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Let X be a centered d-random vector with covariance B > 0.

Definition

The Stein kernel of X is a d × d matrix τX (X ) such that

E [τX (X )∇ϕ(X )] = E [Xϕ(X )]

for all ϕ ∈ C∞c (Rd).

Definition

The score of X is the d × 1 vector ρX (X ) such that

E [ρX (X )ϕ(X )] = −E [∇ϕ(X )]

for all ϕ ∈ C∞c (Rd).



In the Gaussian case Z ∼ Nd(0,C ) the Stein identity

E [Zϕ(Z )] = E [C∇ϕ(Z )]

gives
ρZ (Z ) = −C−1Z and τZ (Z ) = C .

Intuitively, a measure of proximity

ρX (X ) ≈ −B−1X

and

τX (X ) ≈ B

should provide an assessment of “Gaussianity”.



Definition

The standardised Fisher information of X is

Jst(X ) = BE
[(
ρX (X ) + B−1X

) (
ρX (X ) + B−1X

)T ]
.

A simple computation gives

Jst(X ) = BJ(X )− Id

with J(X ) = E
[
ρX (X )ρX (X )T

]
the Fisher information matrix.

Definition

The Stein discrepancy is

S(X ) = E
[
‖τX (X )− B‖2

H.S .

]
.



Control on Jst(X ) and S(X ) provides control on several distances
(Kullback-Leibler, Kolmogorov, Wasserstein, Hellinger, Total
Variation, ...) between the law of X and the Gaussian.

Controlling Jst(X ) :

• Johnson and Barron through careful analysis of the score
function (PTRF, 2004)

• Artstein, Ball, Barthe, Naor through “variational tour de force”
(PTRF, 2004)

Controlling S(X ) :

• Cacoullos Papathanassiou and Utev (AoP 1994) in a number of
settings

• Nourdin and Peccati through their infamous Malliavin/Stein
fourth moment theorem (PTRF, 2009)

• Extension to abstract settings (Ledoux, AoP 2012)
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Let Z be centered Gaussian with density φ = φd(·; C ).

Definition

The relative entropy between X and Z is

D(F ||Z ) = E [log(f (X )/φ(X ))] =

∫
Rd

f (x) log

(
f (x)

φ(x)

)
dx .

The Pinsker-Csiszar-Kullback inequality yields

2TV (X ,Z ) ≤
√

2D(X ||Z ).

In other words

D(X ||Z )⇒ TV (X ,Z )2.



Usefulness of Jst(X ) can be seen via the de Bruijn identity.

Let Xt =
√

tX +
√

1− tZ and Γt = tB + (1− t)C . Then

D(X ||Z ) =

1∫
0

1

2t
tr
(
C Γ−1

t Jst(Xt)
)

dt

+
1

2

(
tr
(
C−1B

)
− d

)
+

1∫
0

1

2t
tr
(
C Γ−1

t − Id
)

dt

In other words

Jst(Xt)⇒ D(X ||Z )⇒ (TV (X ,Z ))2.



Usefulness of S(X ) can be seen via Stein’s method.

Fix d = 1. Then, given h : R→ R such that ‖h‖∞ ≤ 1 seek gh
solution of the Stein equation to get

E [h(X )]− E [h(Z )] = E
[
g ′h(X )− Xgh(X )

]
= E

[
(1− τX (X ))g ′h(X )

]
so that

TV (X ,Z ) =
1

2
sup
‖h‖∞≤1

|E [h(X )]− E [h(Z )]|

≤

(
1

2
sup
‖h‖∞≤1

‖g ′h‖

)√
S(X ).

In other words

S(X )⇒ TV (X ,Z )2.



If h is not smooth there is no way of obtaining sufficiently precise
estimates on the quantity “∇gh” in dimension greater than 1.

For the moment Stein’s method only works in dimension 1 for total
variation distance.

The IT approach via de Bruijn’s identity does not suffer from this
“dimensionality issue”.

We aim to mix the Stein method approach and the IT approach.

To this end we need one final ingredient : a representation
formulae for the score in terms of the Stein kernel.
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Theorem

Let Xt =
√

tX +
√

1− tZ with X and Z independent. Then

ρt(Xt) + C−1Xt = − t√
1− t

E
[
(Id − C−1τX (X ))Z |Xt

]
(1)

for all 0 < t < 1.

Proof when d = 1 and C = 1.

E [E [(1− τX (X ))Z |Xt ]φ(Xt)] = E [(1− τX (X ))Zφ(Xt)]

=
√

1− tE
[
φ′(Xt)

]
−
√

1− tE
[
τX (X )φ′(Xt)

]
=
√

1− tE
[
φ′(Xt)

]
−
√

1− t

t
E [Xφ(Xt)]

=
√

1− tE
[
φ′(Xt)

]
−
√

1− t

t
E [Xtφ(Xt)] +

1− t

t
E [Zφ(Xt)]

=
√

1− tE
[
φ′(Xt)

]
−
√

1− t

t
E [Xtφ(Xt)] +

1− t

t

√
1− tE

[
φ′(Xt)

]
= −
√

1− t

t

(
E
[
φ′(Xt)

]
− E [Xtφ(Xt)]

)



This formula provides a nearly one-line argument.

Define
∆(X , t) = E

[
(Id − C−1τX (X ))Z |Xt

]
.

Take d = 1 and all variances set to 1. Then

Jst(Xt) = E
[
(ρt(Xt) + Xt)

2
]

=
t2

1− t
E
[
∆(X , t)2

]
so that

D(X ||Z ) =
1

2

∫ 1

0

t

1− t
E
[
∆(X , t)2

]
dt.

Also,
E
[
∆(X , t)2

]
≤ E

[
(1− τX (X ))2

]
= S(X ).



This yields

D(X ||Z ) ≤ 1

2
S(X )

∫ 1

0

t

1− t
dt

which is useless.

There is hope, nevertheless :∫ 1

0

t

1− t
dt

is barely infinity.



Recall Xt =
√

tX +
√

1− tZ . Then

∆(X , t) = E [(1− τX (X ))Z |Xt ]

is such that
∆(X , 0) = ∆(X , 1) = 0 a.s.

Hence we need to identify conditions under which

t

1− t
E
[
∆(X , t)2

]
is integrable at t = 1.



The behaviour of ∆(X , t) around t ≈ 1 is central to the
understanding of the law of X .

The behaviour of
E
[
∆(X , t)2

]
at t ≈ 1

is closely connected to the so-called MMSE dimension studied by
the IT community.

This quantity revolves around the remarkable “MMSE formula”

d

dr
I (X ;

√
rX + Z ) = E

[
(X − E [X |

√
rX + Z ])2

]
due to Guo, Shamai and Verdu (IEEE, 2005)

The connexion is explicitly stated in NPSb (IEEE, 2014).
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In NPSa (JFA, 2014) we suggest the following IT alternative to
Stein’s method.

First cut the integral :

2D(X ||Z )

≤ E
[
(1− τX (X ))2

] ∫ 1−ε

0

t

1− t
dt +

∫ 1

1−ε

t

1− t
E
[
∆(X , t)2

]
dt

≤ E
[
(1− τX (X ))2

]
| log ε|+

∫ 1

1−ε

t

1− t
E
[
∆(X , t)2

]
dt.

Next suppose that when t is close to 1 we have

E
[
∆(X , t)2

]
≤ Cκt−1(1− t)κ (2)

for some κ > 0.



We deduce

2D(X ||Z ) ≤ S(X )| log ε|+ Cη

∫ 1

1−ε
(1− t)−1+κdt

= S(X )| log ε|+ Cκ
κ
εκ.

The optimal choice is ε = E
[
(1− τX (X ))2

]1/κ
which leads to

D(X ||Z ) ≤ 1

2κ
S(X ) log S(X ) +

Cκ
2κ

S(X )

which provides a bound on the total variation distance in terms of
S(X ) which is of the correct order up to a logarithmic factor.



Under what conditions do we have (2)?

It is relatively easy to show (via Hölder’s inequality) that

E
[
|τX (X )|2+η

]
<∞ and E [|∆(X , t)|] ≤ ct−1(1− t)δ (3)

implies (2).

It now remains to identify under which conditions we have (3).

Lemma (Poly’s first lemma)

Let X be an integrable random variable and let Y be a Rd -valued
random vector having an absolutely continuous distribution. Then

E |E [X |Y ]| = sup E [Xg(Y )] ,

where the supremum is taken over all g ∈ C 1
c such that ‖g‖∞ ≤ 1



Thus

E |E [Z (1− τX (X )) |Xt ]| = sup E [Z (1− τX (X ))g(Xt)] .

Now choose g ∈ C 1
c such that ‖g‖∞ ≤ 1. Then

E [Z (1− τX (X ))g(Xt)]

= E [Zg(Xt)]− E [Zg(Xt)τX (X )]

= E [Zg(Xt)]−
√

1− tE
[
τX (X )g ′(Xt)

]
= E [Z (g(Xt)− g(X ))]−

√
1− t

t
E [g(Xt)X ]

and thus

|E [Z (1− τX (X ))g(Xt)] | ≤ |E [Z (g(Xt)− g(X ))] |+ t−1
√

1− t.



Also

sup |E [Z (g(Xt)− g(X ))] |

= sup

∣∣∣∣∫
R

xE
[
g(
√

tX +
√

1− tx)− g(X )
]
φ1(x)dx

∣∣∣∣
≤ 2

∫
R
|x |TV (

√
tX +

√
1− tx ,X )φ1(x)dx .

Wrapping up we get

E |E [Z (1− τX (X )) |Xt ]|

≤ 2E
[
|Z |TV (

√
tX +

√
1− tZ ,X )

]
+ t−1

√
1− t.

It therefore all boils down to a condition on

TV (
√

tX +
√

1− tx ,X ).



Recall that we want

E |E [Z (1− τX (X )) |Xt ]| ≤ ct−1(1− t)δ. (3)

As it turns out, in view of previous results, a sufficient condition
for (3) is

TV (
√

tX +
√

1− tx ,X ) ≤ κ(1 + |x |)t−1(1− t)α.

This condition – and its multivariate extension – is satisfied by a
wide family of random vectors including those for which they can
apply their fourth moment bound

S(X ) ≤ c(E
[
X 4
]
− 3).



Theorem (Entropic CLTs on Wiener chaos)

Let d ≥ 1 and q1, . . . , qd ≥ 1 be fixed integers. Consider vectors

Fn = (F1,n, . . . ,Fd ,n) = (Iq1(h1,n), . . . , Iqd (hd ,n)), n ≥ 1,

with hi ,n ∈ H�qi . Let Cn denote the covariance matrix of Fn and
let Zn ∼ Nd(0,Cn) be a centered Gaussian random vector in Rd

with the same covariance matrix as Fn.

Let
∆n := E [‖Fn‖4]− E [‖Zn‖4],

Assume that Cn → C > 0 and ∆n → 0, as n→∞.

Then, the random vector Fn admits a density for n large enough,
and

D(Fn‖Zn) = O(1) ∆n| log ∆n| as n→∞, (4)

where O(1) indicates a bounded numerical sequence depending on
d , q1, ..., qd , as well as on the sequence {Fn}.
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Let Xi , i = 1, . . . , n be independent random vectors with Stein
kernels τi (Xi ) and score functions ρi (Xi ), i = 1, . . . , n.

For all t = (t1, . . . , tn) ∈ [0, 1]d such that
∑n

i=1 ti = 1 we define

Wt =
n∑

i=1

√
tiXi

and denote Γt the corresponding covariance matrix. Then

ρt(Wt) + Γ−1
t Wt =

n∑
i=1

ti√
ti+1

E
[(

Id − Γ−1
t τi (Xi )

)
ρi+1(Xi+1)|Wt

]
where we identify Xn+1 = X1 and tn+1 = t1.



Lemma (Poly’s second lemma)

Let X and Y be square-integrable random variables with mean
E [X ] = 0. Then

E
[
(E [X |Y ])2

]
= sup

ϕ∈H(Y )
(E [Xϕ(Y )])2 ,

where the supremum is taken over the collection H(Y ) of
functions ϕ such that E [ϕ(Y )] = 0 and E

[
ϕ(Y )2

]
≤ 1.

Theorem

Let Wn = 1√
n

∑n
i=1 Xi where the Xi are independent random

variables with Stein factor τi (Xi ) and score function ρi (Xi ). Then

Jst(Wn) = sup
ϕ∈H(Wn)

(
E
[
ϕ′(Wn)−Wnϕ(Wn)

])2
.



There seem to be many applications of the last formula.

For instance the difference

Jst(Wn+1)− Jst(Wn)

can be studied in quite some detail.

We had hoped to obtain the “entropy jump inequality” as well as
the “increasingness of entropy”.

There is, however, some work left before we can hooray.
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Just a final word to say

thank you

to Janna, Jay and Larry for the great conference.





The key is a generalisation Carbery and Wright inequality : there is
a universal constant c > 0 such that, for any polynomial
Q : Rn → R of degree at most d and any α > 0 we have

E [Q(X1, . . . ,Xn)2]
1

2d P(|Q(X1, . . . ,Xn)| ≤ α) ≤ cdα
1
d ,

where X1, . . . ,Xn are independent random variables with common
distribution N (0, 1).



Explicit conditions : fix d , q1, . . . , qd ≥ 1,

1 let F = (F1, . . . ,Fd) be a random vector such that
Fi = Iqi (hi ) with hi ∈ H�qi

2 set N = 2d(q − 1) with q = max1≤i≤d qi

3 Let C be the covariance matrix of F

Let Γ = Γ(F ) denote the Malliavin matrix of F , and assume that
E [det Γ] > 0 (which is equivalent to assuming that F has a
density).

There exists a constant cq,d ,‖C‖H.S.
> 0 (depending only on q, d

and ‖C‖H.S . — with a continuous dependence in the last
parameter) such that, for any x ∈ Rd and t ∈ [ 1

2 , 1],

TV(
√

tF +
√

1− tx,F )

≤ cq,d ,‖C‖H.S.

(
β−

1
N+1 ∧ 1

)
(1 + ‖x‖1) (1− t)

1
2(2N+4)(d+1)+2 .



Theorem (Entropic fourth moment bound)

Let Fn = (F1,n, ...,Fd ,n) be a sequence of d-dimensional random
vectors such that: (i) Fi ,n belongs to the qi th Wiener chaos of G,
with 1 ≤ q1 ≤ q2 ≤ · · · ≤ qd ; (ii) each Fi ,n has variance 1, (iii)
E [Fi ,nFj ,n] = 0 for i 6= j , and (iv) the law of Fn admits a density fn
on Rd . Write

∆n :=

∫
Rd

‖x‖4(fn(x)− φd(x))dx,

where ‖ · ‖ stands for the Euclidean norm, and assume that
∆n → 0, as n→∞. Then,∫

Rd

fn(x) log
fn(x)

φd(x)
dx = O(1) ∆n| log ∆n|, (5)

where O(1) stands for a bounded numerical sequence, depending
on d , q1, ..., qd and on the sequence {Fn}.



Corollary

Let d ≥ 1 and q1, . . . , qd ≥ 1 be fixed integers. Consider vectors

Fn = (F1,n, . . . ,Fd ,n) = (Iq1(h1,n), . . . , Iqd (hd ,n)), n ≥ 1,

with hi ,n ∈ H�qi . Let Cn denote the covariance matrix of Fn and
let Zn ∼ Nd(0,Cn) be a centered Gaussian random vector in Rd

with the same covariance matrix as Fn. Assume that Cn → C > 0.
Then, the following three assertions are equivalent, as n→∞:

(i) ∆n → 0 ;

(ii) Fn converges in distribution to Z ∼ Nd(0,C );

(iii) D(Fn‖Zn)→ 0.
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