from the
same Delaware Inland Bays estuary, also demon-
strated enhanced growth under CO2 and tempera-
ture conditions predicted for the end of this century
(Fig. 4). These 2 studies suggest that some raphido-
phytes may be favored by the combination of future
rising CO2 and temperature, possibly more than other
co-occurring HAB groups such as dinoflagellates.

In preliminary work, we have observed interac-
tions between temperature and CO2 that strongly
influenced PSP production by the marine dinoflagel-
late Alexandrium catenella, in a strain isolated from
coastal southern California. Within 15 and 19°C tem-

perature treatments, triplicate bottles were equili-
brated at 2 different CO2 concentrations (380 ppm
pCO2: present day; 800 ppm pCO2: future). pCO2

 levels were obtained by gentle bubbling with filtered
commercial gas (Tatters et al. 2012). Four treatments
were used in this study: control (15°C, 380 ppm CO2);
high CO2 (15°C, 800 ppm); high  temperature (19°C,
380 ppm CO2); and ‘greenhouse’ (19°C, 800 ppm
CO2). Experiments used identical semicontinuous
culturing methods with each species to measure tem-
perature and CO2 effects during ac climated steady-
state growth (Fu et al. 2010); saxitoxin measurements
were made using HPLC (Abbott et al. 2009) with
 calibration standards obtained from the National
Research Council of Canada (Halifax, Nova Scotia).
At current 380 ppm pCO2 levels, cellular toxin con-
tents did not differ between temperatures, but in the
high pCO2 treatment (800 ppm), the slowly growing
cultures maintained at 15°C had  cellular toxin con-
tents that were ~50% higher than those in faster-
growing cultures maintained at 19°C (Fig. 5). Re -
gard less of temperature conditions, an enrichment of
pCO2 significantly stimulated cellular saxitoxin equi -
valent contents, with an increase of ~1.5 to 2.3 times
in the 800 ppm pCO2 treatments relative to those
grown at 380 ppm pCO2. These results suggest that
already damaging Alexandrium blooms could poten-
tially become much more toxic under acidified con -
ditions, but that these toxicity increases could be
 partially offset by simultaneously rising temperature.

Another perspective on this issue is offered by a
recent study with 2 strains of Alexandrium minutum
isolated from NW Spain (Flores-Moya et al. 2012).
These cultures were grown for 2 yr under simulated
global change conditions, including increased tem-
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Fig. 3. Heterosigma akashiwo and Prorocentrum minimum.
Photosynthesis versus irradiance curves for (A) the raphido-
phyte H. akashiwo and (B) the dinoflagellate P. minimum in
a CO2/temperature interaction experiment. Treatments in-
cluded ambient (20°C and 375 ppm CO2), high CO2 (20°C
and 750 ppm CO2), high temperature (24°C and 375 ppm
CO2), and greenhouse (24°C and 750 ppm CO2). Maximum
photosynthetic rates increased only in the greenhouse treat-
ment for Heterosigma, but in both high CO2 treatments
for Prorocentrum, regardless of temperature (from Fu et al. 

2008a, used by permission)
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Fig. 4. Chattonella subsalsa. Growth of an estuarine harmful
algal bloom raphidophyte (mean ± SD, n = 3) at present-day
temperature and pCO2 (20°C and 375 ppm CO2), and at
 levels projected for the year 2100 (24°C and 750 ppm CO2) 

(F. X. Fu & D. A. Hutchins unpubl. data)
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perature (from 20 to 25°C) and decreased pH (from
8.0 to 7.5). The results suggest that long-term adapta-
tion and acclimation to future global change may
stimulate their growth rates, but effects on cellular
toxicity were unpredictable due to high variance
in cellular toxin contents between different cell lines
(Flores-Moya et al. 2012).

Rising CO2 and temperature will not only affect the
responses of phytoplankton among different major
taxonomic groups, but may also elicit different re -
sponses within closely related taxa. For instance,
cyanobacteria are generally thought to possess effi-
cient CCMs, and hence they may not be especially
vulnerable to carbon limitation (Badger et al. 1998).
However, a culture isolate of the picocyanobac-
terium Synechococcus has a greater response to
CO2 (controlled by bubbling) and temperature
increases for many physiological parameters, com-
pared to a closely related Prochlorococcus culture
(Fu et al. 2007). However, at this time, no published
studies have tested how combined CO2 and temper-
ature increases may influence the growth and toxi -
city of marine and estuarine harmful cyanobacteria
such as Lyngbya.

The interactive effects of CO2 and temperature on
phytoplankton physiology can be species- or even
strain-specific. Such differences between closely re -
lated groups can have large consequences for whole
natural community changes. Currently no informa-
tion is available to document the interactive effects of
CO2 and temperature on natural community shifts

involving HABs, but experimental results using other
types of algal communities are available. For in -
stance, in phytoplankton communities examined
during the North Atlantic spring bloom, in creased
temperature alone promotes whole-community pho-
tosynthesis, while phytoplankton community com -
position is affected by both elevated CO2 and tem-
perature (Feng et al. 2009). Similarly, the effect of
rising CO2 alone on photosynthesis of phytoplankton
communities was minor in the tropical North Pacific
(Tortell et al. 2002) and the Bering Sea (Hare et al.
2007). However, elevated CO2 and increased tem -
perature (the ‘greenhouse’ treatment) stimulates
whole-community carbon fixation by 2.6- to 3.5-fold,
and also resultes in community structure shifts from
diatoms toward nanophytoplankton (Hare et al.
2007). Similar studies in estuaries and the coastal
ocean are needed for HAB-dominated communities.

CO2 and nutrients

A large number of studies have investigated the
influence of nutrient availability on growth and toxi-
city in HAB species, examining compounds such as
PSPs, karlotoxins, brevetoxins, and domoic acid (see
‘Nutrients’ section above). However, to date, the
inter active effects of changing CO2 with nutrient
availability on HAB cell potency have been investi-
gated only for domoic acid and karlotoxins in labora-
tory culture experiments (Fu et al. 2010, Sun et al.
2011, Tatters et al. 2012).

Domoic acid production increases dramatically in
nutrient-limited laboratory cultures of the toxic dia -
toms Pseudo-nitzschia spp. as the CO2 concentration
at which the cells are grown increases from 190 ppm
(glacial era levels) to 380 ppm (approximately pres-
ent-day atmospheric concentration) to 750 ppm (pro-
jected levels for the year 2100). These trends have
been documented in a P. multiseries isolate from east-
ern Canada under P limitation (Fig. 6; Sun et al. 2011),
and a P. fraudulenta clone from southern California
under Si limitation (Fig. 7; Tatters et al. 2012). These
CO2-mediated toxin increases are far greater in nutri-
ent-limited cultures than in nutrient-replete treat-
ments, but occur under both regimes (see panel insets
in Fig. 7). These studies demonstrate not only that out-
breaks of amnesic shellfish poisoning events could
worsen in the future high-CO2 world, but also that
CO2 effects on toxicity can be influenced by changing
nutrient availability.

The interactions between CO2 and nutrient avail-
ability in natural Pseudo-nitzschia communities have
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Fig. 5. Alexandrium catenella. Preliminary experiment
showing cellular paralytic shellfish toxin contents (fmol cell−1

saxitoxin equivalents, STX eq) in a southern California iso-
late of the dinoflagellate grown at control (15°C and present-
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not been experimentally investigated. However, in
Pseudo-nitzschia blooms from the Gulf of Mexico,
both cell densities (Fig. 2D) and domoic acid levels
(not shown) are negatively correlated with silicate
concentrations (Fig. 2B) and positively correlated
with dissolved inorganic carbon or CO2 (Fig. 2A;
MacIntyre et al. 2011). This in situ observational
study supports the culture results of Tatters et al.
(2012), suggesting that domoic acid  levels are
enhanced in Si-limited Pseudo-nitzschia cells under
high CO2 conditions.

As noted in the pCO2/pH section above, 2 prior
studies examined the influence of seawater pH on
the toxicity of Pseudo-nitzschia cultures and found
that domoic acid concentrations increased instead
at higher pHs (Lundholm et al. 2004, Trimborn et al.
2008). It is not clear whether these previous results
and those of Sun et al. (2011) and Tatters et al. (2012)
are actually conflicting, since the earlier and recent
studies used different methodologies. Lundholm et
al. (2004) and Trimborn et al. (2008) used nutrient-
replete batch cultures grown to stationary phase,
while Sun et al. (2011) and Tatters et al. (2012) used
semi-continuous cultures in steady-state, nutrient-
limited growth. pH values were adjusted by addi-
tions of HCl and NaOH in the 2 earlier studies, while
CO2 or pH levels were obtained through bubbling
the cultures with different pCO2 concentrations in
the 2 newer studies. The 2 sets of studies also used
different Pseudo-nitzschia species or strains, differ-
ing experimental conditions, and analytical methods.
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moic acid production rates (pg cell−1 d−1) versus pH, (B) do-
moic acid cell contents (pg cell−1) versus pH, and (C) domoic
acid contents (pg cell−1) versus pCO2. Panel insets: nutrient-
replete data with an expanded y-axis scale for clarity (from 

Tatters et al. 2012)
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Lundholm et al. (2004) also did not examine the low
pH levels that are relevant to future ocean acidifica-
tion trends. These contrasting results emphasize the
need for an in-depth examination of CO2/toxicity
interactions with nutrient availability in other Pseudo-
nitzschia species using standardized experimental
protocols.

Fu et al. (2010) showed that the toxicity of the toxic
estuarine dinoflagellate Karlodinium veneficum is
also strongly affected by changing CO2 under nutri-
ent-limited growth conditions. Enhanced toxin levels
under N or P limitation have been reported previ-
ously in this species (Adolf et al. 2009). However, Fu
et al. (2010) found that the highest levels of overall
cellular toxicity by far were observed in P-limited,
high-pCO2 cultures, suggesting a synergistic effect
between the 2 variables (Fig. 8C). This potency effect
was due to a large shift in the biochemical composi-
tion of the cellular toxin pool, with cells grown under
high-CO2 conditions producing much higher levels
of a more toxic karlotoxin congener (Karlotoxin 1,
Fig. 8A) and lower amounts of a less potent congener
(Karlotoxin 2, Fig. 8B). As a result, overall cellular
toxicity increased by up to 300% between 230 and
745 ppm CO2 in the P-limited cultures (Fig. 8C). This
work demonstrates that it is important to consider the
effects of future increases in atmospheric CO2 not
only on levels of total cellular toxin production, but
also on the entire suite of chemical congeners pro-
duced by many harmful dinoflagellate species.

CO2 and solar irradiance

To date, no published studies have shown how the
interactions between increasing CO2 and PAR may
affect the growth and toxin production of HABs. Gao
et al. (2012b), however, demonstrate that ocean acid-
ification reduces the ability of diatoms to cope with
super-saturating PAR levels (see also Gao et al.
2012a). A few studies have examined effects of ele-
vated CO2 in combination with UV radiation (UVR)
on various phytoplankton species. UVR reaching the
sea surface increased dramatically during the late
20th century due to the thinning of the stratospheric
ozone layer, especially at high latitudes (Kerr &
McElroy 1993). Although the upper atmo sphere con-
centrations of anthropogenic  ozone-reactive chlori-
nated compounds have been reduced since the
implementation of the Montreal protocol, it is still
unclear when the ozone layer will fully recover
(Weatherhead & Anderson 2006). The expected en -
hancement of stratification in the open ocean water

column will increase the exposure of phytoplankton
in the upper mixed layer to all wavelengths of solar
radiation, making deleterious exposures to UVR more
likely (Gao et al. 2012a).

Mengelt & Prézelin (2005) reported that the pres-
ence of UVA (320 to 400 nm) stimulates carbon fixa-
tion by Pseudo-nitzschia-dominated communities in
the Santa Barbara Channel, although UVB (280 to
320 nm) photoinhibition is also observed. Their re -
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(from Fu et al. 2010)
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sults suggest that Pseudo-nitzschia may not be photo -
inhibited even in shallower portions of the water
 column. Because their sampling occurred during a
bloom event, CO2 concentrations were likely decreas-
ing rapidly. They suggested that exposure to UVA
may increase extracellular CA activity to help main-
tain higher intracellular CO2 levels, despite reduced
external CO2.

Sobrino et al. (2005) demonstrated that UVR sen -
sitivity showed different responses to increased CO2

levels in 2 marine picoplanktonic eukaryotes with
similar morphology but different CCMs. The 2
 marine picoplankters Nannochloropsis gaditana and
Nannochloris atomus were grown with constant
 aeration in air containing 0.03 and 1% CO2. The for-
mer species, which relies on bicarbonate uptake for
 photosynthesis, shows decreased sensitivity to UVR
after growing for 4 d under elevated CO2 conditions.
In contrast, N. atomus, a species with active CO2

transport, shows similar sensitivity to UVR with and
without supplemental CO2. These studies do not
 verify the potential effect of UVR on CCMs, but sug-
gest that differences in UVR sensitivity related to ex -
ternal CO2 concentrations can affect taxonomic com -
position in open ocean algal communities. Whether
this might apply to estuarine and coastal HAB assem-
blages has not yet been determined.

Studies with the diatom Thalassiosira pseudonana
grown at 2 pCO2 levels (380 versus 1000 ppm, ob -
tained by bubbling) also have shown that the pres-
ence of UVR may affect CO2 uptake more than that of
HCO3

− (Sobrino et al. 2008). With another diatom,
Skeletonema costatum, Wu & Gao (2009) found that
the presence of UV promotes external CA activity as
a result of enhanced CO2 supply. They suggested
that this helps cells avoid UV-induced photoinhibi-
tion of photosynthesis. Rising CO2 stimulates the
growth of T. pseudonana regardless of exposure to
UVR, but the presence of UVR does not affect its
growth (Sobrino et al. 2008). Future work is neces-
sary to determine whether the observations of these
diatom studies can be applied to harmful diatoms such
as toxic Pseudo-nitzschia spp., or to other HAB groups
such as dinoflagellates and raphidophytes.

Chen & Gao (2012) focused on the interactive
effects of UV and ocean acidification on the photo-
synthetic performance of the HAB species Phaeocys-
tis globosa. The major finding of this study was that
the effect of CO2 on physiological responses, includ-
ing growth rates and photochemical efficiency, is
dependent on light levels (Chen & Gao 2011). Under
high light levels, enrichment with CO2 inhibits the
growth of P. globosa with or without UVA and UVB,

but the presence of either type of UVR further
inhibits its growth (Fig. 9). When CO2 and UVA are
combined, the effects are synergistically magnified.
In contrast to its responses to UVA, UVB exposure
always inhibits P. globosa growth regardless of the
light levels and CO2 conditions. Enrichment with
CO2 imposes a significant but minor negative effect
of UVB and UVA on growth.

Another recent study investigated the combined
effects of CO2 and PAR on Phaeocystis globosa, iso-
lated from the North Sea (Hoogstraten et al. 2012).
Their study showed that the physiological effect of
CO2 is dependent on light conditions. The growth
rates of high-light cultures decrease with increasing
CO2 levels, while photosynthetic efficiency increases
with increasing CO2. However, no CO2 effect is
observed in light-limited cultures. Together with the
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Fig. 9. Phaeocystis globosa. Effects of solar irradiance on
growth of harmful algal bloom prymnesiophyte. (A) Daily
doses of solar photosynthetically active radiation (PAR), ul-
traviolet radiation A (UVA, 315−400 nm), or ultraviolet radi-
ation B (UVB, 280−315 nm) during the experimental period
of 1 to 8 May 2009. (B) Specific growth rates of cultures
grown at pH 8.07 (open symbols) and the ratios (mean
+/– SD, n = 3) of the specific growth rates at pH 7.70 to those
at pH 8.07 (7.70:8.07; solid symbols), under solar PAR (P),
PAR + UVA (PA), or PAR + UVA + UVB (PAB), respectively 

(from Chen & Gao 2011, used by permission)
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observations of Chen & Gao (2011), this study indi-
cates that P. globosa may not be well suited to grow
under expected future ocean conditions of higher
PAR and UV.

No information is currently available to make a
clear statement about how interactions between UVR
and CO2 may affect possibly the most important
physiological trait of many HAB species: toxin pro-
duction. If the presence of UVB inhibits growth and
photosynthesis, toxin production may be stimulated
since it is often thought that toxicity is stimulated by
growth-limiting conditions. If the results of Chen &
Gao (2011) and Sobrino et al. (2008), suggesting that
phytoplankton are more sensitive to UVR under high
CO2 conditions, are representative of HAB groups in
general, toxicity may increase in the future ocean.
However, the presence of moderate doses of UVA
will often stimulate algal growth and carbon fixation,
thus potentially counteracting this phenomenon.
Algae will likely experience stronger doses of UVR
as well as PAR in the future ocean, due to shallower
mixed layers. Thus 3-way interactions among PAR,
UVR, and CO2 will exert combined effects on the
physiological responses of HABs. These alternate
scenarios for toxin effects from CO2 and UVR should
be examined in future work.

FUTURE DIRECTIONS

The interactive global change effects on HABs may
differ significantly between marine regimes. For in -
stance, CO2 sources, levels, and trends are likely to
be quite different for estuarine, coastal, and offshore
bloom events. Many freshwater-influenced estuarine
systems lack robust carbonate buffer systems, and
hence tend to have relatively low alkalinity and
bicarbonate concentrations. In contrast, marine sys-
tems have significant pools of bicarbonate accessible
to phytoplankton. Due to these chemical  differences,
the possible role of CO2 availability in influencing
estuarine versus oceanic HAB ecology remains to be
extensively investigated. Recently, Nielsen et al.
(2012) investigated the effect of pH manipulated by
additions of acid and base on an estuarine plankton
community in the Derwent River estuary, Tasmania,
Australia. pH effects on community structure (which
included diatoms and dinoflagellates) were not ob -
served across a pH range be tween 8.0 and 7.7. They
pointed out that large fluctuations in seasonal and
diurnal pH (ranging from 7.5 to 9.6) and in salinity
levels in estuaries have selected phytoplankton as -
semblages in these regimes to tolerate a broad range

of water chemistries, and hence they may not be
affected by changes in pH within the range expected
for the next 100 yr.

Coastal upwelling regions where organisms such
as Pseudo-nitzschia bloom are especially vulnerable
to ocean acidification, since anthropogenic CO2 can
augment already naturally elevated pCO2 in up -
welled water (Feely et al. 2008). In addition, coastal
eutrophication and resulting suboxia or hypoxia can
also strongly elevate regional pCO2 (Hales et al.
2005, Cai et al. 2011). Nutrient and light trends are
also likely to be regime-specific. For instance, the
commonly assumed trends of higher light exposures
and reduced nutrient supplies for phytoplankton due
to enhanced stratification may apply largely to the
open ocean. In contrast, expected continuing future
increases in anthropogenic eutrophication of estuar-
ies are likely to result in opposite trends, with simul-
taneous increases in nutrient concentrations and
decreases in available light due to higher turbidity.
Thus, rising pCO2 and acidification will interact
with other crucial environmental variables in varying
ways for future HAB events in different types of
 marine ecosystems.

Many of these ocean acidification and climate
change effects will manifest themselves through com -
petition-related changes in algal community struc-
ture. Rising CO2 and temperature in concert with
irradiance changes and increased eutrophication are
likely to affect the ecological dominance of groups
such as raphidophytes and dinoflagellates relative
to competing non-harmful species. These global
change effects may also favor particular HAB species
over others. We tested whether CO2 availability could
affect interspecific competition between 2 HAB dino-
flagellates, Karlodinium veneficum and Prorocentrum
minimum, isolated from the same estuary (Delaware
Inland Bays). For this, we carried out a simple batch
culture competition experiment in which the 2 spe-
cies were inoculated at a 1:1 ratio (cell:cell) into nutri-
ent-replete medium and grown for 10 d at 3 pCO2

levels (190, 380, and 750 ppm). K. veneficum growth
rates (Fig. 10A) and biomass (Fig. 10B) responded
positively to increasing pCO2, whereas those of P.
minimum did not. At the end of the experiment,
ratios of K. veneficum to P. minimum cells were still
~1:1 in the low pCO2 treatment, but had increased
incrementally to ~3:1 in the high pCO2 replicates
(Fig. 10C). These differing responses may reflect
their different CCM efficiencies, but this hypothesis
will require further work to verify. Regardless of the
reason for this outcome, our artificial HAB commu-
nity experiment suggests that pCO2 may be 1 factor
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(among many) determining the outcome of inter -
specific competition in mixed natural assemblages.
The dominance of toxic K. veneficum over non-toxic
P. minimum at high pCO2 could be due to pCO2-
induced karlotoxin (Fu et al. 2010) inhibiting the
growth of P. minimum. In a similar vein but between
more closely related taxa, Davis et al. (2009) showed
that toxic populations of the freshwater harmful
cyano bacterium Microcystis can outcompete non-

toxic ones at higher temperatures. Consequently, the
effects of global climate change on toxin production
may be important to understand in order to explain
inter- and intraspecific competitive interactions within
HAB communities in a range of aquatic ecosystems.

An emerging ocean acidification issue with poten-
tially serious environmental implications is the new
evidence that elevated pCO2 along with nutrient
 limitation greatly increases the cell-specific toxicity
of some HAB species, including the dinoflagellate
Kar lo dinium veneficum (Fig. 8; Fu et al. 2010) and
some Pseudo-nitzschia spp. diatoms (Figs. 6 & 7; Sun
et al. 2011, Tatters et al. 2012). Our preliminary work
with the dinoflagellate Alexandrium catenella shows
that saxitoxin levels are greatly stimulated by ocean
acidification as well (Fig. 5). These early results sug-
gesting that toxin production can be regulated by
CO2 or pH raise an alarming question: Will harmful
algal blooms become more toxic in the future ocean?
New studies are needed that encompass a broad
range of harmful taxonomic groups, and that include
physiological measurements along with examina-
tions of gene and protein expression patterns with an
eye towards identifying CO2- and toxin-responsive
genes for future follow-up work.

These new studies with multiple diatom and dino-
flagellate species suggest a possible general prin -
ciple of toxic HAB responses to ocean acidification:
that the combination of low pH and growth limitation
strongly stimulates their cellular toxin levels. This
common physiological response may be shared by
species from divergent taxonomic groups, and occurs
when growth is limited by a variety of different nutri-
ents, or by other environmental factors such as lower
temperatures. The literature on algal toxins already
highlights a generalized ‘growth rate hypothesis,’
in that limitation by nutrients or other factors often
promotes higher toxin levels in many HAB species
(Bates et al. 1991, Cembella 1998, Pan et al. 1998,
Maldonado et al. 2002, Granéli & Flynn 2006, Lim et
al. 2006, Mitra & Flynn 2006, Sunda et al. 2006, Adolf
et al. 2009, Fu et al. 2010), as long as the limiting
resource is not directly required for toxin synthesis
(e.g. light energy or nitrogen in some cases). Thus,
toxins may increase in slowly dividing cells at least
partly due to the availability of a supply of ‘excess’
fixed carbon and photosynthetically-derived energy
that can be directed into toxin precursors. Of course,
any roles that toxins may play in reducing grazing
mortality (Waggett et al. 2008, 2012), facilitating
 supplemental prey capture (Adolf et al. 2007, Sheng
et al. 2010), or obtaining limiting nutrients such as
iron (Maldonado et al. 2002, Wells et al. 2005), also
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be come increasingly important to the HAB species
when growth rates are severely limited. Our new
work suggests that when elevated pCO2 is also incor-
porated, this growth limitation effect on toxin pro-
duction is tremendously exacerbated.

It is instructive in this respect to consider the large
body of previous work on the effects of changing
pCO2 on secondary metabolism in terrestrial plants.
The major consensus is that plant secondary metabo-
lites increase with higher CO2 levels (Schonhof et al.
2007, Ziska et al. 2008, Ghasemzadeh & Jaafar 2011,
Ibrahim & Jaafar 2011). Since most known algal tox-
ins, including domoic acid, saxitoxins, brevitoxins,
and karlotoxins, are classified as secondary meta -
bolites, it should not be entirely surprising that
increased CO2 levels can result in higher toxin cell
quotas. The specific mechanism for this increase
would be likely dependent on the class of toxins. For
lipophilic toxins such as karlotoxins and yessotoxins,
this could result from increased glycolate levels (the
starter unit for toxin synthesis; Yamazaki et al. 2011),
allowing more fixed carbon to be diverted to the
toxin machinery. A major cellular source of glycolate
is photorespiration (Spencer & Togasaki 1981); how-
ever, it might be expected that this source would be
reduced when ambient CO2:O2 ratios are high, and
so this does not appear to be consistent with the
observed trends in lipophilic toxin synthesis under
acidified conditions. However, another study with a
freshwater green alga showed that glycolate pro -
duction rates were 15 to 20 times higher in elevated
CO2-grown cells relative to air-grown cells (de Veau
& Burris 1989).

A similar ‘high CO2 subsidy’ argument can be
made for hydrophilic toxins such as domoic acid
(Ramsey et al. 1998) and saxitoxin (Srivastava et al.
2011) with regard to their biosynthetic precursors
(e.g. acetate and arginine). Of course, an alternate
hypothesis is that lowered seawater pH directly
affects the activity of crucial enzymes in toxin biosyn-
thetic pathways and hence synthesis; external pH
decreases can indeed affect intracellular pH in sev-
eral phytoplankton species (Dason et al. 2004, Suf-
frian et al. 2011). In order to mechanistically under-
stand the future impacts of toxic algal blooms in a
high CO2 ocean, more studies should be focused
on distinguishing between these 2 possible causes:
direct pH effects on biosynthetic pathways, and in -
direct stimulation of toxin synthesis by a high CO2

subsidy.
The potential impacts on the growth, toxin produc-

tion, and community structure of harmful algae from
increasing CO2, either alone or in conjunction with

other variables, are currently poorly understood. So
far, however, interactive global change effects have
been examined in very few organisms. Physiological
responses of dinoflagellates to even pCO2/pH shifts
alone have been examined only for a handful of spe-
cies (Rost et al. 2006, Fu et al. 2008a). Our ability to
predict the long-term synergistic effects of climate
change and ocean acidification on HAB and compet-
ing non-harmful species depends to a large extent on
understanding their basic physiological and growth
responses under changing con ditions of CO2, tem-
perature, irradiance, salinity, and nutrients. Some
modeling work based on laboratory and field studies
has attempted to predict how HABs may respond
to future rising temperature (Peperzak 2003, 2005,
Moore et al. 2008, 2011). For truly pre dictive capabil-
ities, additional modeling studies will be necessary,
which incorporate rising CO2 along with all of the
other  relevant global change factors as they affect
growth and toxicity of harmful species.

Even less is known about the effects on HAB
 species of changing ‘bottom-up’ variables such as
pCO2 and temperature when combined with altered
‘top-down’ controls such as microzooplankton her-
bivory. Aside from direct grazing effects on HAB
mortality, indirect interactions between prey avail-
ability and a changing physical and chemical envi-
ronment could be especially significant for mixo -
trophic species, such as many dinoflagellates (Caron
& Hutchins in press). Rising CO2 or interactions be -
tween CO2 and temperature have a significant effect
on microzooplankton communities, abundances, and
grazing rates in the North Atlantic spring bloom (Rose
et al. 2009). These findings em phasize the importance
of determining how CO2 and other climate variables
affect trophic interactions in marine regimes where
HABs are a major environmental issue.

The validity of extrapolating short-term experi-
ments with natural HAB communities or laboratory
cultures to long-term ecosystem trends needs to be
ex plored. Incubation experiments examining re -
sponses to CO2 alone and in concert with other global
change variables typically cover only a few genera-
tions, so it is hard to predict whether they accurately
reflect likely future decadal- or century-scale trends
in nature. Most of the published high-CO2 experi-
ments have placed present-day phytoplankton im -
mediately into a high-CO2 environment, and then
analyzed how they respond after a given acclimati -
zation time, which is usually shorter for field and
longer for culture experiments. An exception to this
is the recent study of Flores-Moya et al. (2012), which
examined acclimation and adaptation to warming
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and acidification in dinoflagellates over a 2 yr period;
more studies of this sort are needed. Marine phyto-
plankton have large population sizes and relatively
fast generation times, which means that they have a
high probability of being able to adapt to ongoing
environmental changes. Such potential long-term evo -
lutionary changes in response to gradually changing
pCO2 and temperature may be quite likely, compli-
cating the interpretation of short-term studies using
abruptly modified environments. For instance, the
rate of environmental change affects the physiologi-
cal and possibly adaptive re sponses of the model
alga Chlamydomonas to increasing CO2 (Collins &
de Meaux 2009). The rate of change of environmen-
tal variables will likely affect re sponses of all phyto-
plankton, including HAB species, to future anthro -
pogenic ocean acidification and climate change. The
challenge for marine scientists will be to understand
and accurately predict the responses of harmful algal
groups to all of the many interacting factors to which
they must adapt in a  rapidly changing ocean.
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