Erik Meijer

University of Southern California
Center for Economic and Social Research
635 Downey Way
Los Angeles, CA 90089-3332
(213) 821-2788
erik.meijer@usc.edu
http://dornsife.usc.edu/erik-meijer/

 

Education

  • Ph.D., Social Sciences, Leiden University, Netherlands, 1998
  • MA, Econometrics, University of Groningen, Netherlands (cum laude), 1990

 

Positions

  • 2013–Present: Senior Economist, University of Southern California, Center for Economic and Social Research
  • 2013–Present: Adjunct Economist, RAND Corporation
  • 2014–2015, 2022: Lecturer, University of Southern California, Department of Economics
  • 2006–2013: Economist, RAND.
  • 2010–2012: Professor of Economics, Frederick S. Pardee RAND Graduate School
  • 2003–2007: Assistant professor, University of Groningen, Faculty of Economics
  • Spring 2003: Assistant professor (teaching), Leiden University, Department of Psychology
  • 2000–2003: Postdoctoral researcher, University of Groningen, Faculty of Economics
  • 1998–2000: Assistant professor, University of Groningen, Faculty of Economics
  • 1997–1998: Junior project manager, MuConsult BV (transportation research consultants), Amersfoort, Netherlands
  • 1995–1997: Researcher, MuConsult BV
  • 1991–1995: Research associate, Leiden University, Department of Psychometrics and Research Methodology

 

Visits and consultancy

  • Department special adviser, Bank of Canada, Department of Monetary and Financial Analysis, September 2004, November 2006
  • Freelance researcher, MuConsult BV, 1999–2004
  • Guest researcher, University of California, Los Angeles (UCLA), Department of Psychology, September–October 1993
  • Short visits: University of Groningen (Dept. of Economics, 2010, 2012, 2015–2019, 2023); HEC Montr´eal (Dept. of Applied Economics, 2017); VU University Amsterdam (Dept. of Economics, 2012); University of Venice Ca’ Foscari (Dept. of Economics, 2010); McGill University (Faculty of Management, 2006, 2008); Tilburg University (Dept. of Economics, 2008); University of Amsterdam (Dept. of Economics, 2008)

Contracts and grants

  • NIA (U01); Health and Retirement Study (Weir, Langa, PIs); Role: Investigator; 2018–2029
  • NIA (U24); Gateway Exposome Coordinating Center (GECC) For AD/ADRD Research (Lee, Adar. Knapp, PIs); Role: Investigator; 2024–2029
  • NIA (R01); Multilingualism as a factor of resilience to Alzheimer’s disease and related dementias in India (Lee, Aksman, Arce, PIs); Role: Investigator; 2022–2027
  • NIA (R01); Integrating Information about Aging Surveys: Novel Integration of Contextual Data to Study Late-Life Cognition and Alzheimer’s Disease and Related Dementia and Dementia Care (Lee, PI); Role: Investigator; 2022–2027
  • NIA (R01); Harmonized Diagnostic Assessment of Dementia (DAD) for the Longitudinal Aging Study in India (LASI) (Lee, PI); Role: Investigator; 2018–2026
  • Bright Focus (Special Opportunity Award); Expanding and enhancing LASI-DAD for better understanding of AD and Dementia (Lee, PI); Role: Investigator; 2022–2025
  • NIA (R01); Testing early markers of cognitive decline and dementia derived from survey response behaviors (Schneider, PI); Role: Investigator; 2020–2025
  • NIA (R01); Integrating Information about Aging Surveys (Lee, PI); Role: Investigator; 2013–2022
  • NIA (U01); Toward Next Generation Data on Health and Life Changes at Older Ages (Kapteyn, PI); Role: Investigator; 2017–2022
  • NIA (R01); Longitudinal Aging Study in India (Bloom/Lee, PIs); Role: Investigator; 2013–2021
  • SSA through MRDRC; A Framework for Cost-Beneft Analysis of Totalization Agreements (Prados, PI); Role: Investigator; 2019–2020
  • NIA (R01); Early Life Conditions, Work, Subjective Well-Being, and Cognition (Kapteyn, PI); Role: Investigator; 2019–2020
  • SSA through MRDRC; The Efects of Totalization Agreements on Economic Activity (Prados, PI); Role: Investigator; 2019
  • Sloan Foundation through NBER; Sorting Into Jobs and Labor Supply and Demand at Older Ages (Kapteyn, PI); Role: Investigator; 2019
  • NIA (R01); Harmonizing Dementia Assessment in Korea: Study on Dynamics of the KLoSA MCI, Dementia & Labor Loss (Lee, PI); Role: Investigator; 2018–2019
  • SSA through MRRC; Social Security Coverage Around the World (P´erez-Arce, PI); Role: Investigator; 2018
  • MRRC; Work-Life Balance and Labor Force Attachment at Older Ages (Angrisani, PI); Role: Investigator; 2016–2017
  • University of Michigan; Health and Retirement Study (Crimmins, PI); Role: Investigator; 2015–2017
  • Lucas Education Foundation; Efcacy Study of the Knowledge in Action Advanced Placement U.S. Government and Environmental Science Projects (Saavedra, PI); Role: Investigator; 2016
  • MRRC; Non-Monetary Job Characteristics and Employment Transitions at Older Ages (Angrisani, PI); Role: Investigator; 2014–2015
  • NIA (R01); From Understanding to Reducing Health Disparities: A Model-Based Evaluation (Galama, PI); Role: Investigator; 2010–2015
  • NIA (P30 subproject); Investigating the Relation between DRM and Experienced Yesterday Measures (Kapteyn, PI); Role: Investigator; 2014
  • University of Michigan; Health and Retirement Study (Hurd, PI); Role: Investigator; 2012–2014
    NICHD (R01); Health Risk Behaviors Among Palestinian Youth (Glick, PI); Role: Investigator; 2011–2014
  • MRRC; Working at Older Ages: The Roles of Work Environment and Psychological Factors (Angrisani, PI); Role: Investigator; 2013
  • AUSAID; Indonesia Family Life Survey – East (Sikoki, Strauss, PIs); Role: Investigator; 2012–2013
  • NIA (R01); Robust Integration Modeling of Health, Wealth, and Disability (Kapteyn, PI); Role: Investigator; 2007–2013
  • MRRC; Investment Decisions in Retirement: The Role of Expectations, Health Risk, and Pension Benefts; Role: PI; 2011–2012
  • MRRC; An Analysis of the Representativeness of the Low-Income Population in the HRS; Role: PI; 2010–2012
  • World Bank/Russia Financial Literacy and Education Trust Fund; Toolkit for Evaluation of Financial Capability Interventions (Kapteyn, Yoong, PIs); Role: Investigator; 2010–2012
  • World Bank; Indonesia: Analysis of Urban Poverty and Program Review (Glick, Yoong, PIs); Role: Investigator; 2011
  • SSA; Polisim Model Integration (Rendall, PI); Role: Investigator; 2008–2010
  • DOL; Financial Decision Making in Retirement Accounts (Kapteyn, PI); Role: Investigator; 2008–2009
  • SSA; Estimation of Potential Eligibility for Low-Income Subsidies under Medicare Part D (Karoly, PI); Role: Investigator; 2007–2009
  • Postdoctoral research grant from the University of Groningen; 2000–2003
  • Various contracts to MuConsult from the Dutch Ministry of Transport, Dutch National Railways, and other government agencies and companies; Role: Investigator; 1995–1998

Publications

Journal Articles

  • Snoke, J., Meijer, E., Phillips, D., Wilkens, J., & Lee, J. (2024). Synthesizing surveys with multiple units of observation: An application to the Longitudinal Aging Study in India. Journal of Survey Statistics and Methodology. (Accepted for publication)
  • Petrosyan, S., et al. (2024). The association of multilingualism with diverse language families and cognition among adults with and without education in India. Neuropsychology. (Accepted for publication)
  • Gao, H., et al. (2024). Early identifcation of cognitive impairment in community environments through modeling subtle inconsistencies in questionnaire responses: Machine learning model development and validation. JMIR Formative Research. (Accepted for publication) https://doi.org/10.2196/54335
  • Schneider, S., et al. (2024). Can you tell people’s cognitive ability level from their response patterns in questionnaires? Behavior Research Methods, 56, 6741–6758. https://doi.org/10.3758/s13428-024-02388-2
  • Angrisani, M., et al. (2024). Modifable risk factors for dementia in India: Revisiting estimates and reassessing prevention potential. BMJ Public Health, 2, e001362. https://doi.org/10.1136/bmjph-2024-001362
  • Lee, J., & Meijer, E. (2024). Diferent reasonable methodological choices can lead to vastly diferent estimates of the economic burden of diseases [Invited comment]. The Lancet Healthy Longevity, 5, e504–e505. https://doi.org/10.1016/S2666-7568(24)00130-2
  • Nichols, E., et al. (2024). Considerations for the use of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) in cross-country comparisons of cognitive aging and dementia. Alzheimer’s & Dementia, 20, 4635–4648. https://doi.org/10.1002/alz.13895
  • Geldsetzer, P., Chang, A. Y., Meijer, E., Sudharsanan, N., Charu, V., Kramlinger, P., & Haarburger, R.
    (2024). Interviewer biases in medical survey data: The example of blood pressure measurements. PNAS Nexus, 3(3), pgae109. https://doi.org/10.1093/pnasnexus/pgae109
  • Angrisani, M., Casanova, M., Lee, J., & Meijer, E. (2024). The economic burden of dementia in India. AEA Papers and Proceedings, 114, 418–422. https://doi.org/10.1257/pandp.20241061
  • Schneider, S., et al. (2024). Cognitive functioning and the quality of survey responses: An individual participant data meta-analysis of 10 epidemiological studies of aging. Journals of Gerontology: Psychological Sciences, 79(5), gbae030. https://doi.org/10.1093/geronb/gbae030
  • Kobayashi, L. C., et al. (2024). Cross-national comparisons of later-life cognitive function using data from the Harmonized Cognitive Assessment Protocol (HCAP): Considerations and recommended best practices. Alzheimer’s & Dementia, 20, 2273–2281. https://doi.org/10.1002/alz.13694
  • Hernandez, R., et al. (2024). Attrition from longitudinal ageing studies and performance across domains of cognitive functioning: An individual participant data meta-analysis. BMJ Open, 14, e079241. https://doi.org/10.1136/bmjopen-2023-079241
  • Gross, A. L., et al. (2024). Prevalence of DSM-5 mild and major neurocognitive disorder in India: Results from the LASI-DAD. PLoS One, 19, e0297220. https://doi.org/10.1371/journal.pone.0297220
  • Khobragade, P., et al. (2024). Performance of the Informant Questionnaire on Cognitive Decline for the Elderly (IQCODE) in a nationally representative study in India: The LASI-DAD study. International Psychogeriatrics, 36, 177–187. https://doi.org/10.1017/S1041610222000606
  • Schneider, S., et al. (2023). Using item response times in online questionnaires to detect mild cognitive impairment. Journals of Gerontology: Psychological Sciences, 78, 1278–1283. https://doi.org/10.1093/geronb/gbad043
  • Lee, J., et al. (2023a). Prevalence of dementia in India: National and state estimates from a nationwide study. Alzheimer’s & Dementia, 19, 2898–2912. https://doi.org/10.1002/alz.12928
  • Lee, J., et al. (2023b). Deep phenotyping and genomic data from a nationally representative study on dementia in India. Scientifc Data, 10, 45. https://doi.org/10.1038/s41597-023-01941-6
  • Schneider, S., Jin, H., Orriens, B., Junghaenel, D. U., Kapteyn, A., Meijer, E., & Stone, A. A. (2023). Using attributes of survey items to predict response times may beneft survey research. Field Methods, 35, 87–99. https://doi.org/10.1177/1525822X221100904
  • Junghaenel, D. U., et al. (2023). Inferring cognitive abilities from response times to web-administered survey items in a population-representative sample. Journal of Intelligence, 11(1), 3. https://doi.org/10.3390/jintelligence11010003
  • Gatz, M., Schneider, S., Meijer, E., Darling, J. E., Orriens, B., Liu, Y., & Kapteyn, A. (2023). Identifying cognitive impairment among older participants in a nationally representative internet panel. Journals of Gerontology: Psychological Sciences, 78, 201–209. https://doi.org/10.1093/geronb/gbac172
  • Meijer, E., Casanova, M., Kim, H., Llena-Nozal, A., & Lee, J. (2022). Economic costs of dementia in 11 countries in Europe: Estimates from nationally representative cohorts of a panel study. The Lancet Regional Health – Europe, 20, 100445. https://doi.org/10.1016/j.lanepe.2022.100445
  • Schneider, S., Junghaenel, D. U., Meijer, E., Zelinski, E. M., Jin, H., Lee, P.-J., & Stone, A. A. (2022). Quality of survey responses at older ages predicts cognitive decline and mortality risk. Innovation in Aging, 6(3), 1–11. https://doi.org/10.1093/geroni/igac027
  • Liu, Y., Schneider, S., Orriens, B., Meijer, E., Darling, J. E., Gutsche, T., & Gatz, M. (2022). Self-administered web-based tests of executive functioning and perceptual speed: Measurement development study with a large probability-based survey panel. Journal of Medical Internet Research, 24(5), e34347. https://doi.org/10.2196/34347
  • Meijer, E., Spierdijk, L., & Wansbeek, T. (2022). Moment conditions for the quadratic regression
    model with measurement error. Econometric Reviews, 41, 749–774. https://doi.org/10.1080/07474938.2022.2052666
    Lee, J., Wilkens, J., Meijer, E., Sekher, T. V., Bloom, D. E., & Hu, P. (2022). Hypertension awareness, treatment, and control and their association with healthcare access in the middle-aged and older Indian population: A nationwide cohort study. PLoS Medicine, 19(1), e1003855. https://doi.org/10.1371/journal.pmed.1003855
  • Schneider, S., Junghaenel, D. U., Zelinski, E. M., Meijer, E., Stone, A. A., Langa, K. M., & Kapteyn, A. (2021). Subtle mistakes in self-report surveys predict future transition to dementia. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 13(1), e12252. https://doi.org/10.1002/dad2.12252
  • Jung, D., Lee, J., & Meijer, E. (2021). Revisiting the efect of retirement on cognition: Heterogeneity and endowment. Journal of the Economics of Ageing, 21, 100361. https://doi.org/10.1016/j.jeoa.2021.100361
  • Jin, H., Chien, S., Meijer, E., Khobragade, P., & Lee, J. (2021). Learning from clinical consensus diagnosis in India to facilitate automatic classifcation of dementia: Machine learning study. JMIR Mental Health, 8(5), e27113. https://doi.org/10.2196/27113
  • Lee, J., Meijer, E., Phillips, D., & Hu, P. (2021). Disability incidence rates for men and women in 23 countries: Evidence on health efects of gender inequality. Journals of Gerontology: Medical Sciences, 76, 328–338. https://doi.org/10.1093/gerona/glaa288
  • Meijer, E., Oczkowski, E., & Wansbeek, T. (2021). How measurement error afects inference in linear regression. Empirical Economics, 60, 131–155. https://doi.org/10.1007/s00181-020-01942-z
  • Angrisani, M., Lee, J., & Meijer, E. (2020). The gender gap in education and late-life cognition: Evidence from multiple countries and birth cohorts. Journal of the Economics of Ageing, 16, 100232. https://doi.org/10.1016/j.jeoa.2019.100232
  • Gross, A. L., Khobragade, P. Y., Meijer, E., & Saxton, J. A. (2020). Measurement and structure of cognition in the Longitudinal Aging Study in India -Diagnostic Assessment of Dementia (LASI-DAD). Journal of the American Geriatrics Society, 68, S11–S19. https://doi.org/10.1111/jgs.16738
  • Angrisani, M., Casanova, M., & Meijer, E. (2020). Work-life balance and labor force attachment at older ages. Journal of Labor Research, 41, 34–68. https://doi.org/10.1007/s12122-020-09301-8
  • Kapteyn, A., et al. (2020). Tracking the efect of the COVID-19 pandemic on American households. Survey Research Methods, 14(2), 179–186. https://doi.org/10.18148/srm/2020.v14i2.7737
  • Lee, J., Lau, S., Meijer, E., & Hu, P. (2020). Living longer, with or without disability? A global and longitudinal perspective. Journals of Gerontology: Medical Sciences, 75(1), 162–167. https://doi.org/10.1093/gerona/glz007
  • Hurd, M. D., Meijer, E., Moldof, M., & Rohwedder, S. (2019). Reducing cross-wave variability in survey measures of household wealth. Journal of Economic and Social Measurement, 44, 117–139. https://doi.org/10.3233/JEM-190465
  • Galesic, M., Bruine de Bruin, W., Dumas, M., Kapteyn, A., Darling, J. E., & Meijer, E. (2018). Asking about social circles improves election predictions and illuminates voting behaviour. Nature Human Behaviour, 2, 187–193. https://doi.org/10.1038/s41562-018-0302-y
  • Meijer, E., Spierdijk, L., & Wansbeek, T. (2017). Consistent estimation of linear panel data models with measurement error. Journal of Econometrics, 200, 169–180. https://doi.org/10.1016/j.jeconom.2017.06.003
  • Meijer, E., & Karoly, L. A. (2017). Representativeness of the low-income population in the Health and Retirement Study. Journal of the Economics of Ageing, 9, 90–99. https://doi.org/10.1016/j.jeoa.2016.08.004
  • Angrisani, M., Hurd, M. D., Meijer, E., Parker, A. M., & Rohwedder, S. (2017). Personality and employment transitions at older ages: Direct and indirect efects through non-monetary job characteristics. Labour, 31, 127–152. https://doi.org/10.1111/labr.12090
  • Gutsche, T. L., Kapteyn, A., Meijer, E., & Weerman, B. (2014). The RAND Continuous 2012 Presidential Election Poll. Public Opinion Quarterly, 78, 233–254. https://doi.org/10.1093/poq/nfu009
  • Galama, T. J., Hullegie, P., Meijer, E., & Outcault, S. (2012). Is there empirical evidence for decreasing returns to scale in a health capital model? Health Economics, 21, 1080–1100. https://doi.org/10.1002/hec.2843
  • Meijer, E., Rohwedder, S., & Wansbeek, T. (2012). Measurement error in earnings data: Using a mixture model approach to combine survey and register data. Journal of Business & Economic Statistics, 30, 191–201. https://doi.org/10.1198/jbes.2011.08166
  • Meijer, E., Kapteyn, A., & Andreyeva, T. (2011). Internationally comparable health indices. Health Economics, 20, 600–619. https://doi.org/10.1002/hec.1620
  • Meijer, E., Karoly, L. A., & Michaud, P.-C. (2010). Using matched survey and administrative data to estimate eligibility for the Medicare Part D low-income subsidy program. Social Security Bulletin, 70(2), 63–82. http://www.socialsecurity.gov/policy/docs/ssb/v70n2/
  • Meijer, E., & Ypma, J. Y. (2008). A simple identifcation proof for a mixture of two univariate normal distributions. Journal of Classifcation, 25, 113–123. https://doi.org/10.1007/s00357-008-9008-6
  • Wansbeek, T., & Meijer, E. (2007). Comments on: Panel data analysis—advantages and challenges. TEST, 16, 33–36. https://doi.org/10.1007/s11749-007-0050-1
  • Meijer, E., & Wansbeek, T. (2007). The sample selection model from a method of moments perspective. Econometric Reviews, 26, 25–51. https://doi.org/10.1080/07474930600972194
  • Meijer, E. (2007). Citations, reference list, and author index with apacite. Eutypon, 16–19, 1–31. http://www.eutypon.gr/eutypon/e-cont-16-19.html
  • Meijer, E., & Rouwendal, J. (2006). Measuring welfare efects in models with random coefcients. Journal of Applied Econometrics, 21, 227–244. https://doi.org/10.1002/jae.841
  • Meijer, E. (2005). Matrix algebra for higher order moments. Linear Algebra and its Applications, 410, 112–134. https://doi.org/10.1016/j.laa.2005.02.040
  • De Haan, J., Leertouwer, E., Meijer, E., & Wansbeek, T. (2003). Measuring central bank independence: A latent variables approach. Scottish Journal of Political Economy, 50, 326–340. https://doi.org/10.1111/1467-9485.5003005
  • Rouwendal, J., & Meijer, E. (2001). Preferences for housing, jobs, and commuting: A mixed logit analysis. Journal of Regional Science, 41, 475–505. https://doi.org/10.1111/0022-4146.00227
  • Wansbeek, T., Wedel, M., & Meijer, E. (2001). Comment on Microeconometrics by J.A. Hausman. Journal of Econometrics, 100, 89–91. https://doi.org/10.1016/S0304-4076(00)00065-8
  • Meijer, E., & Wansbeek, T. (2000). Measurement error in a single regressor. Economics Letters, 69, 277–284. https://doi.org/10.1016/S0165-1765(00)00328-1
  • Meijer, E., & Wansbeek, T. (1999). Quadratic prediction of factor scores. Psychometrika, 64, 495–507.
    https://doi.org/10.1007/BF02294569
  • Busing, F. M. T. A., Meijer, E., & Van der Leeden, R. (1999). Delete-m jackknife for unequal m. Statistics and Computing, 9, 3–8. https://doi.org/10.1023/A:1008800423698
  • Meijer, E., & Mooijaart, A. (1996). Factor analysis with heteroscedastic errors. British Journal of Mathematical and Statistical Psychology, 49, 189–202. https://doi.org/10.1111j.2044-8317.1996.tb01082.x
  • Meijer, E., & Mooijaart, A. (1994). The use of third-order moments in structural models. Q¨uestii´o, 18, 75–84. http://www.idescat.cat/sort/questiio/sumaris/sum181.html

Book Chapters

  • Meijer, E., Spierdijk, L., & Wansbeek, T. (2015). Measurement error in panel data. In B. H. Baltagi (Ed.), The Oxford handbook of panel data (pp. 325–362). Oxford, UK: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199940042.013.0011
  • Kapteyn, A., & Meijer, E. (2014). A comparison of diferent measures of health and their relation to labor force transitions at older ages. In D. A. Wise (Ed.), Discoveries in the economics of aging (pp. 115–156). Chicago, IL: University of Chicago Press. (with a comment by S. F. Venti) https://doi.org/10.7208/chicago/9780226146126.003.0004
  • Meijer, E., Spierdijk, L., & Wansbeek, T. (2013). Measurement error in the linear dynamic panel data model. In B. C. Sutradhar (Ed.), ISS-2012 proceedings volume on longitudinal data analysis subject to measurement errors, missing values, and/or outliers (pp. 77–92). New York, NY: Springer. https://doi.org/10.1007/978-1-4614-6871-4 4]
  • Fernandes, M., Meijer, E., & Zamarro, G. (2008). Comparison between SHARE, ELSA, and HRS. In A. B¨orsch-Supan et al. (Eds.), Health, ageing and retirement in Europe (2004–2007): Starting the longitudinal dimension (pp. 23–63). Mannheim, Germany: Mannheim Research Institute for the Economics of Aging (MEA). http://www.share-project.org/share-publications/frst-results-books-methodology-volumes.html
  • De Leeuw, J., & Meijer, E. (2008). Introduction to multilevel analysis. In J. de Leeuw & E. Meijer (Eds.), Handbook of multilevel analysis (pp. 1–75). New York: Springer. https://doi.org/10.1007/978-0-387-73186-5 1
  • Van der Leeden, R., Meijer, E., & Busing, F. M. T. A. (2008). Resampling multilevel models. In J. de Leeuw & E. Meijer (Eds.), Handbook of multilevel analysis (pp. 401–433). New York: Springer. https://doi.org/10.1007/978-0-387-73186-5 1https://doi.org/10.1007/978-0-387-73186-5 1
  • Wansbeek, T., & Meijer, E. (2001). Measurement error and latent variables. In B. H. Baltagi (Ed.), A companion to theoretical econometrics (pp. 162–179). Malden, MA: Blackwell. https://doi.org/10.1002/9780470996249.ch9
  • Meijer, E., Busing, F. M. T. A., & Van der Leeden, R. (1998). Estimating bootstrap confdence intervals for two-level models. In J. J. Hox & E. D. De Leeuw (Eds.), Assumptions, robustness, and estimation methods in multivariate modeling (pp. 35–47). Amsterdam: TT Publicaties. http://dornsife.usc.edu/erik-meijer/papers/
  • Busing, F. M. T. A., Meijer, E., & Van der Leeden, R. (1995). The MLA program for two-level analysis with resampling options. In T. A. B. Snijders, B. Engel, J. C. Van Houwelingen, A. Keen,
  • G. J. Stemerdink, & M. Verbeek (Eds.), SSS’95: Toeval zit overal (pp. 37–58). Groningen: iec ProGAMMA. http://dornsife.usc.edu/erik-meijer/papers/

Books

  • De Leeuw, J., & Meijer, E. (Eds.). (2008). Handbook of multilevel analysis. New York: Springer. https://doi.org/10.1007/978-0-387-73186-5
  • Wansbeek, T., & Meijer, E. (2000). Measurement error and latent variables in econometrics. Amsterdam: North-Holland.
  • Meijer, E. (1998). Structural equation models for nonnormal data. Leiden: DSWO Press.

Reports

  • Wilkens, J., et al. (2024). Harmonized LASI-DAD documentation, version A.4. Los Angeles, CA: Gateway to Global Aging Data. (Also earlier versions [2020–2022]) https://doi.org/10.25553/h5wx-ay45
  • Young, C., et al. (2024). Harmonized HRS-HCAP documentation, version A. Los Angeles, CA: Gateway to Global Aging Data.https://doi.org/10.25553/sfaq-br29
  • Bugliari, D., et al. (2024a). RAND HRS detailed imputations fle 2020 (v2) documentation. Santa Monica, CA: RAND Center for the Study of Aging. http://hrsonline.isr.umich.edu/modules/meta/rand/index.html (Also earlier versions under slightly diferent names [2013–2023])
  • Bugliari, D., et al. (2024b). RAND HRS longitudinal fle 2020 (v2) documentation. Santa Monica, CA: RAND Center for the Study of Aging. (Also earlier versions under slightly diferent names [2013–2023]) https://doi.org/10.7249/TLA2097-1-v3
  • Wilkens, J., et al. (2024). Harmonized ELSA-HCAP documentation, version A.2. Los Angeles, CA: Gateway to Global Aging Data. https://doi.org/10.34729/gmcv-6g43
  • Chien, S., et al. (2023a). Harmonized Mex-Cog documentation, version A.2. Los Angeles, CA: Gateway to Global Aging Data. https://doi.org/10.34729/3JTX-WE73
  • Chien, S., et al. (2023b). Harmonized LASI documentation, version A.3 (2017–2021). Los Angeles, CA: University of Southern California, Center for Economic and Social Research. https://g2aging.org/ (Also earlier versions under slightly diferent names [2020–2021])
  • LASI-DAD Study Collaborators. (2022). Harmonized diagnostic assessment of dementia for the Longitudinal Aging Study in India (LASI-DAD) wave 1 report. Los Angeles, CA: University of Southern California, Center for Economic and Social Research. https://doi.org/10.34729/HAKB-5045
  • LASI Investigators. (2021). User guide for 2017–2019 Longitudinal Aging Study in India (LASI) wave 1. Los Angeles, CA: University of Southern California, Center for Economic and Social Research. https://g2aging.org/
  • Angrisani, M., Kapteyn, A., Meijer, E., & Saw, H.-W. (2019). Sampling and weighting the Understanding America Study (Working Paper No. 2019-004). Los Angeles, CA: University of Southern California, Center for Economic and Social Research. https://doi.org/10.2139/ssrn.3502405
  • Hurd, M. D., Meijer, E., Pantoja, P., & Rohwedder, S. (2018). Addition to the RAND HRS longitudinal fles: IRA withdrawals in the HRS, 2000 to 2014 (Working Paper No. WP 2018-388). Ann Arbor, MI: Michigan Retirement Research Center. https://doi.org/10.2139/ssrn.3337842
  • Pantoja, P., et al. (2018). RAND HRS tax calculations 2014 (v2) documentation. Santa Monica, CA: RAND Corporation, Center for the Study of Aging.http://hrsonline.isr.umich.edu/modules/meta/rand/index.html (Also an earlier version under a slightly diferent name [2017])
  • Beaumaster, S., et al. (2018). Harmonized SHARE documentation, version D.4. Los Angeles, CA: University of Southern California, Center for Economic and Social Research. https://g2aging.org/ (Also versions A–D.3 [2011–2017])
  • Sikoki, B., Witoelar, F., Strauss, J., Meijer, E., & Suriastini, W. (2013). IFLS East user’s guide and feld report. Yogyakarta, Indonesia: SurveyMETER. http://surveymeter.org/research/3/ifseast
  • Chien, S., Feeney, K., Liu, J., Meijer, E., & Lee, J. (2013). Harmonized LASI pilot data documentation, version: A (Working Paper No. WR-1018). Santa Monica, CA: RAND Corporation. https://doi.org/10.2139/ssrn.2354660
  • Kapteyn, A., Meijer, E., & Weerman, B. (2012). Methodology of the RAND Continuous 2012 Presidential Election Poll (Working Paper No. WR-961). Santa Monica, CA: RAND Corporation. https://doi.org/10.2139/ssrn.2146149
  • Foster, K., Meijer, E., Schuh, S., & Zabek, M. A. (2011). The 2009 Survey of Consumer Payment Choice (Public Policy Discussion Paper No. 11-01). Boston, MA: Federal Reserve Bank of Boston. https://doi.org/10.2139/ssrn.1864854
  • Lee, J., Kapteyn, A., Meijer, E., & Yang, J.-S. (2010). Pre-and post-retirement asset portfolios (Publication No. 213). Madison, WI: Filene Research Institute. http://staging.flene.org/research/report/pre-and-post-retirement-asset-portfolios
  • Foster, K., Meijer, E., Schuh, S., & Zabek, M. A. (2009). The 2008 Survey of Consumer Payment Choice (Public Policy Discussion Paper No. 09-10). Boston, MA: Federal Reserve Bank of Boston. https://doi.org/10.2139/ssrn.1559959
  • Meijer, E., Karoly, L. A., & Michaud, P.-C. (2009). Estimates of potential eligibility for low-income subsidies under Medicare Part D (Tech. Rep. No. TR-686). Santa Monica, CA: RAND Corporation. http://www.rand.org/pubs/technical reports/TR686.html
  • Meijer, E. (2004). Computation of characteristics of value-of-time distributions and their standard errors (Research Report No. 04F09). Groningen, Netherlands: University of Groningen, SOM Research School. https://doi.org/10.2139/ssrn.2052669
  • MuConsult. (1995–2004). (Numerous non-public reports in Dutch written for Dutch national and local governments and private frms). Amersfoort, Netherlands: Author.
  • Busing, F. M. T. A., Meijer, E., & Van der Leeden, R. (1994). MLA: Software for multilevel analysis of data with two levels. User’s guide for version 1.0b (Tech. Rep. No. PRM 94-01). Leiden, Netherlands: Leiden University, Department of Psychology. http://dornsife.usc.edu/erik-meijer/papers/ (Version 4.1, 2005)

Working papers

  • Kapteyn, A., et al. (2024). COVID-19 infections and cognitive function (CESR-Schaefer Working Paper No. 2024-003). Los Angeles, CA: University of Southern California. https://doi.org/10.2139/ssrn.4884504
  • Perez-Arce, F., Prados, M., Meijer, E., & Lee, J. (2021). Social security coverage around the world: The case of China, India and Mexico (Working Paper No. WP 2021-439). Ann Arbor, MI: Michigan Retirement and Disability Research Center. https://mrdrc.isr.umich.edu/publication types/working-papers/
  • Meijer, E., P´erez-Arce, F., & Prados, M. (2020). A framework for cost-beneft analysis of totalization agreements (Working Paper No. WP 2020-410). Ann Arbor, MI: Michigan Retirement and Disability Research Center. https://doi.org/10.2139/ssrn.3885782
  • Angrisani, M., Kapteyn, A., & Meijer, E. (2019). Sorting into jobs and labor supply and demand at older ages (Working Paper). National Bureau of Economic Research. https://doi.org/10.2139/ssrn.3493892
  • Prados, M. J., Meijer, E., & P´erez-Arce, F. (2019). Macroeconomic efects of social security totalization agreements (Working Paper No. WP 2019-407). Ann Arbor, MI: Michigan Retirement and Disability Research Center. https://doi.org/10.2139/ssrn.3885751
  • Angrisani, M., Kapteyn, A., & Meijer, E. (2015). Nonmonetary job characteristics and employment transitions at older ages (Working Paper No. WP 2015-326). Ann Arbor, MI: Michigan Retirement Research Center. https://doi.org/10.2139/ssrn.2689805
  • Lee, J., Meijer, E., & Phillips, D. (2015). The efect of using diferent imputation methods for economic variables in aging surveys (Working Paper No. 2015-019). Los Angeles, CA: University of Southern California, Center for Economic and Social Research. https://doi.org/10.2139/ssrn.2650214
  • Angrisani, M., Hurd, M. D., & Meijer, E. (2012). Investment decisions in retirement: The role of subjective expectations (Working Paper No. WP 2012-274). Ann Arbor, MI: Michigan Retirement Research Center.https://doi.org/10.2139/ssrn.2188403
  • Hung, A. A., Meijer, E., Mihaly, K., & Yoong, J. (2009). Building up, spending down: Financial literacy, retirement savings management, and decumulation (Working Paper No. WR-712). Santa Monica, CA: RAND Corporation. https://doi.org/10.2139/ssrn.1520203
  • Gilbert, P. D., & Meijer, E. (2006). Money and credit factors (Working Paper No. 2006-3). Ottawa: Bank of Canada.http://www.bankofcanada.ca/2006/03/working-paper-2006-3/
  • Gilbert, P. D., & Meijer, E. (2005). Time series factor analysis with an application to measuring money (Research Report No. 05F10). Groningen, Netherlands: University of Groningen, SOM Research School. http://irs.ub.rug.nl/ppn/289322812
  • Cools, K., Le Grand, H., Meijer, E., & Wansbeek, T. (2004). Solving the value metrics puzzle (Working Paper). Groningen, Netherlands: University of Groningen, Department of Economics. https://doi.org/10.2139/ssrn.568423
  • Meijer, E. (2000). An asymmetric distribution with zero skewness (Working Paper). Groningen, Netherlands: University of Groningen, Department of Economics. https://doi.org/10.2139/ssrn.2531847

Other publications

  • Meijer, E., & Wansbeek, T. (2001, 2005). Microeconometrie (Lecture Notes). Groningen, Netherlands: University of Groningen, Faculty of Economics.
  • Meijer, E. (1999). [Book review of D. A. Harville (1997), Matrix algebra from a statistician’s perspective]. Kwantitatieve Methoden, 20(60), 129–131. (in Dutch)
  • Rosenberg, F. A., Meurs, H., & Meijer, E. (1997a). Grote prijsveranderingen: Een empirische budgetrestrictie-benadering [Large changes in prices: An empirical controlled budget approach]. In B. Egeter & N. Kalfs (Eds.), Colloquium Vervoersplanologisch Speurwerk – 1997 – Sprong in het duister? Lange termijn ontwikkelingen in het vervoersplanologisch onderzoek (pp. 1463–1482). Delft, Netherlands: C.V.S. http://www.cvs-congres.nl/cvspdfdocs/CVS1997deel3C.pdf (in Dutch)
  • Rosenberg, F. A., Meurs, H., & Meijer, E. (1997b). Large changes in prices: An empirical controlled budget approach. In Policy, planning and sustainability: Proceedings of Seminars C and D held at the European Transport Forum Annual Meeting, Brunel University, England, 1–5 September 1997 (pp. 367–378). London: PTRC. http://abstracts.aetransport.org/paper/index/id/548/confd/3
  • Meurs, H., Meijer, E., & Pommer, J. (1997a). No parking, no business? Verkeerskunde, 48(9), 30–34. (in Dutch)
  • Meurs, H., Meijer, E., & Pommer, J. (1997b). Parkeerkwaliteit langs de meetlat [A yardstick for parking quality]. Verkeerskunde, 48(7/8), 30–34. (in Dutch)
  • Busing, F. M. T. A., Van der Leeden, R., & Meijer, E. (1995). MLA: Software for two-level analysis with resampling options. Multilevel Modelling Newsletter, 7(3), 11–13. http://www.bristol.ac.uk/cmm/learning/support/new7-3.pdf
  • Meijer, E., Van der Leeden, R., & Busing, F. M. T. A. (1995). Implementing the bootstrap for multilevel models. Multilevel Modelling Newsletter, 7(2), 7–11. http://www.bristol.ac.uk/cmm/learning/support/new7-2.pdf

Software

  • Gilbert, P. D., & Meijer, E. (2006–2021). tsfa [Computer software and manual]. Available from
    10 https://cran.r-project.org/src/contrib/Archive/tsfa/. (Package for the statistical software system R that computes time series factor analysis estimators, factor scores, and ft statistics.)
  • Meijer, E. (1994–2013). apacite [Computer software and manual]. Available from the CTAN sites (e.g.,http://www.ctan.org) in the directory tex-archive/biblio/bibtex/contrib/apacite. (LATEX/BibTEX package that automatically generates citations, reference lists, and author indexes according to the rules of the Publication Manual of the American Psychological Association, with extensive manual and test fles.)
  • Busing, F. M. T. A., Meijer, E., & Van der Leeden, R. (1994–2005). MLA [Computer software]. Available from http://dornsife.usc.edu/erik-meijer/software/. (Computer program for multilevel analysis with resampling options.)

Data sets

  • Harmonized LASI-DAD, version A.4 [Data fle]. (2024). Los Angeles, CA: Gateway to Global Aging Data.
    https://doi.org/10.25553/h5wx-ay45 (Requires registration)
  • Harmonized HRS-HCAP, version A [Data fle]. (2024). Los Angeles, CA: Gateway to Global Aging Data. https://doi.org/10.25553/sfaq-br29 (Requires registration)
  • RAND HRS detailed imputations fle 2020 (v2) [Data fle]. (2024). Santa Monica, CA: RAND Center for the Study of Aging. http://hrsonline.isr.umich.edu/modules/meta/rand/index.html (Requires registration. Also earlier versions under slightly diferent names [2013–2023])
  • RAND HRS longitudinal fle 2020 (v2) [Data fle]. (2024). Santa Monica, CA: RAND Center for the Study of Aging. http://hrsonline.isr.umich.edu/modules/meta/rand/index.html (Requires registration. Also earlier versions under slightly diferent names [2013–2023])
  • Harmonized ELSA-HCAP, version A.2 [Data fle]. (2024). Los Angeles, CA: Gateway to Global Aging Data. https://doi.org/10.34729/gmcv-6g43 (Requires registration)
  • Harmonized Mex-Cog documentation, version A.2 [Data fle]. (2023). Los Angeles, CA: Gateway to Global Aging Data. https://doi.org/10.34729/3JTX-WE73 (Requires registration)
  • Harmonized LASI documentation, version A.3 (2017–2021) [Data fle]. (2023). Los Angeles, CA: University of Southern California, Center for Economic and Social Research. https://g2aging.org/ (Requires registration. Also earlier versions under slightly diferent names [2020–2021])
  • Harmonized ELSA-HCAP, version A [Data fle]. (2021). Los Angeles, CA: University of Southern California, Center for Economic and Social Research. https://g2aging.org/ (Requires registration)
  • Longitudinal Aging Study in India (LASI) wave 1 [Data fle]. (2021). Los Angeles, CA: University of Southern California, Center for Economic and Social Research. https://g2aging.org/ (Requires registration)
  • Understanding America Study [Data fles]. (2014–2020). Los Angeles, CA: University of Southern California, Center for Economic and Social Research. https://uasdata.usc.edu/ (Requires registration)
  • RAND HRS tax calculations 2014 (v2) [Data fles]. (2018). Santa Monica, CA: RAND Corporation, Center for the Study of Aging. http://hrsonline.isr.umich.edu/index.php?p=data (Requires registration)
  • Harmonized SHARE, version D.4 [Data fle]. (2018). Los Angeles, CA: University of Southern California, Center for Global Aging Research. https://g2aging.org/ (Requires registration. This is distributed as a Stata script that creates the data set from the raw data fles. Also earlier versions [2011–2017])
  • The RAND 2012 Continuous Presidential Election Poll [Data fle]. (2014). Santa Monica, CA: RAND Corporation. https://alpdata.rand.org/index.php?page=election2012
  • Indonesia Family Life Survey East [Data fle]. (2013). Yogyakarta, Indonesia: SurveyMETER. http://surveymeter.org/research/3/ifseast (Requires registration)
  • Harmonized LASI pilot data, version A [Data fle]. (2013). Los Angeles, CA: University of Southern California, Center for Global Aging Research. https://g2aging.org/
  • The 2009 Survey of Consumer Payment Choice [Data fle]. (2011). Boston, MA: Federal Reserve Bank of Boston. http://www.bostonfed.org/economic/cprc/SCPC/index.htm
  • The 2008 Survey of Consumer Payment Choice [Data fle]. (2009). Boston, MA: Federal Reserve Bank of Boston. http://www.bostonfed.org/economic/cprc/SCPC/index.htm