Charles Lanski

Professor Emeritus of Mathematics

Education

  • Ph.D. Mathematics, University of Chicago, 1/1969
  • M.S. Mathematics, University of Chicago, 1/1966
  • B.S. Mathematics, University of Chicago, 1/1965
  • Tenure Track Appointments

    • Professor, University of Southern California, 01/01/1982 –
  • Summary Statement of Research Interests

    Noncommutative ring theory

  • Book

    • Lanski, C. (2005). Concepts in Abstract Algebra. Brooks/Cole.

    Journal Article

    • Lanski, C. (2015). Finite index conditions in rings. Rocky Mountain J. Math.. Vol. 45 (4), pp. 19.
    • Lanski, C. (2014). Finite higher commutators in associative rings. Bulletin Australian J. Math. Vol. 89, pp. 503-509.
    • Lanski, C. (2014). Skew derivations and Engel conditions. Comm. Algebra. Vol. 42, pp. 139-152.
    • Lanski, C. (2010). Differential commutator identities, Linear Alg.Appl., 433(2010), 1212-1223. Linear Alg. Appl.. (433), pp. 1212-1223.
    • Lanski, C., Maroti, A. (2009). Ring elements as sums of units, Cent. Eur. J. Math., 7(3) (2009), 395-399). Cent. Eur. J. Math.. Vol. 7 (3), pp. 395-399.
    • Lanski, C. (2007). Generalized derivations and n-th power maps in rings, Comm. Algebra 35 (2007), 3660-3672. Comm. Algebra. Vol. 35, pp. 3660-3772.
    • Lanski, C. (2004). Left ideals and derivations in semiprime rings; J. Algebra 277(2004), 657-667. J. Algebra. Vol. 277, pp. 658-667.
    • Lanski, C. (2001). A characterization of infinite cyclic groups. Mathematics Magazine. Vol. 74, pp. 61-65.
    • Lanski, C. (1998). The cardinality of the center of a PI ring. Canad. Math. Bull.. Vol. 41, pp. 81-85.
    • Lanski, C. (1997). An Engel condition with derivation for left ideals. Proc. Amer. Math. Soc.. Vol. 125, pp. 339-345.
    • Lanski, C. (1996). Higher commutators, ideals, and cardinality. Bull. Austral. Math. Soc.. Vol. 54, pp. 41-54.
    • Lanski, C. (1996). Quadratic central differential relations with involution. J.Algebra. Vol. 179, pp. 208-240.
    • Lanski, C. (1996). Rings with finite maximal invariant subrings. Canad. J. Math.. Vol. 48, pp. 596-606.
    • Lanski, C. (1992). Rings with few nilpotents. Houston J. Math. Vol. 18, pp. 577-590.
    • Lanski, C. (1990). Minimal *-differential identities in prime rings. J.Algebra. Vol. 133, pp. 472-489.
    • Lanski, C. (1989). Invariant additive subgroups in prime rings. J. Algebra. Vol. 27, pp. 1-21.
    • Lanski, C. (1988). Differential identities, Lie ideals, and Posner’s theorems. Pacific J. Math.. Vol. 134, pp. 275-297.
    • Lanski, C. (1986). Minimal differential identities in prime rings. Israel J. Math.. Vol. 56, pp. 231-246.
    • Lanski, C. (1985). Differential identities in prime rings with involution. Trans. Amer. Math.Soc.. Vol. 291, pp. 765-787.
USC Dornsife faculty and staff may update profiles via MyDornsife.