Charles Lanski

Professor Emeritus of Mathematics
Email clanski@usc.edu Office KAP 266D Office Phone (213) 740-2417

Education

  • Ph.D. Mathematics, University of Chicago, 1/1969
  • M.S. Mathematics, University of Chicago, 1/1966
  • B.S. Mathematics, University of Chicago, 1/1965
  • Tenure Track Appointments

    • Professor, University of Southern California, 01/01/1982 –
  • Summary Statement of Research Interests

    Noncommutative ring theory

  • Journal Article

    • Lanski, C. (2015). Finite index conditions in rings. 4 pp. 19.Rocky Mountain J. Math.. Vol. 45 (4),
    • Lanski, C. (2014). Finite higher commutators in associative rings. pp. 503-509.Bulletin Australian J. Math. Vol. 89,
    • Lanski, C. (2014). Skew derivations and Engel conditions. pp. 139-152.Comm. Algebra. Vol. 42,
    • Lanski, C. (2010). Differential commutator identities, Linear Alg.Appl., 433(2010), 1212-1223. 433 pp. 1212-1223.Linear Alg. Appl..
    • Lanski, C., Maroti, A. (2009). Ring elements as sums of units, Cent. Eur. J. Math., 7(3) (2009), 395-399). 3 pp. 395-399.Cent. Eur. J. Math.. Vol. 7 (3),
    • Lanski, C. (2007). Generalized derivations and n-th power maps in rings, Comm. Algebra 35 (2007), 3660-3672. pp. 3660-3772.Comm. Algebra. Vol. 35,
    • Lanski, C. (2004). Left ideals and derivations in semiprime rings; J. Algebra 277(2004), 657-667. pp. 658-667.J. Algebra. Vol. 277,
    • Lanski, C. (2001). A characterization of infinite cyclic groups. pp. 61-65.Mathematics Magazine. Vol. 74,
    • Lanski, C. (1998). The cardinality of the center of a PI ring. pp. 81-85.Canad. Math. Bull.. Vol. 41,
    • Lanski, C. (1997). An Engel condition with derivation for left ideals. pp. 339-345.Proc. Amer. Math. Soc.. Vol. 125,
    • Lanski, C. (1996). Higher commutators, ideals, and cardinality. pp. 41-54.Bull. Austral. Math. Soc.. Vol. 54,
    • Lanski, C. (1996). Quadratic central differential relations with involution. pp. 208-240.J.Algebra. Vol. 179,
    • Lanski, C. (1996). Rings with finite maximal invariant subrings. pp. 596-606.Canad. J. Math.. Vol. 48,
    • Lanski, C. (1992). Rings with few nilpotents. pp. 577-590.Houston J. Math. Vol. 18,
    • Lanski, C. (1990). Minimal *-differential identities in prime rings. pp. 472-489.J.Algebra. Vol. 133,
    • Lanski, C. (1989). Invariant additive subgroups in prime rings. pp. 1-21.J. Algebra. Vol. 27,
    • Lanski, C. (1988). Differential identities, Lie ideals, and Posner’s theorems. pp. 275-297.Pacific J. Math.. Vol. 134,
    • Lanski, C. (1986). Minimal differential identities in prime rings. pp. 231-246.Israel J. Math.. Vol. 56,
    • Lanski, C. (1985). Differential identities in prime rings with involution. pp. 765-787.Trans. Amer. Math.Soc.. Vol. 291,