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Preferential attachment random graphs:
I Popularized by Barabasi and Albert in 1999 to explain

so-called “power law” behavior of the degree distribution in
some real world networks, for example

I vertices are html pages on the internet with edges the
hyperlinks between webpages,

I vertices are movie actors with an edge between two actors if
they have appeared in a movie together.

I General idea: graph evolves sequentially by adding vertices
one at a time. Each new vertex connects to some number of
existing vertices in a random way so that connections to
vertices with high degree are favored.



Outline

I Precisely define the model we study.

I State results.

I Main idea of the proof.



I Vertex n + 1 sequentially attaches m outgoing edges to
vertices {1, . . . , n}.

I The chance that an outgoing edge attaches to vertex j is
proportional to

1 + in-degree of vertex j at that moment.
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I Vertex n + 1 sequentially attaches m outgoing edges to
vertices {1, . . . , n}.

I The chance an outgoing edge attaches to vertex j is
proportional to

1 + in-degree of vertex j at that moment.

I We’re interested in the joint distributional behavior of

Wj(n) = 1+ in-degree of vertex j in Gn.

I Actually we study Wj(n) through Sk(n)=
∑k

j=1Wj(n).



Main result

I Sk(n) is the sum of “weights” of the first k vertices in Gn.

I X1, . . . ,Xr are independent rate one exponential variables,

Zk := (X1 + · · ·+ Xk)1/(m+1), 1 ≤ k ≤ r ,

I Z = (Z1,Z2, . . . ,Zr ) and S(n) = (S1(n),S2(n),...,Sr (n))

(m+1)nm/(m+1) .

Then:

sup
K
|P [S(n) ∈ K ]− P[Z ∈ K ]| ≤ C (r)

nm/(m+1)
,

for some constant C (r), where the supremum ranges over all
convex subsets K ⊂ Rr .



Immediate corollaries:

I Same rate of convergence of scaled joint degree counts
(W1(n), . . . ,Wr (n)) to limit (Z1,Z2 − Z1, . . . ,Zr − Zr−1).

I Same rate of convergence of scaled maximum degree
max1≤j≤r Wj(n) to limit max1≤j≤r (Zj − Zj−1).

Generalizations:

I Different initial “seed” graphs.

I Different rule for defining the m edge PA graph.



Related results for the case m = 1:

I Our previous work (2013) showed rates of convergence of
marginal distributions (though limits described differently).

I Flaxman, Frieze, Fenner (2005) showed the rate of growth of
the maximum degree is

√
n.

I Móri (2005) showed a.s. convergence of the scaled joint
degrees and the maximum using martingale arguments (no
rates and limits not identified).

Applications:

I Bubeck, Mossel, Rácz (2014) use our results in a statistical
inference problem.

I Curien, Duquesne, Kortchemski, Manolescu (2014) use our
results to show the PA graph with m = 1 “converges” to an
object related to Aldous’s Brownian CRT.



Key proof idea

1. Let Polya(b,w ; n) denote the law of the number of white
balls in n draws and replacements of of a classical Pólya urn
started with b black and w white balls. Then for k ≥ 2:

Sk−1(n)|Sk(n)
d
= Polya(1, (k−1)(m+1); Sk(n)−(k−1)m−k).
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Key proof idea

1. Let Polya(b,w ; n) denote the law of the number of white
balls in n draws and replacements of of a classical Pólya urn
started with b black and w white balls. Then for k ≥ 2:

Sk−1(n)|Sk(n)
d
= Polya(1, (k−1)(m+1); Sk(n)−(k−1)m−k).

2. If B[a, b] denotes a beta distributed random variable,

Polya(b,w ; n)
d
≈ nB[w , b].

These two points imply the key identity

Sk−1(n)|Sk(n)
d
≈ Sk(n)B[(k − 1)(m + 1), 1]. (∗)



Key proof idea

Iterating the key identity

Sk−1(n)|Sk(n)
d
≈ Sk(n)B[(k − 1)(m + 1), 1], (∗)

leads to

(S1(n), . . . ,Sr (n))
d
≈(

r−1∏
k=1

B[k(m + 1), 1],
r−1∏
k=2

B[k(m + 1), 1], . . . , 1

)
Sr (n).



Beta-Gamma Algebra

Using the basic Beta-Gamma identity,

B[a, b] =
G [a]

G [a] + G [b]
,

where G [a] and G [b] are independent gamma variables and the
LHS is independent of the denominator of the RHS, and recalling

Zk := (X1 + · · ·+ Xk)1/(m+1), 1 ≤ k ≤ r ,

we have the matching identity

(Z1(n), . . . ,Zr (n))
d
=(

r−1∏
k=1

B[k(m + 1), 1],
r−1∏
k=2

B[k(m + 1), 1], . . . , 1

)
Zr (n).



(S1(n), . . . ,Sr (n))
d
≈(

r−1∏
k=1

B[k(m + 1), 1],
r−1∏
k=2

B[k(m + 1), 1], . . . , 1

)
Sr (n).

(Z1(n), . . . ,Zr (n))
d
=(

r−1∏
k=1

B[k(m + 1), 1],
r−1∏
k=2

B[k(m + 1), 1], . . . , 1

)
Zr (n).



So the problem is reduced to quantifying the difference between
the marginal distributions of scaled Sr (n) and Zr .



Bounding

dKol

(
Sr (n)

(m + 1)nm+1
,Zr

)
uses

I Stein’s method and

I Zr as the unique fixed point of a distributional transformation
related to the beta-gamma algebra.
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