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Stein’s method

Stein’s method in a nutshell

For µ a target distribution, with support I:

1 Find a suitable operator A (called Stein operator) and a wide class of
functions F(A) (called Stein class) such that X ∼ µ if and only if for
all functions f ∈ F(A),

EAf (X ) = 0.

2 Let H(I) be a measure-determining class on I. For each h ∈ H find
a solution f = fh ∈ F(A) of the

h(x)− Eh(X ) = Af (x),

where X ∼ µ. If the solution exists and if it is unique in F(A) then
we can write

f (x) = A−1(h(x)− Eh(X )).

We call A−1 the inverse Stein operator (for µ).
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Stein’s method

Comparison of distributions

Let X and Y have distributions µX and µY with Stein operators AX and
AY , so that F(AX ) ∩ F(AY ) 6= ∅ and choose H(I) such that all
solutions f of the Stein equation belong to this intersection. Then

Eh(X )− Eh(Y ) = EAY f (X ) = EAY f (X )− EAX f (X )

and

sup
h∈H(I)

|Eh(X )− Eh(Y )| ≤ sup
f ∈F(AX )∩F(AY )

|EAX f (X )− EAY f (X )|.

If H(I) is the set of all Lipschitz-1-functions then the resulting distance is
dW , the Wasserstein distance. For examples see for example Holmes
(2004), Eichelsbacher and R. (2008), Döbler (2012).
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A canonical Stein operator

Our set-up

Let (X ,B, µ) be a measure space, with X ⊂ R.

Let X ? be the set of real-valued functions on X .

Let D : dom(D) ⊂ X ? → im(D) be a linear operator and
dom(D) \ {0} 6= ∅.

Let D−1 : im(D)→ dom(D) be the linear operator which sends any
h = Df onto f .

Then
D
(
D−1h

)
= h

for all h ∈ im(D) whereas, for f ∈ dom(D),

D−1 (Df )

is only defined up to addition with an element of ker(D).
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A canonical Stein operator

Assumption

There exists a linear operator D? : dom(D?) ⊂ X ? → im(D?) and a
constant l := lX ,D such that

D(f (x)g(x + l)) = g(x)Df (x) + f (x)D?g(x)

for all (f , g) ∈ dom(D)× dom(D?).

Under this assumption, D and D? are skew-adjoint in the sense that∫
X
gDfdµ = −

∫
X
fD?gdµ

for all (f , g) ∈ dom(D)× dom(D?) such that gDf ∈ L1(µ) or
fD?g ∈ L1(µ) and

∫
X D(f (·)g(·+ l))dµ = 0.
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A canonical Stein operator

Example 1

Let µ be the Lebesgue measure on X = R and take D the usual strong
derivative. Then

D−1f (x) =

∫ x

•
f (u)du,

the usual antiderivative. Our assumption

D(f (x)g(x + l)) = g(x)Df (x) + f (x)D?g(x)

is satisfied with D? = D and l = 0.
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A canonical Stein operator

Example 2

Let µ be the counting measure on X = Z and take D = ∆+, the forward
difference operator. Then

D−1f (x) =
x−1∑
k=•

f (k).

Also we have the discrete product rule

∆+(f (x)g(x − 1)) = g(x)∆+f (x) + f (x)∆−g(x)

for all f , g ∈ Z? and all x ∈ Z. Hence our assumption

D(f (x)g(x + l)) = g(x)Df (x) + f (x)D?g(x)

is satisfied with D? = ∆−, the backward difference operator and l = −1.
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A canonical Stein operator

Example 3

Let µ(x) be the N (0, 1) measure on R, with density ϕ, and take

Dϕf (x) = f ′(x)− xf (x) =
(f (x)ϕ(x))′

ϕ(x)
,

see e.g. Ledoux, Nourdin, Peccati (2014). Then

D−1ϕ f (x) =
1

ϕ(x)

∫ x

•
f (y)ϕ(y)dy .

Also we have the product rule

Dϕ(gf )(x) = (gf )′(x)− xg(x)f (x) = g(x)Dϕf (x) + f (x)g ′(x).

Hence our assumption

D(f (x)g(x + l)) = g(x)Df (x) + f (x)D?g(x)

is satisfied with D?g = g ′ and l = 0.
10 / 45



A canonical Stein operator

Example 4

Let µ(x) be the Poisson(λ)measure on Z+ with pmf γλ and

∆+
λ f (x) = λf (x + 1)− xf (x) =

∆+(f (x)xγλ(x))

γλ(x)
.

Then

(∆+
λ )−1f (x) =

1

xγλ(x)

x−1∑
k=•

f (k)γλ(k)

(which is ill-defined at x = 0) and

∆+
λ (g(x − 1)f (x)) = g(x)∆+

λ f (x) + f (x)x∆−g(x).

Hence our assumption

D(f (x)g(x + l)) = g(x)Df (x) + f (x)D?g(x)

is satisfied with D?g(x) = x∆−g(x) and l = −1.
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A canonical Stein operator

Remark

In all examples the choice of D is, in a sense, arbitrary and other options
are available. Less conventional choices of D can be envisaged (even
forward differences in the continuous setting, etc.).

The restriction to dimension 1 is not necessary.

From now for the sake of presentation on we concentrate on the Lebesgue
measure and D the usual derivative.
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A canonical Stein operator

A canonical Stein operator

Let X be a continuous random variable distribution having pdf p with
interval support I = [a, b] ⊂ R.

We define the Stein class of X as the class F(X ) of functions f : R→ R
such that
(i) x 7→ f (x)p(x) is differentiable on R
(ii) (fp)′ is integrable and

∫
(fp)′ = 0.

To X we associate the Stein operator TX of X such that

TX f =
(fp)′

p

with the convention that TX f = 0 outside of I.
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A canonical Stein operator

A useful relationship

We have a distributional characterisation:

Y
D
= X if and only if (TY ,F(Y )) = (TX ,F(X ))

for all random variables Y which have the same support as X . See Ley
and Swan (2011) for more details.

By the product rule,

E
[
g ′(X )f (X )

]
= −E [g(X )TX f (X )]

for all f ∈ F(X ) and for all differentiable functions g such that∫
(gfp)′dx = 0, and

∫
|g ′fp|dx <∞; we say that g ∈ dom((·)′ ,X , f ).

14 / 45



A canonical Stein operator

Stein characterisations

Let Y be continuous with density q, and same support as X .
1

Y
D
= X if and only if E

[
f (Y )g ′(Y )

]
= −E [g(Y )TX f (Y )]

for all f ∈ F(X ) and for all g ∈ dom((·)′ ,X , f ) .
2 Suppose that q

p is differentiable. Take g ∈ ∩f ∈F(X )dom((·)′ ,X , f )

such that g is X -a.s. never 0 and g q
p is differentiable. Then

Y
D
= X if and only if E

[
f (Y )g ′(Y )

]
= −E [g(Y )TX f (Y )]

for all f ∈ F(X ).
3 Let f ∈ F(X ) be X -a.s. never zero and assume that dom((·)′ ,X , f )

is dense in L1(X ). Then

Y
D
= X if and only if E

[
f (Y )g ′(Y )

]
= −E [g(Y )TX f (Y )]

for all g ∈ dom((·)′ ,X , f ).
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A canonical Stein operator

Some special cases

Take g ≡ 1 ( this is always permitted) to obtain the Stein characterization

Y
D
= X if and only if E [TX f (Y )] = 0 for all f ∈ F(X ).

If f ≡ 1 is in F(X ) then we obtain the Stein characterization

Y
D
= X ⇐⇒ E[g ′(Y )] = −E

[
p′(Y )

p(Y )
g(Y )

]
= 0 for all g ∈ dom((·)′,X , 1).
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A canonical Stein operator

A connection to couplings: an equation

Let X be a mean zero random variable with finite, nonzero variance σ2.
We say that X ∗ has the X -zero biased distribution if for all differentiable f
for which EXf (X ) exists,

σ2Ef ′(X ∗)− EXf (X ) = 0;

N (0, σ2) is the unique fixed point of the zero-bias transformation.

More generally, if X is a random variable with differentiable density pX =
then for all differentiable f ,

pX (x)TX (f )(x) = (f (x)pX (x))′ = pX (x)f ′(x) + f (x)p′X (x)

and so

E
{
f ′(X )

}
+ E

{
f (X )

p′X (X )

pX (X )

}
= 0.
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A canonical Stein operator

A connection to couplings: a transformation

The equation

E
{
f ′(X )

}
+ E

{
f (X )

p′X (X )

pX (X )

}
= 0

could lead to a transformation which maps a random variable Y to Y (X )

such that for all differentiable f ∈ for which the expressions exist,

Ef ′(Y (X )) = −
{
Ef (Y )

p′X (Y )

pX (Y )

}
.
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A canonical Stein operator

A connection to couplings: unique fixed points

Now assume that f ∈ F(X )∩ dom(D) is dense in L1(X ). and that Y (X ) is
well-defined. To see that Y =d X if and only if Y (X ) =d Y :

As for all f ∈ F(X ),

E
{
f ′(X )

}
+ E

{
f (X )

p′X (X )

pX (X )

}
= 0

and

Ef ′(Y (X )) = −
{
Ef (Y )

p′X (Y )

pX (Y )

}
,

if Y =d X then Y (X ) =d Y .

If Y (X ) =d Y , then ETX (f )(Y ) = 0 for all differentiable f ∈ F(X ), and
the assertion follows from the density assumption and using g = 1 in

Y
D
= X if and only if E

[
f (Y )g ′(Y )

]
= −E [g(Y )TX f (Y )]

for all f ∈ F(X ).
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A canonical Stein operator

The inverse Stein operator

With X as above we define the class

F (0)(X ) =
{
h : R→ R such that E [h(X )] = 0

}
;

and the inverse Stein operator T −1X : F (0)(X )→ F(X ) as

T −1X h(x) = − 1

p(x)

∫ x

a
p(y)h(y)dy =

1

p(x)

∫ b

x
p(y)h(y)dy

for all h ∈ F (0)(X ).
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A canonical Stein operator

Stein equations

Let h ∈ L1(X ). The equation

h(x)− Eh(X ) = f (x)g ′(x) + g(x)TX f (x), x ∈ I,

is a Stein equation for the target X .

Solutions of this equation are pairs of functions (f , g) such that

fg = T −1X (h − Eph).

Although fg is unique, the individual f and g are not (just consider
multiplication by constants).
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A canonical Stein operator

Stein equations

Let h ∈ L1(X ). The equation

h(x)− Eh(X ) = TX (fg) (x) = f (x)g ′(x) + g(x)TX f (x), x ∈ I,

is a Stein equation for the target X .

Solutions of this equation are pairs of functions (f , g) such that

fg = T −1X (h − Eph).

Although fg is unique, the individual f and g are not (just consider
multiplication by constants).
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A canonical Stein operator

Special Stein operators

Our general Stein operator is an operator on pairs of functions (f , g);

A(f , g)(x) = TX (fg)(x) = f (x)g ′(x) + g(x)TX f (x).

A second particular Stein operator fixes a differentiable g and uses

AX f = TX (fg) = fg ′ + gTX f

and f ∈ FA(X ) ⊂ F(X ).

A particular Stein operator is given by fixing f = c ∈ F(X ) and using

AXg(x) = c(x)g ′(x) + g(x)TX c(x).

Sometimes we call this the c-operator (see Goldstein and R. (2013)).
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A canonical Stein operator

The score function

Suppose that X is such that the constant function 1 ∈ F(X ) (this is no
small assumption). Then taking c = 1 in

AXg(x) = c(x)g ′(x) + g(x)TX c(x).

we get
AXg(x) = g ′(x) + g(x)ρ(x)

with

ρ(x) = TX1(x) =
p′(x)

p(x)

the so-called “score function” of X ; see for example Stein (2004).
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A canonical Stein operator

The Stein kernel

If X has finite mean ν we can take c = T −1X (ν − Id) with Id the identity
function (this is always allowed) in

AXg(x) = c(x)g ′(x) + g(x)TX c(x).

This yields
AXg(x) = τ(x)g ′(x) + (ν − x)g(x)

with
τ = T −1X (ν − Id)

what we call the “Stein kernel of X”. This approach was used for example
in Stein (1986, Lesson 6) and Cacoullos et al. (1992).

25 / 45



Examples

Outline

1 Stein’s method

2 A canonical Stein operator

3 Examples

4 Distances between expectations

5 Distance between posteriors

6 Last words

26 / 45



Examples

Example: Normal

In the example of a N (0, σ2) random variable, our operator translates to

TN f (x) = −f ′(x) +
1

σ2
xf (x)

which contrasts with
σ2f ′(x)− xf (x),

the standard Stein operator for this case. The score function is − x
σ2 . We

compute the Stein kernel
τ(x) = σ2.

The c-Stein operator is the standard operator.
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Examples

Example: Beta

Consider beta distributions with density

p(x ;α, β) =
xα−1(1− x)β−1

B(α, β)
1{x∈[0,1]}.

Here

TB f (x) = −f ′(x)− 1

x(1− x)
f (x)((α− 1)x − (β − 1)(1− x)).

The standard Stein operator for this case is

Af (x) = x(1− x)f ′(x) + (α(1− x)− βx)f (x),

see Doebler (2012). The score function, defined when α > 1 and β > 1, is

ρ(x) =
α

x
− β − 1

x − 1
.

The beta Stein kernel is

τ(x) =
x(1− x)

α + β
.
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Distances between expectations

Comparison of expectations

Let X1 and X2 be such that their densities p1 and p2 have interval support.

Denote by T1 and T2 the Stein operators associated with X1 and X2, acting
on Stein classes F1 = F(X1) and F2 = F(X2). Let Eih = Eh(Xi ), i = 1, 2.

Let h be such that Ei |h| <∞ for i = 1, 2. Fix f1 ∈ F1 and define

gh :=
1

f1
T −11 (h − E1h).

Then, for all f2 ∈ F2 such that |E2f2gh| exists,

E2h − E1h = E2

[
f1g
′
h + ghT1f1

]
= E2

[
(f1 − f2)g ′h + gh {T1f1 − T2f2}

]
.

An obvious choice is f1 = f2 if permitted, leading to ...
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Distances between expectations

A Corollary

Assume that X1 = X2. Let H ⊂ L1(X1) ∩ L1(X2). Take f ∈ F1 ∩ F2 and
suppose that for all h ∈ H we have that gh = (1/f )T −11 (h − E1h) is such
that |Ei fgh| exists, i = 1, 2. Then

sup
h∈H
|E1h − E2h| ≤ κH,1(f )E2|T1f − T2f |

with κH,1(f ) = suph∈H ‖(1/f ) T −11 (h − E1h)‖∞.
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Distances between expectations

Example: Distance between Gaussians via Stein factor

For Xi ∼ N (0, σ2i ), i = 1, 2, with σ21 ≤ σ22 the usual Stein operator gives

Eh(X1)− Eh(X2) = (σ21 − σ22)Ef ′h,σ2(X1)

with fh,σ2 the solution of the Gaussian Stein equation, yielding

dTV(X1,X2) ≤ 2
|σ21 − σ22|

σ22
,

see for example Nourdin and Peccati (2011). This is also what we get
when we use the Stein kernel approach, with τi (x) = σ2i .
Using the score functions ρi (x) = −x/σ2i , i = 1, 2 we get

dTV(X1,X2) ≤ σ1
√
π

2
E|X2|

∣∣∣∣ 1

σ21
− 1

σ22

∣∣∣∣ =

∣∣σ21 − σ22∣∣
σ1σ2

;

if σ1 <
σ2
2 then this bound beats the first bound.
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Distances between expectations

From Student to Gauss

Set X1 = Z standard Gaussian and X2 = Wν a Student t random variable
with ν > 2 degrees of freedom. The Stein kernels for both distributions are
τ1 = 1 and τ2(x) = x2+ν

ν−1 ; we obtain using the Stein kernel approach that

dTV(Z ,Wν) ≤ 2E
∣∣∣∣W 2

ν + ν

ν − 1
− 1

∣∣∣∣ ≤ 4

ν − 2
.

Using the score function approach we obtain

dTV(Z ,Wν) ≤
√
π

2

−2 + 8
(

ν
1+ν

)(1+ν)/2
(ν − 1)

√
νB(ν/2, 1/2)

,

which is of the same order, with a better constant.
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Distance between posteriors

Distances between likelihoods

We can apply the inequality

sup
h∈H
|E1h − E2h| ≤ κH,1(f )E2|T1f − T2f |

to bound distances between likelihoods:
Let πi (θ), i = 0, 1, be two absolutely continuous positive functions with
common support I with closure Ī = [a, b]. Assume that π1 and π0π1 are
integrable. Define

p1(θ) = κ1π1(θ) and p2(θ) = κ2π0(θ)π1(θ)

where κi , i = 1, 2, are normalising constants. For i = 1, 2 let Θi ∼ pi .
Assume that µ1 = E [Θ1] <∞.
Further we assume that

lim
θ→b

π0(θ)

∫ b

θ
(µ1 − u)π1(u)du = lim

θ→a
π0(θ)

∫ θ

a
(µ1 − u)π1(u)du = 0.
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Distance between posteriors

A Wasserstein bound

Using the Stein kernel τ1 = T −1X (µ1 − Id) we get

T2τ1(θ) =
π′0(θ)

π0(θ)
τ1(θ) + T1τ1(θ)

and so

T2τ1(θ)− T1τ1(θ) =
π′0(θ)

π0(θ)
τ1(θ).

We obtain
dW(Θ1,Θ2) ≤ κ2

κ1
E
∣∣π′0(Θ1)τ1(Θ1)

∣∣ .
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Distance between posteriors

The Bayesian approach in a nutshell

Given observations x = (x1, x2, . . . , xn) which are seen as realisations of
random variables X1, . . . ,Xn with joint distribution (density)

π1(x1, x2, . . . , xn|θ),

which depends on an unknown parameter θ, we would like to draw
inference on θ.

The parameter Θ is viewed as a random element. Before any observation
has been made (a priori) we think that Θ has the (prior) distribution p0.
We update our belief on Θ in light of the observations by applying Bayes’
formula, so that the posterior density of Θ, given the observations y, is

p2(θ|x) = π1(x|θ)p0(θ) = κ1(x)p1(θ, x)p0(θ).

Here p1(θ, x) is a probability density for θ.
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Distance between posteriors

The choice of prior

Some typical choices of prior are

Priors which are elicited from experts or from previous experiments;

Conjugate priors, where the posterior belongs to the same
distributional family as the prior, making updating easy;

Uniform distribution (when it exist) to reflect no information;

Jeffreys’ prior p0(θ) ∝ |I (θ)|
1
2 , the determinant of the Fisher

information matrix;

priors which are adapted to particular problems.

The choice of prior affects the inference, but the hope is that the effect of
the prior wanes with increasing number of observations. We can quantify
this effect, using Stein’s method.
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Distance between posteriors

Bayesian interpretation

We observe data points x := (x1, x2, . . . , xn) with sampling distribution
π1(x | θ). We take θ, the one dimensional parameter, to be distributed
according to some (possibly improper) prior p0(θ), and let the posterior be
given by p2(θ; x) ∝ p0(θ)p1(θ; x). Set

p1(θ; x) = κ1(x)π1(x ; θ)

and
p2(θ; x) = κ2π0(θ)π1(x , θ).

Then our theorem applies and we can assess the influence of the prior on
the posterior.
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Distance between posteriors

Example: Normal model, normal prior

Assume that X1, . . . ,Xn ∼ N (θ, σ2), conditionally independent given θ,
where σ2 is known, and assume that the prior is normal, π(θ) ∼ N (µ, δ2),
where µ and δ2 are known. Then

π1(x1, . . . , xn, θ) = (2πσ2)−
n
2 exp

{
−1

2

n∑
i=1

(xi − θ)2

σ2

}
;

p1(θ) ∼ N

(
1

n

n∑
i=1

xi ,
σ2

n

)
.

It is a standard calculation that the posterior is normal,

p2(θ, x) ∼ N
(
b(x)

a
,

1

a

)
.

with

a =
n

σ2
+

1

δ2
, and b(x) =

1

σ2

∑
xi +

µ

δ2
.
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Distance between posteriors

The resulting bound

Wit h τ1 = σ2

n we find

dW(Θ1,Θ2) ≤ E2

∣∣∣∣π′0(θ)

π0(θ)
τ1(θ)

∣∣∣∣
=

σ2

nδ2
E |Θ2 − µ|

≤ σ2

nδ2

(
E
∣∣∣∣Θ2 −

b(x)

a

∣∣∣∣+

∣∣∣∣b(x)

a
− µ

∣∣∣∣)
=

√
2√
π

σ3

nδ
√
δ2n + σ2

+
σ2

nδ2 + σ2
|x̄ − µ| .

The first term is order O(n−1) whereas the second term reflects the
influence of the data. The bound decreases when δ increases. The better
the guess of µ, the smaller the bound.
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Distance between posteriors

Example: Binomial model, Beta prior

Here we have one observation x ∼ Binomial(n, θ), with known n. The
prior is

π0 = κ0θ
α−1(1− θ)β−1, θ ∈ [0, 1],

with α > 0 and β > 0. Then τ1(θ) = θ(1−θ)
n+2 . A direct computation gives

dW(Θ1,Θ2) ≤ 1

n + 2

(
|2− β − α| α + x

α + β + n
+ |α− 1|

)
.

Unless α = 1 the bound will be of order 1/n no matter how
favourable x is.

If α = 1 but β 6= 1 then the bound is smallest when x = 0, and is
then of order 1/n2.

If α = 1 = β then the bound is zero, as it should be as then p1 = p2,
the prior is uniform.
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Distance between posteriors

Example: Binomial model, non-informative prior

Using the Haldane prior p0(θ) = κ0(θ(1− θ))−1, direct computation gives

dW(Θ1,Θ2) ≤ 2

n + 2

(∣∣∣∣xn − 1

2

∣∣∣∣+

√
x(n − x)

n2(n + 1)

)
.

If x = n
2 then the bound is of order n−

3
2 .

Using Jeffreys’ prior p0(θ) = κ0(θ(1− θ))−
1
2 , direct computation gives

dW(Θ1,Θ2) ≤ 1

n + 2

∣∣∣∣∣x + 1
2

n + 1
− 1

2

∣∣∣∣∣+

√
(x + 1

2)(n − x + 1
2)

(n + 1)2(n + 2)

 .

Again if x = n
2 then the bound is of order n−

3
2 .
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Last remarks

Stein (1964) gives bounds between posteriors in the Kakutani distance,
using an algebraic approach.

When D 6= D∗ the Stein operator becomes

A(f , g)(x) = f (x)D∗g(x) + g(x)TX f (x).

The flexibilty in having a pair of functions rather than just one function
can be useful for getting bounds; for example we could choose g(x) = xα

and then mimimise our bounds with respect to α.

We are thinking about the multivariate case, too.
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