The Everyday Respect project is working to develop community-informed AI models to study communication between officers and drivers during traffic stops. We will deploy these tools to study patterns in the communication between LAPD officers and drivers, publish these findings in academic journals, and present them to the Los Angeles Board of Police Commissioners and community stakeholders.

Our goal is to facilitate transparency and learning with respect to officer-driver communication during traffic stops.

Project Phases

  • Phase 1: Stakeholder-Defined Metrics of “Good” Communication
  • Phase 2: Multimodal, Multi-Perspective, Machine Learning Models
  • Phase 3: Analysis of ~30,000 Stops
  • Phase 4: The Causes of “Good” Communication & (De)escalation
  • Phase 5: Public release of new tools

Phase 1: Stakeholder-Defined Metrics of “Good” Communication

Engage with community stakeholders to define metrics of “good” communication during motor vehicle stops. This step includes surveys, interviews and focus groups and is critical to develop measures that reflect diverse stakeholder views and capture the dimensions of communication most salient to each of our stakeholder groups.

Phase 2: Multimodal, Multi-Perspective, Machine Learning Models

Incorporate community and officer perspectives to construct machine learning models that automatically rate appropriateness of communications during stops. Critically, in this phase we employ a diverse set of human annotators to view and score communication, reflecting multiple perspectives from members of the community and retired officers.

Phase 3: Analysis of ~30,000 Stops

Apply these models to analyze approximately 30,000 stops conducted by the LAPD.

Phase 4: The Causes of “Good” Communication & (De)escalation

Use the generated data, along with supplementary contextual information about the stops, to establish a scalable, evidence-based framework defining when and how communication dynamics result in an effective and respectful interaction, but also when they fail and result in escalations.

Phase 5: Public release of new tools

Present analysis back to our community and law enforcement stakeholders regarding patterns we observe in communication during motor vehicle stops. We will also publicly release the machine-learning tools we develop, facilitating learning and accountability across the country.

Our team is highly collaborative, with other academic teams, with foundations, and with police departments and local governments. Please direct inquiries to our Coordinating Principal Investigator, Benjamin Graham of the University of Southern California, at benjamag@usc.edu

Contact Us

Benjamin A.T. Graham

General Contact