MCB Faculty

Irene Chiolo

Gabilan Assistant Professor of Biological Sciences

Contact Information
Phone: (213) 821-3163
Office: RRI 203

Chiolo Lab Website


  • M.S. Molecular Biology, University of Milan
  • Ph.D. Genetics and Molecular Biology, University of Milan

  • Postdoctoral Training

    • Postdoctoral Fellow, Lawrence Berkeley National Lab / UC Berkeley, 2007-2012  

    Academic Appointment, Affiliation, and Employment History

    • Assistant Professor of Biological Sciences, University of Southern California, 01/2013-  

    Description of Research

    Summary Statement of Research Interests
    Research in Professor Chiolo’s laboratory focuses on the mechanisms of DNA repair in heterochromatin. This nuclear domain is highly enriched in repetitive sequences and prone to generating chromosome rearrangements during double-strand break (DSB) repair, but repair processes are still mostly unknown. Our studies have revealed surprising dynamics triggered by DSBs in heterochromatin: the entire domain expands and repair sites display a dramatic relocalization to the euchromatic space, while repair progression is tightly regulated in space and time. This pathway is essential for accurate repair in heterochromatin, because its deregulation results in aberrant recombination and genome instability. Which molecular mechanisms control heterochromatin dynamics and how they influence repair are still unclear. Using the Drosophila system, currently the best working model for heterochromatin repair studies, research in my lab aims to identify the mechanisms involved, and to address how they protect genome integrity at cellular and organismal levels. This research will ultimately contribute to our understanding of human diseases associated with genome instability, including developmental defects and cancer.
    Research Keywords
    Double-strand break repair in heterochromatin, epigenetics, homologous recombination, genome stability, Smc5/6 complex, Drosophila model system

    Affiliations with Research Centers, Labs, and Other Institutions

    • Lawrence Berkeley National Lab, Guest Faculty
    • USC/Norris Cancer Center, Full Member,


    Cited Research
    • Chiolo, I., Tang, J., Georgescu, W., Costes, S. V. (2013). Nuclear dynamics of radiation-induced foci in euchromatin and heterochromatin. Mutation Research.

    Journal Article
    • Chiolo, I., Minoda, A., Colmenares, S. U., Polyzos, A., Costes, S. V., Karpen, G. H. (2011). Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell. Vol. 144 (5), pp. 732-44.
    • Chiolo*, I., Robert*, T., Vanoli*, F., Shubassi, G., Bernstein, K. A., Rothstein, R., Botrugno, O. A., Parazzoli, D., Oldani, A., Minucci, S., Foiani, M. (2011). HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature. Vol. 471 (7336), pp. 74-9. *Co-first authors.
    • Costes, S. V., Chiolo, I., Pluth, J. M., Barcellos-Hoff, M. H., Jakob, B. (2010). Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization. Mutation Research. Vol. 704 (1-3), pp. 78-87.
    • Tavecchio, M., Simone, M., Erba, E., Chiolo, I., Liberi, G., Foiani, M., D'Incalci, M., Damia, G. (2008). Role of homologous recombination in trabectedin-induced DNA damage. Eur J Cancer. Vol. 44 (4), pp. 609-18.
    • Chiolo, I., Saponaro, M., Baryshnikova, A., Kim, J., Seo, Y., Liberi, G. (2007). The human F-Box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles. Mol Cell Biol. Vol. 27 (21), pp. 7439-50.
    • Chiolo, I., Carotenuto, W., Maffioletti, G., Petrini, J. H., Foiani, M., Liberi, G. (2005). Srs2 and Sgs1 DNA helicases associate with Mre11 in different subcomplexes following checkpoint activation and CDK1-mediated Srs2 phosphorylation. Mol Cell Biol. Vol. 25 (13), pp. 5738-51.
    • Liberi, G., Maffioletti, G., Lucca, C., Chiolo, I., Baryshnikova, A., Cotta-Ramusino, C., Lopes, M., Pellicioli, A., Haber, J. E., Foiani, M. (2005). Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev. Vol. 19 (3), pp. 339-50.
    • Liberi, G., Chiolo, I., Pellicioli, A., Lopes, M., Plevani, P., Muzi-Falconi, M., Foiani, M. (2000). Srs2 DNA helicase is involved in checkpoint response and its regulation requires a functional Mec1-dependent pathway and Cdk1 activity. EMBO J. Vol. 19 (18), pp. 5027-38.

    Honors and Awards

    • USC Endowed Professorship, Gabilan Assistant Professor of Biological Sciences, 1/1/2013-  

    Service to the Profession

    Professional Memberships
    • American Society for Cell Biology (ASCB), 2007-  
    • The Genetics Society of America (GSA), 2007-  

  • Department of Biological Sciences
  • University of Southern California
  • Allan Hancock Foundation Building
  • Los Angeles, CA 90089-0371