1. Hofstadter Butterflies in Topological Insulators
Larry Li, Marcin Abram, Abhinav Prem, and Stephan Haas, submitted to Inte-
chOpen (2024).
2. Entanglement parity effects in the Kane-Fisher problem
Chunyu Tan, Yuxiao Hang, Stephan Haas, and Hubert Saleur, submitted to SciPost
(2024).
3. Dynamics of Symmetry-Protected Topological Matter on a Quantum Computer
Miguel Mercado, Kyle Chen, Parth Darekar, Aiichiro Nakano, Rosa Di Felice, and
Stephan Haas, Phys. Rev. B 110, 075116 (2024).
4. Superconductivity in the Fibonacci chain
Ying Wang, Gautam Rai, Chris Matsumura, Anuradha Jagannathan, and Stephan
Haas, Phys. Rev. B 109, 214507 (2024).
5. Global Quench Dynamics and the Growth of Entanglement Entropy in Disordered
Spin Chains with Tunable Range Interactions
Youcef Mohdeb, Javad Vahedi, Ravindra Bhatt, Stephan Haas, Stefan Kettemann,
Phys. Rev. B 108, L140203 (2023).
6. Plasmons in Z2 Topological Insulators
Yuling Guan, Stephan Haas, Henning Schl ̈omer, Zhihao Jiang, Phys. Rev. B 107,
155414 (2023).
Larry Li, Marcin Abram, Abhinav Prem, and Stephan Haas, submitted to Inte-
chOpen (2024).
2. Entanglement parity effects in the Kane-Fisher problem
Chunyu Tan, Yuxiao Hang, Stephan Haas, and Hubert Saleur, submitted to SciPost
(2024).
3. Dynamics of Symmetry-Protected Topological Matter on a Quantum Computer
Miguel Mercado, Kyle Chen, Parth Darekar, Aiichiro Nakano, Rosa Di Felice, and
Stephan Haas, Phys. Rev. B 110, 075116 (2024).
4. Superconductivity in the Fibonacci chain
Ying Wang, Gautam Rai, Chris Matsumura, Anuradha Jagannathan, and Stephan
Haas, Phys. Rev. B 109, 214507 (2024).
5. Global Quench Dynamics and the Growth of Entanglement Entropy in Disordered
Spin Chains with Tunable Range Interactions
Youcef Mohdeb, Javad Vahedi, Ravindra Bhatt, Stephan Haas, Stefan Kettemann,
Phys. Rev. B 108, L140203 (2023).
6. Plasmons in Z2 Topological Insulators
Yuling Guan, Stephan Haas, Henning Schl ̈omer, Zhihao Jiang, Phys. Rev. B 107,
155414 (2023).
7. Tuning Photoluminescence of CsPbBr3 Quantum Dots through Plasmonic Nanofin-
gers
Guangxu Su, Pan Hu, Youfeng Xiao, Junzheng Hu, Dalong Pan, Peng Zhan, Stephan
Haas, Wei Wu, Fanxin Liu, Adv. Optical Mater. 2202750 (2023).
8. Edge and corner superconductivity in a 2D topological model
Ying Wang, Gautam Rai, Stephan Haas, Anuradha Jagannathan, Phys. Rev. B
107, 104507 (2023).
9. Real-space BCS-BEC crossover in FeSe monolayer
Haicheng Lin, Wantong Huang, Gautam Rai, Yuguo Yin, Lianyi He, Qi-Kun Xue,
Stephan Haas, Stefan Kettemann, Xi Chen, Shuai-Hua Ji, Phys. Rev. B 107, 104517
(2023).
10. Emulating Quantum Dynamics with Neural Networks via Knowledge Distillation
Yu Yao, Chao Cao, Stephan Haas, and Marcin Abram, Front. Mater. Sec. Compu-
tational Materials Science doi: 10.3389/fmats.2022.1060744 (2023).
11. Structural and Electronic Properties of Hexagonal Y1−xEuxMnO3
W. S. Ferreira, E. Moreira, and S. Haas, Physical Science International Journal 26,
19 (2022).
12. Parity effects and universal terms of O(1) in the entanglement near a boundary
Henning Schloemer, Chunyu Tan, Stephan Haas, Hubert Saleur, SciPost Phys. 13,
110 (2022).
13. Probing Majorana modes via local spin dynamics
Johannes Bjerlin, Anders S. Sørensen, and Stephan Haas, Phys. Rev. B 106 (3),
035414 (2022).
14. Spin-Phonon Coupling in Monolayer Ferromagnetic Chromium Tribromide
J. Wu,Y. Yao, M.-L. Lin, M. R ̈osner, Z. Du, K. Watanabe, T. Taniguchi, P.-H. Tan,
S. Haas, H. Wang, Advanced Materials https://doi.org/10.1002/adma.202108506
(2022).
15. Avalanches During Epithelial Tissue Growth; Uniform Growth and a Drosophila
Eye Disc Model
G. Courcoubetis, C. Xu, S. Nuzhdin, S. Haas, PLoS Comput Biol 18(3): e1009952.
https://doi.org/10.1371/journal.pcbi.1009952 (2022).
16. Formation, collective motion, and merging of macroscopic bacterial aggregates
G. Courcoubetis, M. Gangan, S. Lim, X. Guo, S. Haas, J.Q. Boedicker, PLoS Com-
put Biol 18(1): e1009153. https://doi.org/10.1371/journal.pcbi.1009153 (2022).
gers
Guangxu Su, Pan Hu, Youfeng Xiao, Junzheng Hu, Dalong Pan, Peng Zhan, Stephan
Haas, Wei Wu, Fanxin Liu, Adv. Optical Mater. 2202750 (2023).
8. Edge and corner superconductivity in a 2D topological model
Ying Wang, Gautam Rai, Stephan Haas, Anuradha Jagannathan, Phys. Rev. B
107, 104507 (2023).
9. Real-space BCS-BEC crossover in FeSe monolayer
Haicheng Lin, Wantong Huang, Gautam Rai, Yuguo Yin, Lianyi He, Qi-Kun Xue,
Stephan Haas, Stefan Kettemann, Xi Chen, Shuai-Hua Ji, Phys. Rev. B 107, 104517
(2023).
10. Emulating Quantum Dynamics with Neural Networks via Knowledge Distillation
Yu Yao, Chao Cao, Stephan Haas, and Marcin Abram, Front. Mater. Sec. Compu-
tational Materials Science doi: 10.3389/fmats.2022.1060744 (2023).
11. Structural and Electronic Properties of Hexagonal Y1−xEuxMnO3
W. S. Ferreira, E. Moreira, and S. Haas, Physical Science International Journal 26,
19 (2022).
12. Parity effects and universal terms of O(1) in the entanglement near a boundary
Henning Schloemer, Chunyu Tan, Stephan Haas, Hubert Saleur, SciPost Phys. 13,
110 (2022).
13. Probing Majorana modes via local spin dynamics
Johannes Bjerlin, Anders S. Sørensen, and Stephan Haas, Phys. Rev. B 106 (3),
035414 (2022).
14. Spin-Phonon Coupling in Monolayer Ferromagnetic Chromium Tribromide
J. Wu,Y. Yao, M.-L. Lin, M. R ̈osner, Z. Du, K. Watanabe, T. Taniguchi, P.-H. Tan,
S. Haas, H. Wang, Advanced Materials https://doi.org/10.1002/adma.202108506
(2022).
15. Avalanches During Epithelial Tissue Growth; Uniform Growth and a Drosophila
Eye Disc Model
G. Courcoubetis, C. Xu, S. Nuzhdin, S. Haas, PLoS Comput Biol 18(3): e1009952.
https://doi.org/10.1371/journal.pcbi.1009952 (2022).
16. Formation, collective motion, and merging of macroscopic bacterial aggregates
G. Courcoubetis, M. Gangan, S. Lim, X. Guo, S. Haas, J.Q. Boedicker, PLoS Com-
put Biol 18(1): e1009153. https://doi.org/10.1371/journal.pcbi.1009153 (2022).
17. Bulk topological signatures of a quasicrystal
G. Rai, H. Schl ̈omer, C. Matsumura, S. Haas, A. Jagganathan, Phys. Rev. B 104,
184202 (2021).
18. Control of plasmons in topological insulators via local perturbations
Y. Guan, Z. Jiang, S. Haas, Phys. Rev. B 104, 125425 (2021).
19. Control of plasmons in doped topological insulators via basis atoms
Z. Jiang, H. Schl ̈omer, S. Haas, Phys. Rev. B 104, 045135 (2021).
20. Achieving a quantum smart workforce
C. Aiello, D. Awschalom, H. Bernien, T. Brower-Thomas, K. Brown, T. Brun, J.
Caram, E. Chitambar, R. Di Felice, K. Edmonds, M. Fox, S. Haas, A. Holleitner,
E. Hudson, J. Hunt, R. Joynt, S. Koziol, M. Larsen, H. Lewandowski, D. McClure,
J. Palsberg, G. Passante, K. Pudenz, C. Richardson, J. Rosenberg, R. Ross, M.
Saffman, M. Singh, D. Steuerman, C. Stark, J. Thijssen, N. Vamivakas, J. Whitfield,
B. Zwickl, Quantum Science and Technology 6, 030501 (2021).
21. Topological protection of coherence in disordered open quantum systems
Y. Yao, H. Schl ̈omer, Z. Ma, L. Campos Venuti, S. Haas, Phys. Rev. A 104, 012216
(2021).
22. Plasmonic waveguides from Coulomb-engineered two-dimensional metals
Z. Jiang, S. Haas, M. R ̈osner, 2D Materials 8, 035037 (2021).
23. Plasmons in Two-Dimensional Topological Insulators
H. Schl ̈omer, Z. Jiang, S. Haas, Phys. Rev. B 103, 115116 (2021).
24. Entanglement Properties of Disordered Quantum Spin Chains with Long-Range An-
tiferromagnetic Interactions
Y. Mohdeb, J. Vahedi, N. Moure, A. Roshani, Hyun-Yong Lee, R. N. Bhatt, S.
Kettemann, S. Haas, Phys. Rev. B 102, 214201 (2020).
25. Probing the Mechanisms of Strong Fluorescence Enhancement in Plasmonic Nanogaps
with Subnanometer Precision
B. Song, Z. Jiang, Z. Liu, Y. Wang, F. Liu, S. Cronin, H. Yang, D. Meng, B.
Chen, P. Hu, A. Schwartzberg, S. Cabrini, S. Haas, W. Wu, ACS Nanoletters
https://doi.org/10.1021/acsnano.0c01973 (2020).
26. Detection of topology via entanglement oscillations
C. Tan, H. Saleur, S. Haas, Phys. Rev. B 101, 235155 (2020).
27. Spatial BCS-BEC crossover in superconducting p-n junctions
A. Niroula, G. Rai, S. Haas, S. Kettemann, Phys. Rev. B 101, 094514 (2020).
G. Rai, H. Schl ̈omer, C. Matsumura, S. Haas, A. Jagganathan, Phys. Rev. B 104,
184202 (2021).
18. Control of plasmons in topological insulators via local perturbations
Y. Guan, Z. Jiang, S. Haas, Phys. Rev. B 104, 125425 (2021).
19. Control of plasmons in doped topological insulators via basis atoms
Z. Jiang, H. Schl ̈omer, S. Haas, Phys. Rev. B 104, 045135 (2021).
20. Achieving a quantum smart workforce
C. Aiello, D. Awschalom, H. Bernien, T. Brower-Thomas, K. Brown, T. Brun, J.
Caram, E. Chitambar, R. Di Felice, K. Edmonds, M. Fox, S. Haas, A. Holleitner,
E. Hudson, J. Hunt, R. Joynt, S. Koziol, M. Larsen, H. Lewandowski, D. McClure,
J. Palsberg, G. Passante, K. Pudenz, C. Richardson, J. Rosenberg, R. Ross, M.
Saffman, M. Singh, D. Steuerman, C. Stark, J. Thijssen, N. Vamivakas, J. Whitfield,
B. Zwickl, Quantum Science and Technology 6, 030501 (2021).
21. Topological protection of coherence in disordered open quantum systems
Y. Yao, H. Schl ̈omer, Z. Ma, L. Campos Venuti, S. Haas, Phys. Rev. A 104, 012216
(2021).
22. Plasmonic waveguides from Coulomb-engineered two-dimensional metals
Z. Jiang, S. Haas, M. R ̈osner, 2D Materials 8, 035037 (2021).
23. Plasmons in Two-Dimensional Topological Insulators
H. Schl ̈omer, Z. Jiang, S. Haas, Phys. Rev. B 103, 115116 (2021).
24. Entanglement Properties of Disordered Quantum Spin Chains with Long-Range An-
tiferromagnetic Interactions
Y. Mohdeb, J. Vahedi, N. Moure, A. Roshani, Hyun-Yong Lee, R. N. Bhatt, S.
Kettemann, S. Haas, Phys. Rev. B 102, 214201 (2020).
25. Probing the Mechanisms of Strong Fluorescence Enhancement in Plasmonic Nanogaps
with Subnanometer Precision
B. Song, Z. Jiang, Z. Liu, Y. Wang, F. Liu, S. Cronin, H. Yang, D. Meng, B.
Chen, P. Hu, A. Schwartzberg, S. Cabrini, S. Haas, W. Wu, ACS Nanoletters
https://doi.org/10.1021/acsnano.0c01973 (2020).
26. Detection of topology via entanglement oscillations
C. Tan, H. Saleur, S. Haas, Phys. Rev. B 101, 235155 (2020).
27. Spatial BCS-BEC crossover in superconducting p-n junctions
A. Niroula, G. Rai, S. Haas, S. Kettemann, Phys. Rev. B 101, 094514 (2020).