San Diego County CoSMoS Results

Patrick Barnard, Li Erikson, Amy Foxgrover,
Liv Herdman, Patrick Limber,
Andy O’Neill and Sean Vitousek

USGS Coastal and Marine Geology Program
Pacific Coastal and Marine Science Center, Santa Cruz, CA

Photo: High waves and high tides impacting bluffs in Oceanside, San Diego County 2015; CBS News
Support for CoSMoS SoCal

- State Coastal Conservancy
- City of Imperial Beach
- Tijuana River National Estuarine Research Reserve
- California Department of Fish & Wildlife
- California’s Fourth Climate Change Assessment (California Natural Resources Agency)
Projections for Southern California

SLR for San Diego (NRC, 2012)
- 28 cm of sea level rise by 2050 (range 13-61 cm)
- 93 cm of sea level rise by 2100 (range 44-167 cm)
- includes global and regional effects (e.g., wind and circulation patterns, sea level fingerprint, glacial isostatic adjustment, tectonics)

Storms for Southern California (Bromirski et al., 2012; Erikson et al., 2015)
- No significant changes in wave height
- Extreme events approach from ~10-15 degrees further south

El Niño for 21st Century (Cai et al., 2015, Barnard et al., 2015)
- More frequent extreme events
- Doubling of winter erosion
- Wave energy increase by 30%

San Diego County 21st Century Vulnerability (Pacific Institute, 2009)
- 93,000 people at risk
- $2 billion in property

Sunset Beach, Sean Hiller
The Wedge
Imperial Beach, photo by Chris Helmer
Coastal Vulnerability Approaches

STATIC: NOAA SLR Viewer
- Passive model, hydrological connectivity
- Tides only (MHHW)
- Excellent elevation data, datum control
- Wetland migration model, socioeconomic impacts
- ‘1st order screening tool’

DYNAMIC: CoSMoS
- GCM ensemble forcing
- Includes wind, waves, sediment transport, fluvial discharge, and vertical land movement rates
- Range of SLR and storm scenarios
- Flooding extent explicitly modeled, hydrological connectivity

http://www.coast.noaa.gov/slr/

Our Coast Our Future: www.prbo.org/ocof
CoSMoS: A Tool for Coastal Resilience

- Physics-based numerical modeling system for assessing coastal hazards due to climate change
- Predicts coastal hazards for the full range of sea level rise (0-2, 5 m) and storm possibilities (up to 100 yr storm) using sophisticated global climate and ocean modeling tools
- Developing coastal vulnerability tools in collaboration with federal, state, and city governments to meet their planning and adaptation needs
- Emphasis on directly supporting federal and state-supported climate change guidance (e.g., Coastal Commission) and vulnerability assessments (e.g., LCP updates, OPC/Coastal Conservancy grants)
Identifying Future Risk with CoSMoS

1. Global forcing using the latest climate models

2. Drives global and regional wind/wave models

3. Scaled down to local hazards projections
CoSMoS Version Summary

CoSMoS 2.2 (2015)
CoSMoS 2.0 (2013)
CoSMoS 1.0 (2011)
CoSMoS 3.0 (2016)
CoSMoS Version Summary

CoSMoS 1.0
- So Cal, 470 km coastline (Pt. Conception -> Mexico border)
- Historical storms, 2 SLRs
- Global & regional parts continue to run operationally

CoSMoS 2.0
- North-Central CA coast, 170 km, (Bodega Head to Half Moon Bay)
- 21st century winds & waves
- High resolution grids of lagoons and protected areas
- Annual, 1 yr, 20 yr, 100 yr storm events in combination with SLR 0 m to 5 m at 0.25 m increments +5 m
- Web-based tool

CoSMoS 2.1
- San Francisco Bay
- Spatial- & time-downscaled climate scenario winds
- Fluvial discharges
- Vertical land motion
- Marsh accretion
CoSMoS 2.0- CenCal/NorCal

www.prbo.org/ocof (Our Coast - Our Future)
Highlights of CoSMoS 3.0

• Multi-agency collaboration featuring top coastal and climate scientists from Scripps, Oregon State University, private sector, and USGS

• Long-term coastal evolution modeled, including sandy beaches and cliffs

• Downscaled winds from GCMs to get locally-generated seas and surge

• Discharge from rivers for event response

• 100 yr storm events in combination with SLR 0 m to 2.0 m in 0.5 m increments
CoSMoS 3.0 Southern California

Global conditions of future climate scenarios

GCM winds

WW3 wave model

Regional

Tides, water levels, and regional forcing

SWAN wave model

Regionalized storm response

20-year storm return

Fluvial discharge
VLM
Coastal change

Local

High resolution hydrodynamics and waves

Delft FLOW-WAVE

Open coast

results projected onto high-res DEM
Overview of Processes Included in CoSMoS

Flood level is the combination of:

- rSLR + tides + seasonal effects + storm surge + wave setup + wave runup
- + fluvial discharge backflow
CoSMoS validated with January 2010 Storm

La Jolla tide gauge

Predicted and observed modeled water levels differ by ~2 to 37 cm
Products- Wave and Currents

- Delft3D model results from all local SWAN and FLOW runs are used to...

To generate maps of maximum wave heights and maximum currents
Products - Flood Maps

- Delft3D model results from high resolution grids (inlets, harbors, etc.)
- Combined with open coast XBeach results
- Overlain and differenced from the 2 m resolution DEM

To generate maps of flood extents, duration, and depth

High resolution model results

XBeach results along open coast

Flood map
CoSMoS Fall 2015 Product Release

- 5 scenarios, 100 year storm + 0, 0.5, 1.0, 1.5 and 2.0 m SLR

- Available now: KMZs and shapefiles of flood extent, shoreline projections and cliff retreat

- Next summer: all 40 scenarios, integrated coastal change with coastal flooding
 - Coastal hazards data served up in Our Coast Our Future web tool
 - Socioeconomic data served up in USGS web tool

Flooding – San Diego County Overview

Flooding – San Diego Bay
Flooding – Mission Beach
Flooding – Del Mar
Flooding – Camp Pendleton South

100-year storm flood extent
SLR scenario (cm)

- 0
- 50
- 100
- 150
- 200

CoSMoS
CoSMoS-COAST: Coastal One-line Assimilated Simulation Tool

- A (hybrid) numerical model to simulate long-term shoreline evolution
 - coastline is represented by shore-perpendicular transects:

- Two current assumptions: hold the line at urban interface and projection of historical rates

- Modeled processes include:
 - Longshore sediment transport
 - Cross-shore sediment transport
 - Effects of sea-level rise
 - Sediment supply by natural & anthropogenic sources

- Synthesized from models in scientific literature (with several improvements):

- Uses data assimilation (Extended Kalman Filter) to improve model skill
Data Assimilation

We use the *extended Kalman filter method* of Long & Plant 2012

- Auto-tunes model parameters for each transect to best fit the historical shoreline data
- We improved the method to handle sparse shoreline data and ensure that parameters are positive or negative.

Simulation output for a single transect at Del Mar Beach:
Model type:
- longshore + cross-shore + rate
- cross-shore + rate
- historical rate only
- no prediction (sea-wall, harbor, etc.)

Model has ~4800 transects with ~100 m grid spacing
Shoreline Change Considerations

• 2 key coastal management assumptions
 – No erosion beyond urban infrastructure (‘hold the line’)
 – Incorporate historical rates of change in future projections (e.g., nourishment)

• Current assumptions result in potential underestimation of future beach erosion, especially in areas where significant nourishment has taken place

• Solution: run 4 different shoreline change scenarios
 – Hold the line + nourishment
 – Hold the line + no nourishment
 – Do not hold the line + nourishment
 – *Do not hold the line + no nourishment
Shoreline Projections – outer San Diego Bay
Shoreline Projections – Sunset Beach
Shoreline Projections – Mission Beach
Shoreline Projections – Del Mar

2100 shoreline position
SLR scenario (m)
- 0
- 0.5
- 1.0
- 1.5
- 2.0
- 5.0

race track
Shoreline Projections – Camp Pendleton South

2100 shoreline position
SLR scenario (m)
- Green: 0
- Yellow: 0.5
- Pink: 1.0
- Red: 1.5
- Purple: 2.0
- Black: 5.0

Oceanside

Image © 2016 TerraMetrics
Data SD: NOAA, U.S. Navy, NGA, DEBCO

CoSMoS

Google earth
Factors Driving Sea Cliff Erosion & Retreat

- Rain
- Rock strength
- Cliff toe height
- Wave energy
- Coastal slope
Multi-decadal Models of Sea Cliff Erosion & Retreat

Rain, SLR cause more cliff retreat
(rain effects are in beta mode)

Walkden & Hall, 2005; 2011
Results

[Graph showing sea level rise projections across different transects and transect IDs.]
Cliff Retreat Projections – Point Loma
Cliff Retreat Projections – La Jolla

2100 cliff edge position
SLR scenario (m)
- 0.2
- 0.5
- 1.0
- 1.5
- 2.0
- model transect

CoSMoS
Cliff Retreat Projections – Del Mar
What’s Coming Summer 2016

• 40 scenarios of SLR + storms

• Long-term coastal evolution integrated into flood mapping

• Our Coast Our Future (OCOF) web tool

• Socioeconomic impacts and web tool

• Groundwater, hurricane impact pilots

*For more information, contact Patrick Barnard: pbarnard@usgs.gov or Li Erikson: lerikson@usgs.gov

Our Coast- Our Future tool: www.prbo.org/ocof