Myron Goodman

Professor of Biological Sciences and Chemistry
Myron Goodman
Email mgoodman@usc.edu Office RRI 119C Office Phone (213) 740-5190

Research & Practice Areas

DNA replication

Video

Education

  • Ph.D. Electrical Engineering, Johns Hopkins University, 1/1968
  • B.S. Electrical Engineering, Columbia University, 1/1966
  • B.S. Queens College, New York, 1/1961
  • Summary Statement of Research Interests

    Professor Goodman’s primary research goal is to understand the molecular basis of mutagenesis.

    Currently, his work focuses on three major projects. In the first, Goodman’s team is investigating biochemical and physical-chemical mechanisms governing DNA replication fidelity. He has developed a simple polyacrylamide gel electrophoresis assay to measure DNA synthesis fidelity at any DNA template site, and is analyzing how fidelity depends on DNA polymerases, DNA sequences, and on protein components of the replication complex. His second research project examines the biochemical basis of SOS-induced error prone repair in E. coli. Professor Goodman’s third project identifies and studies normal and damage-induced DNA replication, repair, and nucleotide metabolisms enzymes using neuron and astrocyte primary and transformed cell cultures.

    Research Specialties

    DNA replication

  • Journal Article

    • Ojha, D., Jaszczur, M. M., Sikand, A., McDonald, J. P., Robinson, A., van, A. M., Mak, C. H., Pinaud, F., Cox, M. M., Woodgate, R., Goodman, M. F. (2022). Host cell RecA activates a mobile element-encoded mutagenic DNA polymerase. Nucleic acids research. Vol. 50 (12), pp. 6854-6869. PubMed Web Address
    • Pham, P., Shao, Y., Cox, M. M., Goodman, M. F. (2022). Genomic landscape of single-stranded DNA gapped intermediates in Escherichia coli. Nucleic acids research. Vol. 50 (2), pp. 937-951. PubMed Web Address
    • Sikand, A., Jaszczur, M., Bloom, L. B., Woodgate, R., Cox, M. M., Goodman, M. F. (2021). The SOS Error-Prone DNA Polymerase V Mutasome and β-Sliding Clamp Acting in Concert on Undamaged DNA and during Translesion Synthesis. Cells. Vol. 10 (5) PubMed Web Address
    • Reha-Krantz, L. J., Goodman, M. F. (2020). John W. (Jan) Drake: A Biochemical View of a Geneticist Par Excellence. Genetics. Vol. 216 (4), pp. 827-836. PubMed Web Address
    • Henrikus, S. S., Henry, C., McGrath, A. E., Jergic, S., McDonald, J. P., Hellmich, Y., Bruckbauer, S. T., Ritger, M. L., Cherry, M. E., Wood, E. A., Pham, P. T., Goodman, M. F., Woodgate, R., Cox, M. M., van, A. M., Ghodke, H., Robinson, A. (2020). Single-molecule live-cell imaging reveals RecB-dependent function of DNA polymerase IV in double strand break repair. Nucleic acids research. Vol. 48 (15), pp. 8490-8508. PubMed Web Address
    • Batra, V. K., Alnajjar, K. S., Sweasy, J. B., McKenna, C. E., Goodman, M. F., Wilson, S. H. (2020). Revealing an Internal Stabilization Deficiency in the DNA Polymerase β K289M Cancer Variant through the Combined Use of Chemical Biology and X-ray Crystallography. Biochemistry. Vol. 59 (8), pp. 955-963. PubMed Web Address
    • Alnajjar, K. S., Krylov, I. S., Negahbani, A., Haratipour, P., Kashemirov, B. A., Huang, J., Mahmoud, M., McKenna, C. E., Goodman, M. F., Sweasy, J. B. (2019). A pre-catalytic non-covalent step governs DNA polymerase β fidelity. Nucleic acids research. Vol. 47 (22), pp. 11839-11849. PubMed Web Address
    • Walsh, E., Henrikus, S. S., Vaisman, A., Makiela-Dzbenska, K., Armstrong, T. J., Lazowski, K., McDonald, J. P., Goodman, M. F., van, A. M., Jonczyk, P., Fijalkowska, I. J., Robinson, A., Woodgate, R. (2019). Role of RNase H enzymes in maintaining genome stability in Escherichia coli expressing a steric-gate mutant of pol V(ICE391). DNA repair. Vol. 84, pp. 102685. PubMed Web Address
    • Pham, P., Malik, S., Mak, C., Calabrese, P. C., Roeder, R. G., Goodman, M. F. (2019). AID-RNA polymerase II transcription-dependent deamination of IgV DNA. Nucleic acids research. Vol. 47 (20), pp. 10815-10829. PubMed Web Address
    • Mak, C. H., Pham, P., Goodman, M. F. (2019). Random Walk Enzymes: Information Theory, Quantum Isomorphism, and Entropy Dispersion. The journal of physical chemistry. A. Vol. 123 (13), pp. 3030-3037. PubMed Web Address
    • Oertell, K., Florián, J., Haratipour, P., Crans, D. C., Kashemirov, B. A., Wilson, S. H., McKenna, C. E., Goodman, M. F. (2019). A Transition-State Perspective on Y-Family DNA Polymerase η Fidelity in Comparison with X-Family DNA Polymerases λ and β. Biochemistry. Vol. 58 (13), pp. 1764-1773. PubMed Web Address
    • Oertell, K., Kashemirov, B. A., Negahbani, A., Minard, C., Haratipour, P., Alnajjar, K. S., Sweasy, J. B., Batra, V. K., Beard, W. A., Wilson, S. H., McKenna, C. E., Goodman, M. F. (2018). Probing DNA Base-Dependent Leaving Group Kinetic Effects on the DNA Polymerase Transition State. Biochemistry. Vol. 57 (26), pp. 3925-3933. PubMed Web Address
    • Batra, V. K., Oertell, K., Beard, W. A., Kashemirov, B. A., McKenna, C. E., Goodman, M. F., Wilson, S. H. (2018). Mapping Functional Substrate-Enzyme Interactions in the pol β Active Site through Chemical Biology: Structural Responses to Acidity Modification of Incoming dNTPs. Biochemistry. Vol. 57 (26), pp. 3934-3944. PubMed Web Address
    • Goodman, M. F. (2018). Smoking gun for a rare mutation mechanism. Nature. Vol. 554 (7691), pp. 180-181. PubMed Web Address
    • Goodman, M. F. (2018). Smoking gun for a rare mutation mechanism. Nature. Vol. 554 (7691), pp. 180-181. PubMed Web Address
    • Alnajjar, K. S., Negahbani, A., Nakhjiri, M., Krylov, I. S., Kashemirov, B. A., McKenna, C. E., Goodman, M. F., Sweasy, J. B. (2017). DNA Polymerase β Cancer-Associated Variant I260M Exhibits Nonspecific Selectivity toward the β-γ Bridging Group of the Incoming dNTP. Biochemistry. Vol. 56 (40), pp. 5449-5456. PubMed Web Address
    • Petruska, J., Goodman, M. F. (2017). Relating DNA base-pairing in aqueous media to DNA polymerase fidelity. Nature reviews. Chemistry. Vol. 1 (9) PubMed Web Address
    • Pham, P., Afif, S. A., Shimoda, M., Maeda, K., Sakaguchi, N., Pedersen, L. C., Goodman, M. F. (2017). Activation-induced deoxycytidine deaminase: Structural basis for favoring WRC hot motif specificities unique among APOBEC family members. DNA repair. Vol. 54, pp. 8-12. PubMed Web Address
    • Alnajjar, K. S., Garcia-Barboza, B., Negahbani, A., Nakhjiri, M., Kashemirov, B., McKenna, C., Goodman, M. F., Sweasy, J. B. (2017). A Change in the Rate-Determining Step of Polymerization by the K289M DNA Polymerase β Cancer-Associated Variant. Biochemistry. Vol. 56 (15), pp. 2096-2105. PubMed Web Address
    • Pham, P., Afif, S. A., Shimoda, M., Maeda, K., Sakaguchi, N., Pedersen, L. C., Goodman, M. F. (2016). Structural analysis of the activation-induced deoxycytidine deaminase required in immunoglobulin diversification. DNA repair. Vol. 43, pp. 48-56. PubMed Web Address
    • Senavirathne, G., Bertram, J. G., Jaszczur, M., Chaurasiya, K. R., Pham, P., Mak, C. H., Goodman, M. F., Rueda, D. (2015). Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution. Nature communications. Vol. 6, pp. 10209. PubMed Web Address
    • Robinson, A., McDonald, J. P., Caldas, V. E., Patel, M., Wood, E. A., Punter, C. M., Ghodke, H., Cox, M. M., Woodgate, R., Goodman, M. F., van, A. M. (2015). Regulation of Mutagenic DNA Polymerase V Activation in Space and Time. PLoS genetics. Vol. 11 (8), pp. e1005482. PubMed Web Address
    • Kadina, A. P., Kashemirov, B. A., Oertell, K., Batra, V. K., Wilson, S. H., Goodman, M. F., McKenna, C. E. (2015). Two Scaffolds from Two Flips: (α,β)/(β,γ) CH2/NH “Met-Im” Analogues of dTTP. Organic letters. Vol. 17 (11), pp. 2586-9. PubMed Web Address
    • Wei, L., Chahwan, R., Wang, S., Wang, X., Pham, P. T., Goodman, M. F., Bergman, A., Scharff, M. D., MacCarthy, T. (2015). Overlapping hotspots in CDRs are critical sites for V region diversification. Proceedings of the National Academy of Sciences of the United States of America. Vol. 112 (7), pp. E728-37. PubMed Web Address
    • Shakhmin, A., Jones, J. P., Bychinskaya, I., Zibinsky, M., Oertell, K., Goodman, M. F., Prakash, G. K. (2014). Preparation of fluorinated RNA nucleotide analogs potentially stable to enzymatic hydrolysis in RNA and DNA polymerase assays. Journal of fluorine chemistry. Vol. 167, pp. 226-230. PubMed Web Address
    • Oertell, K., Chamberlain, B. T., Wu, Y., Ferri, E., Kashemirov, B. A., Beard, W. A., Wilson, S. H., McKenna, C. E., Goodman, M. F. (2014). Transition state in DNA polymerase β catalysis: rate-limiting chemistry altered by base-pair configuration. Biochemistry. Vol. 53 (11), pp. 1842-8. PubMed Web Address
    • Donigan, K. A., McLenigan, M. P., Yang, W., Goodman, M. F., Woodgate, R. (2014). The steric gate of DNA polymerase ι regulates ribonucleotide incorporation and deoxyribonucleotide fidelity. The Journal of biological chemistry. Vol. 289 (13), pp. 9136-45. PubMed Web Address
    • Vaisman, A., McDonald, J. P., Noll, S., Huston, D., Loeb, G., Goodman, M. F., Woodgate, R. (2014). Investigating the mechanisms of ribonucleotide excision repair in Escherichia coli. Mutation research. Vol. 761, pp. 21-33. PubMed Web Address
    • Reha-Krantz, L. J., Woodgate, S., Goodman, M. F. (2014). Engineering processive DNA polymerases with maximum benefit at minimum cost. Frontiers in microbiology. Vol. 5, pp. 380. PubMed Web Address
    • Mak, C. H., Pham, P., Afif, S. A., Goodman, M. F. (2013). A mathematical model for scanning and catalysis on single-stranded DNA, illustrated with activation-induced deoxycytidine deaminase. The Journal of biological chemistry. Vol. 288 (41), pp. 29786-95. PubMed Web Address
    • Pham, P., Landolph, A., Mendez, C., Li, N., Goodman, M. F. (2013). A biochemical analysis linking APOBEC3A to disparate HIV-1 restriction and skin cancer. The Journal of biological chemistry. Vol. 288 (41), pp. 29294-304. PubMed Web Address
    • Pomerantz, R. T., Goodman, M. F., O’Donnell, M. E. (2013). DNA polymerases are error-prone at RecA-mediated recombination intermediates. Cell cycle (Georgetown, Tex.). Vol. 12 (16), pp. 2558-63. PubMed Web Address
    • Pomerantz, R. T., Kurth, I., Goodman, M. F., O’Donnell, M. E. (2013). Preferential D-loop extension by a translesion DNA polymerase underlies error-prone recombination. Nature structural & molecular biology. Vol. 20 (6), pp. 748-55. PubMed Web Address
    • Indiani, C., Patel, M., Goodman, M. F., O’Donnell, M. E. (2013). RecA acts as a switch to regulate polymerase occupancy in a moving replication fork. Proceedings of the National Academy of Sciences of the United States of America. Vol. 110 (14), pp. 5410-5. PubMed Web Address
    • Singh, S. K., Maeda, K., Eid, M. M., Almofty, S. A., Ono, M., Pham, P., Goodman, M. F., Sakaguchi, N. (2013). GANP regulates recruitment of AID to immunoglobulin variable regions by modulating transcription and nucleosome occupancy. Nature communications. Vol. 4, pp. 1830. PubMed Web Address
    • Klvana, M., Murphy, D. L., Jerábek, P., Goodman, M. F., Warshel, A., Sweasy, J. B., Florián, J. (2012). Catalytic effects of mutations of distant protein residues in human DNA polymerase β: theory and experiment. Biochemistry. Vol. 51 (44), pp. 8829-43. PubMed Web Address
    • Oertell, K., Wu, Y., Zakharova, V. M., Kashemirov, B. A., Shock, D. D., Beard, W. A., Wilson, S. H., McKenna, C. E., Goodman, M. F. (2012). Effect of β,γ-CHF- and β,γ-CHCl-dGTP halogen atom stereochemistry on the transition state of DNA polymerase β. Biochemistry. Vol. 51 (43), pp. 8491-501. PubMed Web Address
    • Kuban, W., Vaisman, A., McDonald, J. P., Karata, K., Yang, W., Goodman, M. F., Woodgate, R. (2012). Escherichia coli UmuC active site mutants: effects on translesion DNA synthesis, mutagenesis and cell survival. DNA repair. Vol. 11 (9), pp. 726-32. PubMed Web Address
    • Vaisman, A., Kuban, W., McDonald, J. P., Karata, K., Yang, W., Goodman, M. F., Woodgate, R. (2012). Critical amino acids in Escherichia coli UmuC responsible for sugar discrimination and base-substitution fidelity. Nucleic acids research. Vol. 40 (13), pp. 6144-57. PubMed Web Address
    • Wu, Y., Zakharova, V. M., Kashemirov, B. A., Goodman, M. F., Batra, V. K., Wilson, S. H., McKenna, C. E. (2012). β,γ-CHF- and β,γ-CHCl-dGTP diastereomers: synthesis, discrete 31P NMR signatures, and absolute configurations of new stereochemical probes for DNA polymerases. Journal of the American Chemical Society. Vol. 134 (21), pp. 8734-7. PubMed Web Address
    • Senavirathne, G., Jaszczur, M., Auerbach, P. A., Upton, T. G., Chelico, L., Goodman, M. F., Rueda, D. (2012). Single-stranded DNA scanning and deamination by APOBEC3G cytidine deaminase at single molecule resolution. The Journal of biological chemistry. Vol. 287 (19), pp. 15826-35. PubMed Web Address
    • Karata, K., Vaisman, A., Goodman, M. F., Woodgate, R. (2012). Simple and efficient purification of Escherichia coli DNA polymerase V: cofactor requirements for optimal activity and processivity in vitro. DNA repair. Vol. 11 (4), pp. 431-40. PubMed Web Address
    • Chamberlain, B. T., Batra, V. K., Beard, W. A., Kadina, A. P., Shock, D. D., Kashemirov, B. A., McKenna, C. E., Goodman, M. F., Wilson, S. H. (2012). Stereospecific formation of a ternary complex of (S)-α,β-fluoromethylene-dATP with DNA pol β. Chembiochem : a European journal of chemical biology. Vol. 13 (4), pp. 528-30. PubMed Web Address
    • Wu, Y., Zakharova, V., Kashemirov, B., Goodman, M. F., Batra, V., Wilson, S. H., McKenna, C. E. (2012). beta,gamma-CHF- and CHCI-dGTP diastereomers: synthesis, discrete P NMR signatures and absolute configurations of new stereochemical probes for DNA polymerases.
    • McDonald, J. P., Vaisman, A., Kuban, W., Goodman, M. F., Woodgate, R. (2012). Mechanisms employed by Escherichia coli to prevent ribonucleotide incorporation into genomic DNA by Pol V. PLoS genetics. Vol. 8 (11), pp. e1003030. PubMed Web Address
    • Klvana, M., Jerábek, P., Goodman, M. F., Florián, J. (2011). An abridged transition state model to derive structure, dynamics, and energy components of DNA polymerase β fidelity. Biochemistry. Vol. 50 (32), pp. 7023-32. PubMed Web Address
    • Pham, P., Calabrese, P., Park, S. J., Goodman, M. F. (2011). Analysis of a single-stranded DNA-scanning process in which activation-induced deoxycytidine deaminase (AID) deaminates C to U haphazardly and inefficiently to ensure mutational diversity. The Journal of biological chemistry. Vol. 286 (28), pp. 24931-42. PubMed Web Address
    • Yamanaka, K., Minko, I. G., Finkel, S. E., Goodman, M. F., Lloyd, R. S. (2011). Role of high-fidelity Escherichia coli DNA polymerase I in replication bypass of a deoxyadenosine DNA-peptide cross-link. Journal of Bacteriology. Vol. 193, pp. 3815-3821.
    • Klvana, M., Jerabeek, P., Goodman, M. F., Florian, J. (2011). An abridged transition state model to derive structure, dynamics, and energy components of DNA polymerase beta fidelity. Biochemistry. Vol. 50, pp. 7023-7032.
    • Goodman, M. F. (2011). An Accidental Biochemist. DNA Repair.
    • Chamberlain, B. T., Batra, V. K., Beard, W. A., Kadina, A. P., Shock, D. D., Kashemirov, B. A., McKenna, C. E., Goodman, M. F., Wilson, S. H. (2011). Stereospecific Formation of a Ternary Complex of (S)-alpha,beta-fluoromethylene-dATP with DNA Pol beta. ChemBioChem.
    • Pham, P., Calabrese, P., Park, S. J., Goodman, M. F. (2011). Analysis of a single-stranded DNA scanning process in which activation-induced deoxycytidine deaminaase (AID) deaminates C to U haphazardly and inefficiently to ensure mutational diversity. Journal of Biological Chemistry. Vol. 286, pp. 24931-24942.
    • Senavirathne, G., Jaszczur, M., Auerbach, P. A., Upton, T. G., Chelico, L., Goodman, M. F., Rueda, D. (2011). Single-stranded DNA scanning and deamination by APOBEC3G.
    • Vaisman, A., Kuban, W., McDonald, J. P., Karata, K., Yang, W., Goodman, M. F., Woodgate, R. (2011). Critical amino acids in E. coli UmuC responsible for sugar discrimination and translesion synthesis.
    • Pomernatz, R., Kurth, I., Goodman, M. F., O’Donnell, M. A. (2011). A Dominant Role for an Error-Prone DNA Polymerase in Recombination Drives Evolution.
    • Karata, K., Vaisman, A., Goodman, M. F., Woodgate, R. (2011). Simple and efficient purification of E. coli DNA polymerase V: cofactor requirements for optimal activity and processivity in vitro.
    • Surya, G. K., Zibinsky, M., Upton, T. G., Kashemirov, B. A., McKenna, C. E., Oertell, K., Goodman, M. F., Batra, V. K., Pedersen, L. C., Beard, W. A., Shock, D. D., Wilson, S. H., Olah, G. A. (2010). Synthesis and biological evaluation of fluorinated deoxynucleotide analogs based on bis-(difluoromethylene)triphosphoric acid. Proceedings of the National Academy of Sciences of the United States of America. Vol. 107 (36), pp. 15693-8. PubMed Web Address
    • Maeda, K., Singh, S. K., Eda, K., Kitabatake, M., Pham, P., Goodman, M. F., Sakaguchi, N. (2010). GANP-mediated recruitment of activation-induced cytidine deaminase to cell nuclei and to immunoglobulin variable region DNA. The Journal of biological chemistry. Vol. 285 (31), pp. 23945-53. PubMed Web Address
    • Batra, V. K., Pedersen, L. C., Beard, W. A., Wilson, S. H., Kashemirov, B. A., Upton, T. G., Goodman, M. F., McKenna, C. E. (2010). Halogenated beta,gamma-methylene- and ethylidene-dGTP-DNA ternary complexes with DNA polymerase beta: structural evidence for stereospecific binding of the fluoromethylene analogues. Journal of the American Chemical Society. Vol. 132 (22), pp. 7617-25. PubMed Web Address
    • Bertram, J. G., Oertell, K., Petruska, J., Goodman, M. F. DNA polymerase fidelity: comparing direct competition of right and wrong dNTP substrates with steady state and pre-steady state kinetics. Biochemistry. Vol. 49. 2010 2010:20-28
    • McKenna, C. E., Kashemirov, B. A., Peterson, L. W., Goodman, M. F. Modifications to the dNTP triphosphate moiety: from mechanistic probes for DNA polymerases to antiviral and anti-cancer drug design. Biochim Biophys Acta. Vol. 1804. 2010:1223-1230
    • Chelico, L., Prochnow, C., Erie, D. A., Chen, X. S., Goodman, M. F. A structural model for deoxycytidine deamination mechanisms of the HIV-1 inactivation enzyme APOBEC3G. J Biol. Chem. Vol. 285. 2010:16195-16205
    • Batra, V., Pedersen, L. C., Beard, W. A., Wilson, S. H., Kashemirov, B. A., Upton, T. G., Goodman, M. F., McKenna, C. E. Halogenated beta,gamma methylene- and ethylidene-dGTP-DNA ternary complexes with DNA polymerase beta: structural evidence for stereospecific binding of the fluoromethylene analogues. J AM. Chem.. Vol. 132. 2010:7617-7625
    • Patel, M., Jiang, Q., Woodgate, R., Cox, M. M., Goodman, M. F. A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase V. Crit Rev. Biochem, Molec. Biol.. Vol. 45. 2010:171-184
    • Maeda, K., Singh, S. K., Eda, K., Kitabatake, M., Pham, P., Goodman, M. F., Sakaguchi, N. GANP-mediated Recruitment of Activation-induced Cytidine Deaminase to Cell Nuclei and Immunoglobulin Variable Region DNA. J Biol. Chem.. Vol. 285. 2010:23945-23953
    • Prakash, G. S., Zibinsky, M., Upton, T., Kashemirov, B. A., McKenna, C. E., Oertell, K., Goodman, M. F., Batra, V. K., Pedersen, L. C., Beard, W. A., Shock, D. D., Wilson, S. H., Olah, G. A. Synthesis and biological evaluation of evaluation of fluorinated deoxynucleotide analogs based on bis(difluoremethylene)triphosphoric acid. Proc. Natl. Acad. Sci. Vol. Synthesis. 107 2010:15693-15698
    • Jiang, Q., Karata, K., Woodgate, R., Cox, M. M., Goodman, M. F. (2009). The active form of DNA polymerase V is UmuD'(2)C-RecA-ATP. Nature. Vol. 460 (7253), pp. 359-63. PubMed Web Address
    • MacCarthy, T., Kalis, S. L., Roa, S., Pham, P., Goodman, M. F., Scharff, M. D., Bergman, A. (2009). V-region mutation in vitro, in vivo, and in silico reveal the importance of the enzymatic properties of AID and the sequence environment. Proceedings of the National Academy of Sciences of the United States of America. Vol. 106 (21), pp. 8629-34. PubMed Web Address
    • Chelico, L., Pham, P., Goodman, M. F. (2009). Mechanisms of APOBEC3G-catalyzed processive deamination of deoxycytidine on single-stranded DNA. Nature structural & molecular biology. Vol. 16 (5), pp. 454-5; author reply 455-6. PubMed Web Address
    • Upton, T. G., Kashemirov, B. A., McKenna, C. E., Goodman, M. F., Prakash, G. K., Kultyshev, R., Batra, V. K., Shock, D. D., Pedersen, L. C., Beard, W. A., Wilson, S. H. (2009). Alpha,beta-difluoromethylene deoxynucleoside 5′-triphosphates: a convenient synthesis of useful probes for DNA polymerase beta structure and function. Organic letters. Vol. 11 (9), pp. 1883-6. PubMed Web Address
    • Rausch, J. W., Chelico, L., Goodman, M. F., Le Grice, S. F. Dissecting APOBEC3G Substrate Specificity by Nucleoside Analog Interference. J. Biol. Chem.. Vol. 284. 2009:7047-7058
    • Prochnow, C., Bransteitter, R., Goodman, M. F., Chen, X. S. The prospect of APOBEC3G for the future of HIV therapy. Editorial HIV Ther. Vol. 3. 2009:7-10
    • Indiani, C., Langston, L. D., Yurieva, O., Goodman, M. F., and O’Donnell, M. Translesion DNA polymerases remodel the replisome and alter the speed of the replicative helicase. Proc Natl Acad. Vol. 106. 2009:6031-6038
    • Upton, T. G., Kashemirov, B. S., McKenna, C. E., Goodman, M. F., Prakash, G. K., Kultyshev, R., Batra, V. K., Shock, D. D., Pedersen, L. C., Beard, W. A., Wilson, S. H. Alpha,beta-difluoromethylene deoxynucleoside 5’-triphosphates: a convenient synthesis of useful probes for DNA polymerase beta structura and function. Org Lett. Vol. 11. 2009:1883-1886
    • Kamerlin, S. C., McKenna, C., Goodman, M. F., Warshel, A. A Computational Study of the Hydrolysis of dGTP Analogues with Halomethylene Modified Leaving Groups in Solution: Implications for the Mechanism of DNA Polymerases. Biochemistry(2009): 5963-5971.
    • Chelico, L., Pham, P., Goodman, M. F. Mechanisms of APOBEC3G-catalyzed proessive deamination of deoxycytidine on single-stranded DNA. Nat Struct Mol. Vol. 16. 2009:454-455
    • Maccarthy, T., Kalis, S. L., Roa, S., Pham, P., Goodman, M. F., Scharff, M. D., Bergman, A. V-region mutation in vitro, in vivo and in silico reveal the importance of the enzymatic properties of AID and the sequence environment. Proc Natl Acad. Vol. 106. 2009:8629-8634
    • Goodman, M. F., Madia, F., Wei, M. Y., Hu, v., J., G., Pham, C., P., G., F., M. F., and Longo, V. D. Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Pol Zeta-dependent mechanism. J Cell Biol. Vol. 186. 2009:509-523
    • Goodman, M. F., Chelico, L., Pham, P., Petruska, J., and Goodman, M. F. Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by AID and APOBEC3G, J. J. Biol. Chem. MiniReview. Vol. 284. 2009:27761-27765
    • Jiang, Q., Karata, K., Woodgate, R., Cox., M. M., Goodman, M. F. The active form of DNA polymerase V is UmuD’2C-RecA-ATP. Nature. Vol. 460. 2009:359-363
    • Pham, P., Zhang, K., Goodman, M. F. (2008). Hypermutation at A/T sites during G.U mismatch repair in vitro by human B-cell lysates. The Journal of biological chemistry. Vol. 283 (46), pp. 31754-62. PubMed Web Address
    • Pham, P., Smolka, M. B., Calabrese, P., Landolph, A., Zhang, K., Zhou, H., Goodman, M. F. (2008). Impact of phosphorylation and phosphorylation-null mutants on the activity and deamination specificity of activation-induced cytidine deaminase. The Journal of biological chemistry. Vol. 283 (25), pp. 17428-39. PubMed Web Address
    • Furukohri, A., Goodman, M. F., Maki, H. (2008). A dynamic polymerase exchange with Escherichia coli DNA polymerase IV replacing DNA polymerase III on the sliding clamp. The Journal of biological chemistry. Vol. 283 (17), pp. 11260-9. PubMed Web Address
    • Sucato, C. A., Upton, T. G., Kashemirov, B. A., Osuna, J., Oertell, K., Beard, W. A., Wilson, S. H., Florián, J., Warshel, A., McKenna, C. E., Goodman, M. F. (2008). DNA polymerase beta fidelity: halomethylene-modified leaving groups in pre-steady-state kinetic analysis reveal differences at the chemical transition state. Biochemistry. Vol. 47 (3), pp. 870-9. PubMed Web Address
    • Xiang, Y., Goodman, M. F., Beard, W. A., Wilson, S. H., Warshel, A. (2008). Exploring the role of large conformational changes in the fidelity of DNA polymerase beta. Proteins. Vol. 70 (1), pp. 231-47. PubMed Web Address
    • Xiang, Y., Goodman, M. F., Beard, W. A., Wilson, S. H., Warshel, A. (2008). Exploring the Role of Large Confomrational Changes in the Fidelity of DNA Polymerase Beta. Proteins.Vol. 70,pp. 231-247.
    • Sucato, C. A., Upton, T. G., Kashemirov, B. A., Osuna, J., Oertell, K., Beard, W. A., Wilson, S. H., Florian, J., Warshel, A., McKenna, C. E., Goodman, M. F. (2008). DNA Polymerase beta Fidelity: Halomethylene-Modified Groups in Pre-Steady-State Kinetic Analysis Reveal Differences at the Chemical Transition State. Biochemistry.Vol. 47,pp. 870-879.
    • Peled, J. U., Kuang, F. L., Iglesias-Ussel, M. D., Roa, S., Kalis, S. L., Goodman, M. F., Scharff, M. D. (2008). The Biochemistry of Somatic Hypermutation. Annu Rev Immunol.Vol. 26,pp. 481-511.
    • Furukohri, A., Goodman, M. F., Maki, H. (2008). A Dynamic Polymerase Exchange With Escherichia coli pol IV Replacing Pol III on the Sliding Clamp. J Biol Chemistry.Vol. 283,pp. 11260-11269.
    • Pham, P., Smolka, M. B., Calabrese, P., Landolph, A., Zhang, K., Zhou, H., Goodman, M. F. (2008). Impact of Phosphorylation and Phosphorylation-mull Mutants on the Activity and Deamination Specificity of Activation-induced Cytidine Deaminase. J Biol Chemistry.Vol. 283,pp. 17428-17439.
    • Kumari, A., Minko, J. G., Harbut, M. B., Finkel, S. E., Goodman, M. F., and Lloyd, R. S. (2008). Replication Bypass of Interstrand Cross-link Intermediates by Escherichia coli DNA Polymerase IV. J Biol Chemistry.
    • Minko, J. G., Yamanaka, K., Kozekov, I. D., Kozekova, A., Indiani, C., O’Donnell, M. E., Jiang, Q., Goodman, M. F., Rizzo, C. J., Lloyd, R. S. (2008). Replication Bypass of the Acrolein-mediated deoxyguanine DNA-peptide Cross-links by DNA Polymerases of the DinB Family. Chem Res Toxicol.Vol. 21,pp. 1983-1990.
    • Pham, P., Zhang, K., Goodman, M. F. (2008). Hypermutation at A/T Sites During G•U Mismatch Repair in vitro by Human B-cell Lysates. J Biol Chem.
    • Holden, L., Prochnow, C., Chang, Y. P., Bransteitter, R., Chelico, L., Sen, U., Stevens, R. C., Goodman, M. F., Chen, X. S. (2008). The Crystal Structure of the Anti-Viral APOBEC3G Catalytic Domain and Functional Implications. Nature.
    • Chelico, L., Pham, P., Goodman, M. F. (2008). Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Phil Trans R Soc. B.
    • Crans, D. C., Holder, A. A., Saha, T. K., Prakash, G. K., Yousufuddin, M., Kultyshev, R., Ismail, R., Goodman, M. F., Borden, J., Florian, J. (2007). Chelation of vanadium(V) by difluoromethylene bisphosphonate, a structural analogue of pyrophosphate. Inorganic chemistry. Vol. 46 (16), pp. 6723-32. PubMed Web Address
    • Goodman, M. F., Warshel, A., Florian, J., KcKenna, C. E., Wilson, S. H., Pedersen, L. C., Beard, W. A., Xiang, Y., Martinek, V., Batra, V. K., Kashemirov, B. A., Upton, T. G., Sucato, C. A. (2007). Modifying the ß-? leaving group bridging oxygen alters nucleotide incorporation efficiency, fidelity and catalytic mechanism of DNA polymerase ß. Biochemistry. Vol. 46, pp. 461-471.
    • Goodman, M. F., Martinek, V., Bren, U., Goodman, M. F., Warshel, A., Florian, J. (2007). DNA polymerase ß catalytic efficiency mirrors the Asn279-dCTP H-bonding strength. FEBS Lett.. Vol. 581, pp. 775-780.
    • Goodman, M. F., Gu, J., Lu, H., Tippin, B., Shimazaki, B., Lieber, M. R. (2007). XRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps. EMBO J.. Vol. 26, pp. 1010-1023.
    • Goodman, M. F., Prochnaw, C., Bransteitter, R., Klein, M. G., Chen, X. S. (2007). APOBEC2 Crystal Structure and Functional Implications for AID. Nature. Vol. 445, pp. 447-451.
    • Goodman, M. F., Pham, P., Chelico, L. (2007). DNA deaminases AID and APOBEC3G act processively on single-stranded DNA. DNA Repair 6. pp. 689-692.
    • Goodman, M. F., Schlacher, K. (2007). Lessons from 50 years of SOS DNA-Damage-induced mutagenesis. Nature Reviews Mol. Cell. Biol.. Vol. 8, pp. 587-594.
    • Goodman, M. F., Crans, D. C., Holder, A. A., Saha, T. K., Prakash, G. K., Yousufuddin, M., Kultyshev, R., Ismail, R., Borden, F., Florian, J. (2007). Chelation of Vanadium(V) by Difluoromethylene Bisphosphonate, Structural Analogue of Pyrophosphate. Inorg. Chem. Vol. 46, pp. 6723-6732.
    • Goodman, M. F., Scharff, M. D., Romesberg, F. E. (2007). AID-Initiated Purposeful Mutations in Immunoglobulin Genes. Adv. Immunol.. Vol. 94, pp. 127-155.
    • Goodman, M. F., Xiang, Y., Beard, W. A., Wilson, S. H., Warshel, A. (2007). Exploring the Role of Large Confomrational Changes in fh Fidelity of DNA Polymerase Beta. Proteins.
    • Goodman, M. F., McKenna, C. E., Kashemirov, B. A., Upton, T. G., Pedeersen, L. C., Batra, V. K., Beard, W. A., Wilson, S. H. (2007). ß,?-fluoromethylene-dGTP analog-DNA ternary complex with DNA polymerase ß. Evidence for stereochemical preference determined by a chiral CHF interaction with Arg 183.
    • Goodman, M. F., Silverstein, A. P., Jiang, Q., Kool, E. T. (2007). Steric and Electrostatic Effects in DNA Synthesis by the SOS-Induced DNA Polymerases II and IV of Escherichia coli. Biochemistry.
    • Bransteitter, R. R., J, S. L., Allen, S., Pham, P. T., Goodman, M. F. (2006). First AID (activation-induced cytidine deaminase) is needed to produce high affinity isotype-switched antibodies. Journal of Biological Chemistry. Vol. 281, pp. 16833-16836.
    • Chelico, L., Pham, P. T., Calabrese, P., Goodman, M. F. (2006). APOBEC3G DNA deaminase acts processively 3′ –> 5′ on single-stranded DNA. Nature Structural & Molecular Biology/Nature Publishing Group. Vol. 13, pp. 392-399.
    • Schlacher, K., Pham, P. T., Cox, M., Goodman, M. F. (2006). Roles of DNA polymerase V and RecA protein in SOS damage-induced mutation. Chemical Reviews/American Chemical Society Press. Vol. 106, pp. 406-419.
    • Goodman, M. F. (2006). RecA acts in trans to allow replication of damaged DNA by DNA polymerase V. Nature. Vol. 442, pp. 883-887.
    • Allen, S., Pham, P. T., Zhang, K., Smolka, M. B., Zhou, H., Goodman, M. F. (2006). Role of AID phosphorylation in somatic hypermutation and class switch recombination. No Journal Defined. Vol. xx, pp. xxxx.
    • Pham, P. T., Zhang, K., Goodman, M. F. (2006). Hypermutation at A/T sites During G•U Mismatch Repair by Human Cell Extracts. No Journal Defined. Vol. xx, pp. xxxx.
    • Goodman, M. F. (2006). Roles of DNA Polymerase V and RecA Protein in SOS Damage-induced Mutation”,. No Journal Defined. Vol. 106, pp. 406-419.
    • Goodman, M. F. (2006). APOBEC3G DNA Deaminase Acts Processively 3’ ® 5’ on Single-Stranded DNA. Nature Struct. No Journal Defined. Vol. 13, pp. 392-399.
    • Goodman, M. F. (2006). First AID is Needed to Produce High-affinity Isotype-switched Antibodies. J. No Journal Defined. Vol. 281, pp. 16833-16836.
    • Goodman, M. F. (2006). Purification and Characterization of Escherichia coli DNA Polymerase V. Meth. No Journal Defined. Vol. NA
    • Chelico, L., Pham, P. T., Calabrese, P., Goodman, M. F. (2006). APOBEC3G DNA deaminase acts processively 3′->5′ on single-stranded DNA. Nature Structural & Molecular Biology/Nature Publishing Group. Vol. 13, pp. 392-399.
    • Chelico, L., Pham, P. T., Calabrese, P., Goodman, M. F. (2006). APOBEC3G DNA deaminase acts processively 3′->5′ on single-stranded DNA. Nature Structural & Molecular Biology/Nature Publishing Group. Vol. 13, pp. 392-399.
    • Michell, D. L., Pham, P. T., Goodman, M. F., Nancy, M. (2005). AID binds to transcription-induced structures in c-MYC that map to regions associated with translocation and hypermutation. Oncogen/Nature Publishing Group. Vol. 24, pp. 5791-5798.
    • Pham, P. T., Bransteitter, R. R., Goodman, M. F. (2005). Reward versus Risk: DNA Cytidine Deaminases Triggering Immunity and Disease. Biochemistry/American Chemical Society. Vol. 44, pp. 2703-2715.
    • Goodman, M. F. (2005). Identifying Protein-Protein Interactions in Somatic Hypermutation. No Journal Defined. Vol. 201, pp. 493-496.
    • Goodman, M. F. (2005). Replication of an Oxidized Abasic Site in Escherichia coli by a dNTP-Stabilized Misalignment Mechanism that Reads Upstream and Downstream Nucleotides. No Journal Defined. Vol. 45, pp. 5048-5056.
    • Goodman, M. F., Bransteitter, R. R. (2005). Methylation Protects Cytidines from AID-mediated Deamination. No Journal Defined. Vol. 2, pp. 599-604.
    • Goodman, M. F. (2005). DNA Polymerase V and RecA Protein, a Minimal Mutasome. No Journal Defined. Vol. 17, pp. 561-572.
    • Bransteitter, R. R., Pham, P. T., Calabrese, P., Goodman, M. F. (2004). Biochemical analysis of hypermutational targeting by wild type and mutant activation-induced cytidine deaminase. Journal of Biological Chemistry. Vol. 279, pp. 51612-51621.
    • Tippin, B., Pham, P. T., Goodman, M. F. (2004). Error-prone replication for better or worse. Trends in Microbiology/Elsevier. Vol. 12, pp. 288-295.
    • Tippin, B., Pham, P. T., Bransteitter, R. R., Goodman, M. F. (2004). Somatic hypermutation: a mutational panacea. Advances in Protein Chemistry/Elsevier. Vol. 69, pp. 307-335.
    • Yeiser, B., Pepper, E. D., Goodman, M. F., Finkel, S. E. (2002). SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness. Proc. Natl. Acad. Sci. USA. Vol. 99, pp. 8737-8741.
    • Rangarajan, S., Woodgate, R., Goodman, M. F. (2000). Rangarajan, S., Woodgate, R., and Goodman, M. F. A Phenotype For Enygmatic DNA Polymerase II: A Pivotal Role for Pol II In Replication Restart In UV-irradiated Escherichia coli. Proc. Natl. Acad. Sci. USA; 96, 9224-9229. Proc. Natl. Acad. Sci.. Vol. 96, pp. 9224-9229.
    • Goodman, M. F. (1999). Tang, M. et al. (1999) UmuD’2C is an error-prone DNA polymerase, Escherichia coli pol V. Proc. Natl. Acad. Sci. USA 96:8919-8924. Proc Natl Acad Sci.. Vol. 96, pp. 8919-8924.
    • A Change in the Rate-Determining Step of Polymerization by the K289M DNA Polymerase beta Cancer-Associated Variant. Biochemistry. Vol. 56 (152017/03/23), pp. 2096-2105.
    • A pre-catalytic non-covalent step governs DNA polymerase beta fidelity. Nucleic Acids Res. Vol. 47 (222019/11/17), pp. 11839-11849.
    • DNA Polymerase beta Cancer-Associated Variant I260M Exhibits Nonspecific Selectivity toward the beta-gamma Bridging Group of the Incoming dNTP. Biochemistry. Vol. 56 (402017/09/02), pp. 5449-5456.
    • Revealing an Internal Stabilization Deficiency in the DNA Polymerase beta K289M Cancer Variant through the Combined Use of Chemical Biology and X-ray Crystallography. Biochemistry. Vol. 59 (82020/01/31), pp. 955-963.
    • Mapping Functional Substrate-Enzyme Interactions in the pol beta Active Site through Chemical Biology: Structural Responses to Acidity Modification of Incoming dNTPs. Biochemistry. Vol. 57 (262018/06/07), pp. 3934-3944.
    • Molecular mechanism and energetics of clamp assembly in Escherichia coli. The role of ATP hydrolysis when gamma complex loads beta on DNA. J Biol Chem. Vol. 275 (372000/06/30), pp. 28413-20.
    • Increased dNTP binding affinity reveals a nonprocessive role for Escherichia coli beta clamp with DNA polymerase IV. J Biol Chem. Vol. 279 (322004/06/24), pp. 33047-50.
    • Pre-steady state analysis of the assembly of wild type and mutant circular clamps of Escherichia coli DNA polymerase III onto DNA. J Biol Chem. Vol. 273 (381998/09/12), pp. 24564-74.
    • DNA polymerase fidelity: comparing direct competition of right and wrong dNTP substrates with steady state and pre-steady state kinetics. Biochemistry. Vol. 49 (12009/12/17), pp. 20-8.
    • DNA mismatch repair catalyzed by extracts of mitotic, postmitotic, and senescent Drosophila tissues and involvement of mei-9 gene function for full activity. Mol Cell Biol. Vol. 18 (31998/03/06), pp. 1436-43.
    • Fidelity of Escherichia coli DNA polymerase III holoenzyme. The effects of beta, gamma complex processivity proteins and epsilon proofreading exonuclease on nucleotide misincorporation efficiencies. J Biol Chem. Vol. 272 (441997/11/05), pp. 27919-30.
    • Influence of 5′-nearest neighbors on the insertion kinetics of the fluorescent nucleotide analog 2-aminopurine by Klenow fragment. Biochemistry. Vol. 32 (411993/10/19), pp. 11247-58.
    • Pre-steady-state kinetic analysis of sequence-dependent nucleotide excision by the 3′-exonuclease activity of bacteriophage T4 DNA polymerase. Biochemistry. Vol. 33 (241994/06/21), pp. 7576-86.
    • Dynamics of loading the beta sliding clamp of DNA polymerase III onto DNA. J Biol Chem. Vol. 271 (481996/11/29), pp. 30699-708.
    • DNA polymerase II is encoded by the DNA damage-inducible dinA gene of Escherichia coli. Proc Natl Acad Sci U S A. Vol. 87 (191990/10/01), pp. 7663-7.
    • Purification and characterization of an inducible Escherichia coli DNA polymerase capable of insertion and bypass at abasic lesions in DNA. J Biol Chem. Vol. 263 (351988/12/15), pp. 18946-52.
    • Processive DNA synthesis by DNA polymerase II mediated by DNA polymerase III accessory proteins. J Biol Chem. Vol. 267 (161992/06/05), pp. 11431-8.
    • Kinetic analysis of base substitution mutagenesis by transient misalignment of DNA and by miscoding. J Biol Chem. Vol. 264 (191989/07/05), pp. 11360-6.
    • DNA polymerase insertion fidelity. Gel assay for site-specific kinetics. J Biol Chem. Vol. 262 (301987/10/25), pp. 14689-96.
    • Biochemical analysis of hypermutational targeting by wild type and mutant activation-induced cytidine deaminase. J Biol Chem. Vol. 279 (492004/09/17), pp. 51612-21.
    • Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci U S A. Vol. 100 (72003/03/26), pp. 4102-7.
    • First AID (activation-induced cytidine deaminase) is needed to produce high affinity isotype-switched antibodies. J Biol Chem. Vol. 281 (252006/04/21), pp. 16833-16836.
    • Purification of a soluble UmuD’C complex from Escherichia coli. Cooperative binding of UmuD’C to single-stranded DNA. J Biol Chem. Vol. 271 (181996/05/03), pp. 10767-74.
    • Kinetics of deoxyribonucleotide insertion and extension at abasic template lesions in different sequence contexts using HIV-1 reverse transcriptase. J Biol Chem. Vol. 268 (311993/11/05), pp. 23567-72.
    • Purification and properties of DNA polymerase II from Escherichia coli. Methods Enzymol. Vol. 262 (1995/01/01), pp. 13-21.
    • Purification and properties of wild-type and exonuclease-deficient DNA polymerase II from Escherichia coli. J Biol Chem. Vol. 270 (251995/06/23), pp. 15327-35.
    • Stereospecific formation of a ternary complex of (S)-alpha,beta-fluoromethylene-dATP with DNA pol beta. Chembiochem. Vol. 13 (42012/02/09), pp. 528-30.
    • APOBEC3G DNA deaminase acts processively 3′ –> 5′ on single-stranded DNA. Nat Struct Mol Biol. Vol. 13 (52006/04/20), pp. 392-9.
    • Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philos Trans R Soc Lond B Biol Sci. Vol. 364 (15172008/11/22), pp. 583-93.
    • Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G. J Biol Chem. Vol. 284 (412009/08/18), pp. 27761-27765.
    • Structural model for deoxycytidine deamination mechanisms of the HIV-1 inactivation enzyme APOBEC3G. J Biol Chem. Vol. 285 (212010/03/10), pp. 16195-205.
    • A model for oligomeric regulation of APOBEC3G cytosine deaminase-dependent restriction of HIV. J Biol Chem. Vol. 283 (202008/03/26), pp. 13780-91.
    • Fidelity of eucaryotic DNA polymerase delta holoenzyme from Schizosaccharomyces pombe. J Biol Chem. Vol. 275 (232000/04/05), pp. 17677-82.
    • Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli. Genetics. Vol. 194 (22013/04/17), pp. 409-20.
    • Gel fidelity assay measuring nucleotide misinsertion, exonucleolytic proofreading, and lesion bypass efficiencies. Methods Enzymol. Vol. 262 (1995/01/01), pp. 232-56.
    • Gel kinetic analysis of DNA polymerase fidelity in the presence of proofreading using bacteriophage T4 DNA polymerase. J Biol Chem. Vol. 270 (91995/03/03), pp. 4759-74.
    • Base mispair extension kinetics. Binding of avian myeloblastosis reverse transcriptase to matched and mismatched base pair termini. J Biol Chem. Vol. 267 (41992/02/05), pp. 2633-9.
    • DNA replication and postreplication mismatch repair in cell-free extracts from cultured human neuroblastoma and fibroblast cells. J Neurosci. Vol. 17 (221997/11/14), pp. 8711-20.
    • Abasic translesion synthesis by DNA polymerase beta violates the “A-rule”. Novel types of nucleotide incorporation by human DNA polymerase beta at an abasic lesion in different sequence contexts. J Biol Chem. Vol. 272 (41997/01/24), pp. 2559-69.
    • “Action-at-a-distance” mutagenesis. 8-oxo-7, 8-dihydro-2′-deoxyguanosine causes base substitution errors at neighboring template sites when copied by DNA polymerase beta. J Biol Chem. Vol. 274 (221999/05/21), pp. 15920-6.
    • Integrity of immunoglobulin variable regions is supported by GANP during AID-induced somatic hypermutation in germinal center B cells. Int Immunol. Vol. 29 (52017/05/26), pp. 211-220.
    • DNA polymerase V activity is autoregulated by a novel intrinsic DNA-dependent ATPase. Elife. Vol. 3 (2014/05/21), pp. e02384.
    • Involvement of Escherichia coli DNA polymerase II in response to oxidative damage and adaptive mutation. J Bacteriol. Vol. 176 (201994/10/01), pp. 6221-8.
    • Relevance of ‘adaptive’ mutations arising in non-dividing cells of microorganisms to age-related changes in mutant phenotypes of neurons. Trends Neurosci. Vol. 20 (111997/11/19), pp. 501-7.
    • Computer simulation studies of the fidelity of DNA polymerases. Biopolymers. Vol. 68 (32003/02/26), pp. 286-99.
    • Appendix. Gel kinetic analysis of polymerase fidelity in the presence of multiple enzyme DNA encounters. J Biol Chem. Vol. 272 (441997/11/05), pp. 27931-5.
    • DNA replication fidelity: kinetics and thermodynamics. Mutat Res. Vol. 200 (1-21988/07/01), pp. 11-20.
    • Hydrogen bonding revisited: geometric selection as a principal determinant of DNA replication fidelity. Proc Natl Acad Sci U S A. Vol. 94 (201997/10/06), pp. 10493-5.
    • Coping with replication ‘train wrecks’ in Escherichia coli using Pol V, Pol II and RecA proteins. Trends Biochem Sci. Vol. 25 (42000/04/08), pp. 189-95.
    • Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem. Vol. 71 (2002/06/05), pp. 17-50.
    • An accidental biochemist. DNA Repair (Amst). Vol. 11 (62012/07/19), pp. 527-36.
    • The discovery of error-prone DNA polymerase V and its unique regulation by RecA and ATP. J Biol Chem. Vol. 289 (392014/08/28), pp. 26772-26782.
    • Better living with hyper-mutation. Environ Mol Mutagen. Vol. 57 (62016/06/09), pp. 421-34.
    • Nucleotide insertion and primer extension at abasic template sites in different sequence contexts. Ann N Y Acad Sci. Vol. 726 (1994/07/29), pp. 132-42; discussion 142-3.
    • Biochemical basis of DNA replication fidelity. Crit Rev Biochem Mol Biol. Vol. 28 (21993/01/01), pp. 83-126.
    • DNA polymerase fidelity: from genetics toward a biochemical understanding. Genetics. Vol. 148 (41998/04/30), pp. 1475-82.
    • Insights into the complex levels of regulation imposed on Escherichia coli DNA polymerase V. DNA Repair (Amst). Vol. 44 (2016/05/30), pp. 42-50.
    • Identifying protein-protein interactions in somatic hypermutation. J Exp Med. Vol. 201 (42005/02/16), pp. 493-6.
    • AID-initiated purposeful mutations in immunoglobulin genes. Adv Immunol. Vol. 94 (2007/06/15), pp. 127-55.
    • The expanding polymerase universe. Nat Rev Mol Cell Biol. Vol. 1 (22001/03/20), pp. 101-9.
    • Sloppier copier DNA polymerases involved in genome repair. Curr Opin Genet Dev. Vol. 10 (22000/04/08), pp. 162-8.
    • The biochemical basis and in vivo regulation of SOS-induced mutagenesis promoted by Escherichia coli DNA polymerase V (UmuD’2C). Cold Spring Harb Symp Quant Biol. Vol. 65 (2003/05/23), pp. 31-40.
    • Translesion DNA polymerases. Cold Spring Harb Perspect Biol. Vol. 5 (102013/07/11), pp. a010363.
    • A RecA protein surface required for activation of DNA polymerase V. PLoS Genet. Vol. 11 (32015/03/27), pp. e1005066.
    • XRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps. EMBO J. Vol. 26 (42007/02/10), pp. 1010-23.
    • Base stacking and even/odd behavior of hairpin loops in DNA triplet repeat slippage and expansion with DNA polymerase. J Biol Chem. Vol. 275 (242000/06/13), pp. 18382-90.
    • Weak strand displacement activity enables human DNA polymerase beta to expand CAG/CTG triplet repeats at strand breaks. J Biol Chem. Vol. 277 (442002/08/28), pp. 41379-89.
    • Single-molecule live-cell imaging reveals RecB-dependent function of DNA polymerase IV in double strand break repair. Nucleic Acids Res. Vol. 48 (152020/07/21), pp. 8490-8508.
    • DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli. PLoS Genet. Vol. 14 (12018/01/20), pp. e1007161.
    • Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature. Vol. 456 (72182008/10/14), pp. 121-4.
    • Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res. Vol. 20 (171992/09/11), pp. 4567-73.
    • Analysis of mutational changes at the HLA locus in single human sperm. Hum Mutat. Vol. 6 (41995/01/01), pp. 303-10.
    • AID and Apobec3G haphazard deamination and mutational diversity. Cell Mol Life Sci. Vol. 70 (172012/11/28), pp. 3089-108.
    • Mutations for Worse or Better: Low-Fidelity DNA Synthesis by SOS DNA Polymerase V Is a Tightly Regulated Double-Edged Sword. Biochemistry. Vol. 55 (162016/04/05), pp. 2309-18.
    • Conformational regulation of Escherichia coli DNA polymerase V by RecA and ATP. PLoS Genet. Vol. 15 (22019/02/05), pp. e1007956.
    • Immunoglobulin somatic hypermutation in a defined biochemical system recapitulates affinity maturation and permits antibody optimization. Nucleic Acids Res. Vol. 50 (202022/11/03), pp. 11738-11754.
    • The active form of DNA polymerase V is UmuD'(2)C-RecA-ATP. Nature. Vol. 460 (72532009/07/17), pp. 359-63.
    • Two Scaffolds from Two Flips: (alpha,beta)/(beta,gamma) CH2/NH “Met-Im” Analogues of dTTP. Org Lett. Vol. 17 (112015/05/15), pp. 2586-9.
    • A computational study of the hydrolysis of dGTP analogues with halomethylene-modified leaving groups in solution: implications for the mechanism of DNA polymerases. Biochemistry. Vol. 48 (252009/04/28), pp. 5963-71.
    • Fidelity of Escherichia coli DNA polymerase IV. Preferential generation of small deletion mutations by dNTP-stabilized misalignment. J Biol Chem. Vol. 277 (372002/07/05), pp. 34198-207.
    • Replication bypass of interstrand cross-link intermediates by Escherichia coli DNA polymerase IV. J Biol Chem. Vol. 283 (412008/08/14), pp. 27433-27437.
    • The mRNA tether model for activation-induced deaminase and its relevance for Ig somatic hypermutation and class switch recombination. DNA Repair (Amst). Vol. 110 (2022/01/07), pp. 103271.
    • A biochemically defined system for mammalian nonhomologous DNA end joining. Mol Cell. Vol. 16 (52004/12/03), pp. 701-13.
    • Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Polzeta-dependent mechanism. J Cell Biol. Vol. 186 (42009/08/19), pp. 509-23.
    • GANP interacts with APOBEC3G and facilitates its encapsidation into the virions to reduce HIV-1 infectivity. J Immunol. Vol. 191 (122013/11/08), pp. 6030-6039.
    • Random-walk enzymes. Phys Rev E Stat Nonlin Soft Matter Phys. Vol. 92 (32015/10/16), pp. 032717.
    • Modifications to the dNTP triphosphate moiety: from mechanistic probes for DNA polymerases to antiviral and anti-cancer drug design. Biochim Biophys Acta. Vol. 1804 (52010/01/19), pp. 1223-30.
    • (R)-beta,gamma-fluoromethylene-dGTP-DNA ternary complex with DNA polymerase beta. J Am Chem Soc. Vol. 129 (502007/11/23), pp. 15412-3.
    • Nearest neighbor influences on DNA polymerase insertion fidelity. J Biol Chem. Vol. 264 (241989/08/25), pp. 14415-23.
    • Base mispair extension kinetics. Comparison of DNA polymerase alpha and reverse transcriptase. J Biol Chem. Vol. 265 (41990/02/05), pp. 2338-46.
    • Tomas Lindahl: 2015 Nobel Laureate. DNA Repair (Amst). Vol. 37 (2016/02/11), pp. A29-34.
    • A structural basis for the biochemical behavior of activation-induced deoxycytidine deaminase class-switch recombination-defective hyper-IgM-2 mutants. J Biol Chem. Vol. 287 (332012/06/21), pp. 28007-16.
    • Transition state in DNA polymerase beta catalysis: rate-limiting chemistry altered by base-pair configuration. Biochemistry. Vol. 53 (112014/03/04), pp. 1842-8.
    • A Transition-State Perspective on Y-Family DNA Polymerase eta Fidelity in Comparison with X-Family DNA Polymerases lambda and beta. Biochemistry. Vol. 58 (132019/03/07), pp. 1764-1773.
    • Kinetic selection vs. free energy of DNA base pairing in control of polymerase fidelity. Proc Natl Acad Sci U S A. Vol. 113 (162016/04/05), pp. E2277-85.
    • Effect of beta,gamma-CHF- and beta,gamma-CHCl-dGTP halogen atom stereochemistry on the transition state of DNA polymerase beta. Biochemistry. Vol. 51 (432012/10/10), pp. 8491-501.
    • A Change in the Rate-Determining Step of Polymerization by the K289M DNA Polymerase beta Cancer-Associated Variant. Biochemistry. Vol. 56 (152017/03/23), pp. 2096-2105.
    • A pre-catalytic non-covalent step governs DNA polymerase beta fidelity. Nucleic Acids Res. Vol. 47 (222019/11/17), pp. 11839-11849.
    • DNA Polymerase beta Cancer-Associated Variant I260M Exhibits Nonspecific Selectivity toward the beta-gamma Bridging Group of the Incoming dNTP. Biochemistry. Vol. 56 (402017/09/02), pp. 5449-5456.
    • Revealing an Internal Stabilization Deficiency in the DNA Polymerase beta K289M Cancer Variant through the Combined Use of Chemical Biology and X-ray Crystallography. Biochemistry. Vol. 59 (82020/01/31), pp. 955-963.
    • Mapping Functional Substrate-Enzyme Interactions in the pol beta Active Site through Chemical Biology: Structural Responses to Acidity Modification of Incoming dNTPs. Biochemistry. Vol. 57 (262018/06/07), pp. 3934-3944.
    • Molecular mechanism and energetics of clamp assembly in Escherichia coli. The role of ATP hydrolysis when gamma complex loads beta on DNA. J Biol Chem. Vol. 275 (372000/06/30), pp. 28413-20.
    • Increased dNTP binding affinity reveals a nonprocessive role for Escherichia coli beta clamp with DNA polymerase IV. J Biol Chem. Vol. 279 (322004/06/24), pp. 33047-50.
    • Pre-steady state analysis of the assembly of wild type and mutant circular clamps of Escherichia coli DNA polymerase III onto DNA. J Biol Chem. Vol. 273 (381998/09/12), pp. 24564-74.
    • DNA polymerase fidelity: comparing direct competition of right and wrong dNTP substrates with steady state and pre-steady state kinetics. Biochemistry. Vol. 49 (12009/12/17), pp. 20-8.
    • DNA mismatch repair catalyzed by extracts of mitotic, postmitotic, and senescent Drosophila tissues and involvement of mei-9 gene function for full activity. Mol Cell Biol. Vol. 18 (31998/03/06), pp. 1436-43.
    • Fidelity of Escherichia coli DNA polymerase III holoenzyme. The effects of beta, gamma complex processivity proteins and epsilon proofreading exonuclease on nucleotide misincorporation efficiencies. J Biol Chem. Vol. 272 (441997/11/05), pp. 27919-30.
    • Influence of 5′-nearest neighbors on the insertion kinetics of the fluorescent nucleotide analog 2-aminopurine by Klenow fragment. Biochemistry. Vol. 32 (411993/10/19), pp. 11247-58.
    • Pre-steady-state kinetic analysis of sequence-dependent nucleotide excision by the 3′-exonuclease activity of bacteriophage T4 DNA polymerase. Biochemistry. Vol. 33 (241994/06/21), pp. 7576-86.
    • Dynamics of loading the beta sliding clamp of DNA polymerase III onto DNA. J Biol Chem. Vol. 271 (481996/11/29), pp. 30699-708.
    • DNA polymerase II is encoded by the DNA damage-inducible dinA gene of Escherichia coli. Proc Natl Acad Sci U S A. Vol. 87 (191990/10/01), pp. 7663-7.
    • Purification and characterization of an inducible Escherichia coli DNA polymerase capable of insertion and bypass at abasic lesions in DNA. J Biol Chem. Vol. 263 (351988/12/15), pp. 18946-52.
    • Processive DNA synthesis by DNA polymerase II mediated by DNA polymerase III accessory proteins. J Biol Chem. Vol. 267 (161992/06/05), pp. 11431-8.
    • Kinetic analysis of base substitution mutagenesis by transient misalignment of DNA and by miscoding. J Biol Chem. Vol. 264 (191989/07/05), pp. 11360-6.
    • DNA polymerase insertion fidelity. Gel assay for site-specific kinetics. J Biol Chem. Vol. 262 (301987/10/25), pp. 14689-96.
    • Biochemical analysis of hypermutational targeting by wild type and mutant activation-induced cytidine deaminase. J Biol Chem. Vol. 279 (492004/09/17), pp. 51612-21.
    • Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc Natl Acad Sci U S A. Vol. 100 (72003/03/26), pp. 4102-7.
    • First AID (activation-induced cytidine deaminase) is needed to produce high affinity isotype-switched antibodies. J Biol Chem. Vol. 281 (252006/04/21), pp. 16833-16836.
    • Purification of a soluble UmuD’C complex from Escherichia coli. Cooperative binding of UmuD’C to single-stranded DNA. J Biol Chem. Vol. 271 (181996/05/03), pp. 10767-74.
    • Kinetics of deoxyribonucleotide insertion and extension at abasic template lesions in different sequence contexts using HIV-1 reverse transcriptase. J Biol Chem. Vol. 268 (311993/11/05), pp. 23567-72.
    • Purification and properties of DNA polymerase II from Escherichia coli. Methods Enzymol. Vol. 262 (1995/01/01), pp. 13-21.
    • Purification and properties of wild-type and exonuclease-deficient DNA polymerase II from Escherichia coli. J Biol Chem. Vol. 270 (251995/06/23), pp. 15327-35.
    • Stereospecific formation of a ternary complex of (S)-alpha,beta-fluoromethylene-dATP with DNA pol beta. Chembiochem. Vol. 13 (42012/02/09), pp. 528-30.
    • APOBEC3G DNA deaminase acts processively 3′ –> 5′ on single-stranded DNA. Nat Struct Mol Biol. Vol. 13 (52006/04/20), pp. 392-9.
    • Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philos Trans R Soc Lond B Biol Sci. Vol. 364 (15172008/11/22), pp. 583-93.
    • Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G. J Biol Chem. Vol. 284 (412009/08/18), pp. 27761-27765.
    • Structural model for deoxycytidine deamination mechanisms of the HIV-1 inactivation enzyme APOBEC3G. J Biol Chem. Vol. 285 (212010/03/10), pp. 16195-205.
    • A model for oligomeric regulation of APOBEC3G cytosine deaminase-dependent restriction of HIV. J Biol Chem. Vol. 283 (202008/03/26), pp. 13780-91.
    • Fidelity of eucaryotic DNA polymerase delta holoenzyme from Schizosaccharomyces pombe. J Biol Chem. Vol. 275 (232000/04/05), pp. 17677-82.
    • Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli. Genetics. Vol. 194 (22013/04/17), pp. 409-20.
    • Gel fidelity assay measuring nucleotide misinsertion, exonucleolytic proofreading, and lesion bypass efficiencies. Methods Enzymol. Vol. 262 (1995/01/01), pp. 232-56.
    • Gel kinetic analysis of DNA polymerase fidelity in the presence of proofreading using bacteriophage T4 DNA polymerase. J Biol Chem. Vol. 270 (91995/03/03), pp. 4759-74.
    • Base mispair extension kinetics. Binding of avian myeloblastosis reverse transcriptase to matched and mismatched base pair termini. J Biol Chem. Vol. 267 (41992/02/05), pp. 2633-9.
    • DNA replication and postreplication mismatch repair in cell-free extracts from cultured human neuroblastoma and fibroblast cells. J Neurosci. Vol. 17 (221997/11/14), pp. 8711-20.
    • Abasic translesion synthesis by DNA polymerase beta violates the “A-rule”. Novel types of nucleotide incorporation by human DNA polymerase beta at an abasic lesion in different sequence contexts. J Biol Chem. Vol. 272 (41997/01/24), pp. 2559-69.
    • “Action-at-a-distance” mutagenesis. 8-oxo-7, 8-dihydro-2′-deoxyguanosine causes base substitution errors at neighboring template sites when copied by DNA polymerase beta. J Biol Chem. Vol. 274 (221999/05/21), pp. 15920-6.
    • Integrity of immunoglobulin variable regions is supported by GANP during AID-induced somatic hypermutation in germinal center B cells. Int Immunol. Vol. 29 (52017/05/26), pp. 211-220.
    • DNA polymerase V activity is autoregulated by a novel intrinsic DNA-dependent ATPase. Elife. Vol. 3 (2014/05/21), pp. e02384.
    • Involvement of Escherichia coli DNA polymerase II in response to oxidative damage and adaptive mutation. J Bacteriol. Vol. 176 (201994/10/01), pp. 6221-8.
    • Relevance of ‘adaptive’ mutations arising in non-dividing cells of microorganisms to age-related changes in mutant phenotypes of neurons. Trends Neurosci. Vol. 20 (111997/11/19), pp. 501-7.
    • Computer simulation studies of the fidelity of DNA polymerases. Biopolymers. Vol. 68 (32003/02/26), pp. 286-99.
    • Appendix. Gel kinetic analysis of polymerase fidelity in the presence of multiple enzyme DNA encounters. J Biol Chem. Vol. 272 (441997/11/05), pp. 27931-5.
    • DNA replication fidelity: kinetics and thermodynamics. Mutat Res. Vol. 200 (1-21988/07/01), pp. 11-20.
    • Hydrogen bonding revisited: geometric selection as a principal determinant of DNA replication fidelity. Proc Natl Acad Sci U S A. Vol. 94 (201997/10/06), pp. 10493-5.
    • Coping with replication ‘train wrecks’ in Escherichia coli using Pol V, Pol II and RecA proteins. Trends Biochem Sci. Vol. 25 (42000/04/08), pp. 189-95.
    • Error-prone repair DNA polymerases in prokaryotes and eukaryotes. Annu Rev Biochem. Vol. 71 (2002/06/05), pp. 17-50.
    • An accidental biochemist. DNA Repair (Amst). Vol. 11 (62012/07/19), pp. 527-36.
    • The discovery of error-prone DNA polymerase V and its unique regulation by RecA and ATP. J Biol Chem. Vol. 289 (392014/08/28), pp. 26772-26782.
    • Better living with hyper-mutation. Environ Mol Mutagen. Vol. 57 (62016/06/09), pp. 421-34.
    • Nucleotide insertion and primer extension at abasic template sites in different sequence contexts. Ann N Y Acad Sci. Vol. 726 (1994/07/29), pp. 132-42; discussion 142-3.
    • Biochemical basis of DNA replication fidelity. Crit Rev Biochem Mol Biol. Vol. 28 (21993/01/01), pp. 83-126.
    • DNA polymerase fidelity: from genetics toward a biochemical understanding. Genetics. Vol. 148 (41998/04/30), pp. 1475-82.
    • Insights into the complex levels of regulation imposed on Escherichia coli DNA polymerase V. DNA Repair (Amst). Vol. 44 (2016/05/30), pp. 42-50.
    • Identifying protein-protein interactions in somatic hypermutation. J Exp Med. Vol. 201 (42005/02/16), pp. 493-6.
    • AID-initiated purposeful mutations in immunoglobulin genes. Adv Immunol. Vol. 94 (2007/06/15), pp. 127-55.
    • The expanding polymerase universe. Nat Rev Mol Cell Biol. Vol. 1 (22001/03/20), pp. 101-9.
    • Sloppier copier DNA polymerases involved in genome repair. Curr Opin Genet Dev. Vol. 10 (22000/04/08), pp. 162-8.
    • The biochemical basis and in vivo regulation of SOS-induced mutagenesis promoted by Escherichia coli DNA polymerase V (UmuD’2C). Cold Spring Harb Symp Quant Biol. Vol. 65 (2003/05/23), pp. 31-40.
    • Translesion DNA polymerases. Cold Spring Harb Perspect Biol. Vol. 5 (102013/07/11), pp. a010363.
    • A RecA protein surface required for activation of DNA polymerase V. PLoS Genet. Vol. 11 (32015/03/27), pp. e1005066.
    • XRCC4:DNA ligase IV can ligate incompatible DNA ends and can ligate across gaps. EMBO J. Vol. 26 (42007/02/10), pp. 1010-23.
    • Base stacking and even/odd behavior of hairpin loops in DNA triplet repeat slippage and expansion with DNA polymerase. J Biol Chem. Vol. 275 (242000/06/13), pp. 18382-90.
    • Weak strand displacement activity enables human DNA polymerase beta to expand CAG/CTG triplet repeats at strand breaks. J Biol Chem. Vol. 277 (442002/08/28), pp. 41379-89.
    • Single-molecule live-cell imaging reveals RecB-dependent function of DNA polymerase IV in double strand break repair. Nucleic Acids Res. Vol. 48 (152020/07/21), pp. 8490-8508.
    • DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli. PLoS Genet. Vol. 14 (12018/01/20), pp. e1007161.
    • Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature. Vol. 456 (72182008/10/14), pp. 121-4.
    • Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res. Vol. 20 (171992/09/11), pp. 4567-73.
    • Analysis of mutational changes at the HLA locus in single human sperm. Hum Mutat. Vol. 6 (41995/01/01), pp. 303-10.
    • AID and Apobec3G haphazard deamination and mutational diversity. Cell Mol Life Sci. Vol. 70 (172012/11/28), pp. 3089-108.
    • Mutations for Worse or Better: Low-Fidelity DNA Synthesis by SOS DNA Polymerase V Is a Tightly Regulated Double-Edged Sword. Biochemistry. Vol. 55 (162016/04/05), pp. 2309-18.
    • Conformational regulation of Escherichia coli DNA polymerase V by RecA and ATP. PLoS Genet. Vol. 15 (22019/02/05), pp. e1007956.
    • Immunoglobulin somatic hypermutation in a defined biochemical system recapitulates affinity maturation and permits antibody optimization. Nucleic Acids Res. Vol. 50 (202022/11/03), pp. 11738-11754.
    • The active form of DNA polymerase V is UmuD'(2)C-RecA-ATP. Nature. Vol. 460 (72532009/07/17), pp. 359-63.
    • Two Scaffolds from Two Flips: (alpha,beta)/(beta,gamma) CH2/NH “Met-Im” Analogues of dTTP. Org Lett. Vol. 17 (112015/05/15), pp. 2586-9.
    • A computational study of the hydrolysis of dGTP analogues with halomethylene-modified leaving groups in solution: implications for the mechanism of DNA polymerases. Biochemistry. Vol. 48 (252009/04/28), pp. 5963-71.
    • Fidelity of Escherichia coli DNA polymerase IV. Preferential generation of small deletion mutations by dNTP-stabilized misalignment. J Biol Chem. Vol. 277 (372002/07/05), pp. 34198-207.
    • Replication bypass of interstrand cross-link intermediates by Escherichia coli DNA polymerase IV. J Biol Chem. Vol. 283 (412008/08/14), pp. 27433-27437.
    • The mRNA tether model for activation-induced deaminase and its relevance for Ig somatic hypermutation and class switch recombination. DNA Repair (Amst). Vol. 110 (2022/01/07), pp. 103271.
    • A biochemically defined system for mammalian nonhomologous DNA end joining. Mol Cell. Vol. 16 (52004/12/03), pp. 701-13.
    • Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Polzeta-dependent mechanism. J Cell Biol. Vol. 186 (42009/08/19), pp. 509-23.
    • GANP interacts with APOBEC3G and facilitates its encapsidation into the virions to reduce HIV-1 infectivity. J Immunol. Vol. 191 (122013/11/08), pp. 6030-6039.
    • Random-walk enzymes. Phys Rev E Stat Nonlin Soft Matter Phys. Vol. 92 (32015/10/16), pp. 032717.
    • Modifications to the dNTP triphosphate moiety: from mechanistic probes for DNA polymerases to antiviral and anti-cancer drug design. Biochim Biophys Acta. Vol. 1804 (52010/01/19), pp. 1223-30.
    • (R)-beta,gamma-fluoromethylene-dGTP-DNA ternary complex with DNA polymerase beta. J Am Chem Soc. Vol. 129 (502007/11/23), pp. 15412-3.
    • Nearest neighbor influences on DNA polymerase insertion fidelity. J Biol Chem. Vol. 264 (241989/08/25), pp. 14415-23.
    • Base mispair extension kinetics. Comparison of DNA polymerase alpha and reverse transcriptase. J Biol Chem. Vol. 265 (41990/02/05), pp. 2338-46.
    • Tomas Lindahl: 2015 Nobel Laureate. DNA Repair (Amst). Vol. 37 (2016/02/11), pp. A29-34.
    • A structural basis for the biochemical behavior of activation-induced deoxycytidine deaminase class-switch recombination-defective hyper-IgM-2 mutants. J Biol Chem. Vol. 287 (332012/06/21), pp. 28007-16.
    • Transition state in DNA polymerase beta catalysis: rate-limiting chemistry altered by base-pair configuration. Biochemistry. Vol. 53 (112014/03/04), pp. 1842-8.
    • A Transition-State Perspective on Y-Family DNA Polymerase eta Fidelity in Comparison with X-Family DNA Polymerases lambda and beta. Biochemistry. Vol. 58 (132019/03/07), pp. 1764-1773.
    • Kinetic selection vs. free energy of DNA base pairing in control of polymerase fidelity. Proc Natl Acad Sci U S A. Vol. 113 (162016/04/05), pp. E2277-85.
    • Effect of beta,gamma-CHF- and beta,gamma-CHCl-dGTP halogen atom stereochemistry on the transition state of DNA polymerase beta. Biochemistry. Vol. 51 (432012/10/10), pp. 8491-501.

    Other

    • Goodman, M. F. (1999). Goodman, M. F. On the wagon: DNA polymerase joins H-bonds anonymous. Nature Biotechnology; 17, 640-641 (1999). Nature Biotechnology.
    • Goodman, M. F. (1998). Betram, J. G., Bloom, L. B., Turner, J., O’Donnell, M., Beechem, J. M., and Goodman, M. F. Pre-steady State Analysis of the Assembly of the Assembly of Wild Type and Mutant Circular Clamps of Escherichia coli DNA Polymerase III onto DNA. J. Biol. Chem.; 273, 24564-24574 (1998).
    • USC Associates Award For Creativity In Research And Scholarship, 2001
  • Editorships and Editorial Boards

    • Member of Editorial Board, Journal of DNA Repair, 2007-2008

    Professional Offices

    • consultant representing Hoffman-La Roche. Riche Molecular Systems and Roche Diagnostics, Washington, DC, Arnold & Porter, 2007-2008
USC Dornsife faculty and staff may update profiles via MyDornsife.