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Preferential attachment random graphs:
» Popularized by Barabasi and Albert in 1999 to explain
so-called “power law” behavior of the degree distribution in
some real world networks, for example

> vertices are html pages on the internet with edges the
hyperlinks between webpages,

> vertices are movie actors with an edge between two actors if
they have appeared in a movie together.

» General idea: graph evolves sequentially by adding vertices
one at a time. Each new vertex connects to some number of
existing vertices in a random way so that connections to
vertices with high degree are favored.



Outline

> Precisely define the model we study.
» State results.

» Main idea of the proof.



> Vertex n+ 1 sequentially attaches m outgoing edges to
vertices {1,...,n}.

» The chance that an outgoing edge attaches to vertex j is
proportional to

1 + in-degree of vertex j at that moment.
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Vertex n+ 1 sequentially attaches m outgoing edges to
vertices {1,...,n}.

The chance an outgoing edge attaches to vertex j is
proportional to

1 + in-degree of vertex j at that moment.
We're interested in the joint distributional behavior of
W;(n) = 1+ in-degree of vertex j in Gp.

Actually we study \W;(n) through = Zj'(:l W;(n).



Main result

> is the sum of “weights” of the first k vertices in G,.

» Xi,...,X, are independent rate one exponential variables,

Zo= (Xt £ XM 1<k<r,

» Z=(Z.2,...,2Z) and S(n) = i

Then:
C(r)

Sip IP[S(n) € K] —P[Z € K]| < m/(m i)’

for some constant C(r), where the supremum ranges over all
convex subsets K C R".



Immediate corollaries:

» Same rate of convergence of scaled joint degree counts
(Wl(n), ey Wr(n)) to limit (Zl, Iy —21,..., 2 — Zr—l)-

» Same rate of convergence of scaled maximum degree
maxi<j<r Wj(n) to limit maxi<j<,(Z; — Zj_1).

Generalizations:
» Different initial “seed” graphs.

» Different rule for defining the m edge PA graph.



Related results for the case m = 1:
» Our previous work (2013) showed rates of convergence of
marginal distributions (though limits described differently).
» Flaxman, Frieze, Fenner (2005) showed the rate of growth of
the maximum degree is \/n.
» Mdri (2005) showed a.s. convergence of the scaled joint

degrees and the maximum using martingale arguments (no
rates and limits not identified).

Applications:
» Bubeck, Mossel, Racz (2014) use our results in a statistical
inference problem.
» Curien, Duquesne, Kortchemski, Manolescu (2014) use our
results to show the PA graph with m =1 “converges” to an
object related to Aldous’s Brownian CRT.



Key proof idea

1. Let Polya(b, w; n) denote the law of the number of white
balls in n draws and replacements of of a classical Pdlya urn
started with b black and w white balls. Then for k > 2:

< Polya(1, (k—1)(m+1); Sk(n)—(k—1)m—k).
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Key proof idea

1. Let Polya(b, w; n) denote the law of the number of white
balls in n draws and replacements of of a classical Pdlya urn
started with b black and w white balls. Then for k > 2:

< Polya(1, (k—1)(m+1); Sk(n)—(k—1)m—k).
2. If B[a, b] denotes a beta distributed random variable,
d
Polya(b, w; n) = nB[w, b].

These two points imply the key identity

S SuUmBl(k—1)(m+1),1). ()



Key proof idea

Iterating the key identity

SIS E S B[k —1)(m+1),1], (%)

leads to ;
(Si(n),.... S:(n) &

r—1 r—1
<H Blk(m +1),1], [ [ Blk(m +1),1],..., 1> S(n).
k=1 k=2



Beta-Gamma Algebra

Using the basic Beta-Gamma identity,

Glal

P12 = G+ el

where G[a] and G[b] are independent gamma variables and the
LHS is independent of the denominator of the RHS, and recalling

Zio= (X 4+ XYM 1<k <,

we have the matching identity

(Zu(n), ..., Z,(n)) £

(f[ Blk(m + 1), 1], ]:[ Blk(m +1),1],..., 1) Z.(n).
k=1 k=2



Qe

( )
r—1 r—1
<H Blk(m+1),1], | [ Blk(m +1),1],..., 1>
k=1 k=2

(Zi(n), ..., Z(n)) £

r—1 r—1
(H Blk(m +1),1], H Blk(m+1),1],..., 1) Z.(n).
k=1 k=2



So the problem is reduced to quantifying the difference between
the marginal distributions of scaled and Z,.



Bounding
dKol <(m+1)n’"+1’ Zr>

» Stein's method and

uses

» Z, as the unique fixed point of a distributional transformation
related to the beta-gamma algebra.
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