Degree distributions in preferential attachment graphs
 Part I: Multivariate Approximations

Nathan Ross (University of Melbourne)
Joint work with Erol Peköz (Boston U) and Adrian Röllin (NU Singapore)

Preferential attachment random graphs:

- Popularized by Barabasi and Albert in 1999 to explain so-called "power law" behavior of the degree distribution in some real world networks, for example
- vertices are html pages on the internet with edges the hyperlinks between webpages,
- vertices are movie actors with an edge between two actors if they have appeared in a movie together.
- General idea: graph evolves sequentially by adding vertices one at a time. Each new vertex connects to some number of existing vertices in a random way so that connections to vertices with high degree are favored.

Outline

- Precisely define the model we study.
- State results.
- Main idea of the proof.
- Vertex $n+1$ sequentially attaches m outgoing edges to vertices $\{1, \ldots, n\}$.
- The chance that an outgoing edge attaches to vertex j is proportional to
$1+$ in-degree of vertex j at that moment.

$\mathrm{G}_{2}: 1$ (2)

$\mathrm{G}_{2}:(1) \mathrm{m}$

Prob $=2 /(m+3)$

$\mathrm{G}_{2}:(1)$ (2)

- Vertex $n+1$ sequentially attaches m outgoing edges to vertices $\{1, \ldots, n\}$.
- The chance an outgoing edge attaches to vertex j is proportional to

$$
1+\text { in-degree of vertex } j \text { at that moment. }
$$

- We're interested in the joint distributional behavior of

$$
W_{j}(n)=1+\text { in-degree of vertex } j \text { in } G_{n} .
$$

- Actually we study $W_{j}(n)$ through $S_{k}(n)=\sum_{j=1}^{k} W_{j}(n)$.

Main result

- $S_{k}(n)$ is the sum of "weights" of the first k vertices in G_{n}.
- X_{1}, \ldots, X_{r} are independent rate one exponential variables,

$$
Z_{k}:=\left(X_{1}+\cdots+X_{k}\right)^{1 /(m+1)}, \quad 1 \leq k \leq r
$$

$$
\mathbf{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{r}\right) \text { and } \mathbf{S}(n)=\frac{\left(S_{1}(n), S_{2}(n), \ldots, S_{r}(n)\right)}{(m+1) n^{m /(m+1)}}
$$

Then:

$$
\sup _{K}|\mathbb{P}[\mathbf{S}(n) \in K]-\mathbb{P}[\mathbf{Z} \in K]| \leq \frac{C(r)}{n^{m /(m+1)}},
$$

for some constant $C(r)$, where the supremum ranges over all convex subsets $K \subset \mathbb{R}^{r}$.

Immediate corollaries:

- Same rate of convergence of scaled joint degree counts $\left(W_{1}(n), \ldots, W_{r}(n)\right)$ to limit $\left(Z_{1}, Z_{2}-Z_{1}, \ldots, Z_{r}-Z_{r-1}\right)$.
- Same rate of convergence of scaled maximum degree $\max _{1 \leq j \leq r} W_{j}(n)$ to limit $\max _{1 \leq j \leq r}\left(Z_{j}-Z_{j-1}\right)$.

Generalizations:

- Different initial "seed" graphs.
- Different rule for defining the m edge PA graph.

Related results for the case $m=1$:

- Our previous work (2013) showed rates of convergence of marginal distributions (though limits described differently).
- Flaxman, Frieze, Fenner (2005) showed the rate of growth of the maximum degree is \sqrt{n}.
- Móri (2005) showed a.s. convergence of the scaled joint degrees and the maximum using martingale arguments (no rates and limits not identified).

Applications:

- Bubeck, Mossel, Rácz (2014) use our results in a statistical inference problem.
- Curien, Duquesne, Kortchemski, Manolescu (2014) use our results to show the PA graph with $m=1$ "converges" to an object related to Aldous's Brownian CRT.

Key proof idea

1. Let $\operatorname{Polya}(b, w ; n)$ denote the law of the number of white balls in n draws and replacements of of a classical Pólya urn started with b black and w white balls. Then for $k \geq 2$:
$S_{k-1}(n) \mid S_{k}(n) \stackrel{d}{=} \operatorname{Polya}\left(1,(k-1)(m+1) ; S_{k}(n)-(k-1) m-k\right)$.

Key proof idea

1. Let $\operatorname{Polya}(b, w ; n)$ denote the law of the number of white balls in n draws and replacements of of a classical Pólya urn started with b black and w white balls. Then for $k \geq 2$:
$S_{k-1}(n) \mid S_{k}(n) \stackrel{d}{=} \operatorname{Polya}\left(1,(k-1)(m+1) ; S_{k}(n)-(k-1) m-k\right)$.

Key proof idea

1. Let $\operatorname{Polya}(b, w ; n)$ denote the law of the number of white balls in n draws and replacements of of a classical Pólya urn started with b black and w white balls. Then for $k \geq 2$:

$$
S_{k-1}(n) \mid S_{k}(n) \stackrel{d}{=} \operatorname{Polya}\left(1,(k-1)(m+1) ; S_{k}(n)-(k-1) m-k\right)
$$

2. If $B[a, b]$ denotes a beta distributed random variable,

$$
\operatorname{Polya}(b, w ; n) \stackrel{d}{\approx} n B[w, b] .
$$

These two points imply the key identity

$$
\begin{equation*}
S_{k-1}(n) \mid S_{k}(n) \stackrel{d}{\approx} S_{k}(n) B[(k-1)(m+1), 1] \tag{*}
\end{equation*}
$$

Key proof idea

Iterating the key identity

$$
\begin{equation*}
S_{k-1}(n) \mid S_{k}(n) \stackrel{d}{\approx} S_{k}(n) B[(k-1)(m+1), 1] \tag{*}
\end{equation*}
$$

leads to

$$
\left(S_{1}(n), \ldots, S_{r}(n)\right) \stackrel{d}{\approx}
$$

$$
\left(\prod_{k=1}^{r-1} B[k(m+1), 1], \prod_{k=2}^{r-1} B[k(m+1), 1], \ldots, 1\right) S_{r}(n) .
$$

Beta-Gamma Algebra

Using the basic Beta-Gamma identity,

$$
B[a, b]=\frac{G[a]}{G[a]+G[b]},
$$

where $G[a]$ and $G[b]$ are independent gamma variables and the LHS is independent of the denominator of the RHS, and recalling

$$
Z_{k}:=\left(X_{1}+\cdots+X_{k}\right)^{1 /(m+1)}, \quad 1 \leq k \leq r
$$

we have the matching identity

$$
\begin{gathered}
\left(Z_{1}(n), \ldots, Z_{r}(n)\right) \stackrel{d}{=} \\
\left(\prod_{k=1}^{r-1} B[k(m+1), 1], \prod_{k=2}^{r-1} B[k(m+1), 1], \ldots, 1\right) Z_{r}(n)
\end{gathered}
$$

$$
\begin{gathered}
\left(S_{1}(n), \ldots, S_{r}(n)\right) \stackrel{d}{\approx} \\
\left(\prod_{k=1}^{r-1} B[k(m+1), 1], \prod_{k=2}^{r-1} B[k(m+1), 1], \ldots, 1\right) S_{r}(n) . \\
\left(Z_{1}(n), \ldots, Z_{r}(n)\right) \stackrel{d}{=} \\
\left(\prod_{k=1}^{r-1} B[k(m+1), 1], \prod_{k=2}^{r-1} B[k(m+1), 1], \ldots, 1\right) Z_{r}(n) .
\end{gathered}
$$

So the problem is reduced to quantifying the difference between the marginal distributions of scaled $S_{r}(n)$ and Z_{r}.

Bounding

$$
d_{\mathrm{Kol}}\left(\frac{S_{r}(n)}{(m+1) n^{m+1}}, Z_{r}\right)
$$

uses

- Stein's method and
- Z_{r} as the unique fixed point of a distributional transformation related to the beta-gamma algebra.
E. Peköz, A. Röllin, and N. Ross. Joint degree distributions of preferential attachment random graphs (2014). http://arxiv.org/abs/1402.4686.
E. Peköz, A. Röllin, and N. Ross. Generalized gamma approximation with rates for urns, walks and trees (2013). http://arxiv.org/abs/1309.4183

Related work:
E. Peköz, A. Röllin, and N. Ross. Degree asymptotics with rates for preferential attachment random graphs (2013). Ann. Appl. Probab.

Thank You!

