Title: The Total and Toral Rank Conjectures
Now suppose M is a module over the polynomial ring k[x_1, \dots, x_d] that is finite dimensional as a k-vector space. The Total Rank Conjecture, due to Avramov, predicts that the sum of algebraic Betti numbers of M must be at least 2^d. Here, the algebraic Betti numbers refer to the ranks of the free modules occurring in the minimal free resolution of M. The Total Rank Conjecture is a weak form of the well-known Buchsbaum-Eisenbud-Horrocks Conjecture.
In this talk I will discuss the relationship between these conjectures and recent progress toward settling them.