Orange County Regional SLR & Coastal Impacts Planning Workshop

Overview of CoSMoS and Sea Level Rise Models & Tools

Juliette Hart Phyllis Grifman & Alyssa Newton Mann

Overview of Presentation

- Sea Level Rise 101
- Models 101
- About the Coastal Storms Modeling System
- Overview of other local modeling efforts
- Questions and Discussion

about sea level rise

Sea Level Rise 101

- Thermal expansion
- Melting of Glaciers & Ice Sheets
- Terrestrial Water Storage
 - Tectonic Activity

http://www.nap.edu/catalog.php? record_id=13389

NRC slide

http://www.nap.edu/catalog.php? record_id=13389

Time Period	North of Cape Mendocino	South of Cape Mendocino
2000 - 2030	- 2 – 9 in.	2 – 12 in.
2000 - 2050	- 1 – 19 in.	5 – 24 in.
2000 - 2100	4 – 56 in.	17 – 66 in.

Coastal Storms

Image adapted from illustration by Dr. Bill O'Reilly (UCSD)

Hurricane Marie Impacts – Seal Beach

Images from: NBC News & Weather Channel

Coastal Storms

"Today's storm is tomorrow's high tide..."

Image adapted from illustration by Dr. Bill O'Reilly (UCSD)

Expected Impacts from SLR and Storms

- Accelerated beach erosion rates
- Greater incidence of cliff failures
- Landwards translation of coastal flooding & inundation
- Dangerous navigation conditions
- Beach/shore safety compromised
- Saltwater intrusion into coastal aquifers

about models

All models are wrong; some models are useful.

- statistician George Box

Information that sets the boundary conditions for a model

- bathymetry and topography
 - wind data
- pressure fields
- river flow rates
 - grid

What is a model?

Data ------ Code ------ Output

mathematical equations or numerical approximation

- Xbeach
- Delft 3D
- SWAN
- ADCIRC

What is a model?

Flood projections Storm projections Uncertainty

Variations on a theme

Information that sets the boundary conditions for a model

mathematical equations or numerical approximation

- Xbeach

- bathymetry and topography
 - wind data
- river flow rates

- Delft 3D

- SWAN
- ADCIRC

Flood projections Storm projections Uncertainty

Static vs. Dynamic Models

Static ("bathtub")

- A stationary model that floods based on a given elevation, no physics involved
- Instantaneous fill
- Output: topographic vulnerability
- Examples for O.C. area
 - NOAA SLR Viewer, Surging Seas, Pacific Institute

Dynamic

- Physical modeling of processes that affect water levels – tides, surge & wave-driven processes (set up and run up)
- Temporal variability
- Output: aereal extent, depth & velocity
- Examples for O.C. area
 - CoSMoS 3.0 (coming)
 - BreZo (currently available for Newport)

about CoSMoS

Coastal Storms Modeling System (CoSMoS)

- Dynamic Physics-based numerical modeling system for assessing coastal hazards on West Coast
- Predicts coastal hazards for:
 - Full range of SLR scenarios (0 2 m & 5 m)
 - Annual, 10 yr, 20 yr and 100 yr storms
- Developing decision support tools to meet local adaptation planning needs

CoSMoS 1.0 – Pilot Study

- Dr. Patrick Barnard & colleagues, USGS
- Pilot Study (2010)
 - Hindcasts Jan. 2010 storm (~10 yr storm)
 - Forecasts 10 yr storm @ current, 0.5 m & 1.4 m SLR
- Outer coast focus (protected bays not explicitly modeled)
- Flooding based on maximum wave runup

Global forcing using the latest climate models

Drives global and regional wave models

Scaled down to local hazard projections

Extreme Event Impacts

http://www.pointblue.org/ocof

Uncertainty

http://www.pointblue.org/ocof

CoSMoS 3.0 – Southern California

- Downscaled winds from GCMs to get locally-generated seas and surge
- Long-term coastal evolution modeled, including sandy beaches and cliffs
- Discharge from rivers for event response and long-term sediment supply
- Multi-agency collaboration featuring coastal and climate scientists from Scripps, Oregon State University & USGS

CoSMoS 3.0 Timeline

- Study is underway...
- First set of limited scenarios next September 2015
- Full suite of 40 SLR and storm scenarios June 2016

other regional OC models

An embarrassment of riches...

- CA & O.C.-focused tools
- CoSMoS 3.0
- Pacific Institute SLR Report
- BreZo (Dr. Brett Sanders and Dr. Timu Gallien)

National tools

- NOAA Sea Level Rise
 Viewer
- Climate Central's Surging Seas 2.0

...And likely many more to come in the future...

NOAA Sea Level Rise Viewer

- Static Model ("Modified bathtub")
- Doesn't include storms, only tides
- Sliding scale of SLR scenarios

http://www.coast.noaa.gov/slr/

Great for "1st order screening"

Climate Central Surging Seas

- Static Model ("Modified Bathtub")
 - Back-end data exactly the same as NOAA SLR Viewer Data
- Includes social vulnerability

http://sealevel.climatecentral.org/ssrf/california

Another good "1st order screening"

Pacific Institute

- Modeled by PWA
- "Hybrid" Static Model
 - Empirical relationships no physics
 - included 100-yr storm event
 - two SLR scenarios (0.5 m and 1.5 m)
- Didn't include Scripps area
- Available on Cal-Adapt

http://pacinst.org/publication/the-impactsof-sea-level-rise-on-the-california-coast/

Other Regional Efforts

FloodRISE

- Richard Matthew & Brett Sanders, UC Irvine
- Seal Beach Sediment Augmentation Project
 - Kirk Gilligan, US Fish & Wildlife
- Assessing SLR Vulnerability for Coastal Wetlands
 - Steve Steinberg, Southern California Coastal Water Research Project

Questions?

http://news.nationalgeographic.com/news/2014/01/140130-king-tides-high-tides-sea-level-rise-science

Other Regional Efforts

FloodRISE

- Richard Matthew & Brett Sanders, UC Irvine
- Seal Beach Sediment Augmentation Project
 - Kirk Gilligan, US Fish & Wildlife
- Assessing SLR Vulnerability for Coastal Wetlands
 - Steve Steinberg, Southern California Coastal Water Research Project

Extra Slides

The DATA

 Global Climate Models provide winds, sea surface temps, pressure

The CODE

- Utilizes SWAN wave model to downscale waves and Xbeach to bring waves on shore
- Total Water Levels
 - SLR, tides, waves, SLA, storm surge, river discharge

The OUTPUTS

- 40 SLR and storm scenarios, plus King Tide scenario for SF Bay using CoSMoS
- Flood depth, extent, duration
- Wave heights & velocities

BreZo & FloodRISE

- Dynamic model
- Overland flow model
- Sub-meter resolution
- Completed project for Newport Beach, includes validation data set

BreZo & CoSMoS

- Dynamic model
- Overland flow model
- Sub-meter resolution
- Completed project for Newport Beach, includes validation data set

Main Differences -

• DATA

• Unstructured grid (triangular vs. rectangular)

• CODE

- Different overfland flow model (based on civil engineering)
- OUTPUT
 - Sub-meter resolution
 - Fine-scale model validation at Newport

BreZo & CoSMoS

- Dynamic model
- Overland flow model
- Sub-meter resolution
- Completed project for Newport Beach, includes validation data set

Previous collaboration between Brett, Timu & Patrick

 Gallien et al. (2013) Journal of Coastal Research 29(3): 642-656

Discussion of future collaboration

 CoSMoS provides total water levels to force BreZo

