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Concentration of Measure

Distributional tail bounds can be provided in cases where
exact computation is intractable.

Concentration of measure results can provide exponentially
decaying bounds with explicit constants.
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Bounded Difference Inequality

If Y = f (X1, . . . ,Xn) with X1, . . . ,Xn independent, and for every
i = 1, . . . , n the differences of the function f : Ωn → R

sup
xi ,x
′
i

|f (x1, . . . , xi−1, xi , xi+1, . . . , xn)− f (x1, . . . , xi−1, x
′
i , xi+1, . . . , xn)|

are bounded by ci , then

P (|Y − E[Y ]| ≥ t) ≤ 2 exp

(
− t2

2
∑n

k=1 c
2
k

)
.
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Self Bounding Functions

The function f (x), x = (x1, . . . , xn) is (a, b) self bounding if there
exist functions fi (x

i ), xi = (x1, . . . , xi−1, xi+1, . . . , xn) such that

n∑
i=1

(f (x)− fi (x
i )) ≤ af (x) + b

and

0 ≤ f (x)− fi (x
i ) ≤ 1 for all x.
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Self Bounding Functions

For say, the upper tail, with c = (3a− 1)/6, Y = f (X1, . . . ,Xn),
with X1, . . . ,Xn independent, for all t ≥ 0,

P(Y − E[Y ] ≥ t) ≤ exp

(
− t2

2(aE[Y ] + b + c+t)

)
.

Mean in the denominator can be very competitive with the factor∑n
i=1 c

2
i in the bounded difference inequality.

If (a, b) = (1, 0), say, the denominator of the exponent is
2(E[Y ] + t/3), and as t →∞ rate is exp(−3t/2).
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Use of Stein’s Method Couplings

• Stein’s method developed for evaluating the quality of
distributional approximations through the use of
characterizing equations.

• Implementation of the method often involves coupling
constructions, with the quality of the resulting bounds
reflecting the closeness of the coupling.

• Such couplings can be thought of as a type of distributional
perturbation that measures dependence.

• Concentration of measure should hold when perturbation is
small.
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Stein’s Method and Concentration Inequalities

• Raič (2007) applies the Stein equation to obtain Cramér type
moderate deviations relative to the normal for some graph
related statistics.

• Chatterjee (2007) derives tail bounds for Hoeffding’s
combinatorial CLT and the net magnetization in the
Curie-Weiss model from statistical physics based on Stein’s
exchangeable pair coupling.

• Goldstein and Ghosh (2011) show bounded size bias coupling
implies concentration.

• Chen and Röellin (2010) consider general ‘Stein couplings’ of
which the exchangeable pair and size bias (but not zero bias)
are special cases; E [Gf (W ′)− Gf (W )] = E [Wf (W )].

• Paulin, Mackey and Tropp (2012,2013) extend exchangeable
pair method to random matrices.
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Exchangeable Pair Couplings

Let (X,X′) be exchangeable,

F (X ,X ′) = −F (X ′,X ) and E[F (X ,X ′)|X ] = f (X )

with

1

2
E[|(f (X )− f (X ′))F (X ,X ′)|

∣∣X ] ≤ c .

Then Y = f (X) satisfies

P(|Y | ≥ t) ≤ 2 exp

(
− t2

2c

)
.

No independence assumption.
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Curie Weiss Model

Consider a graph on n vertices V with symmetric neighborhoods
Nj , and Hamiltonian

Hh(σ) = − 1

2n

∑
j∈V

∑
k∈Nj

σjσk − h
∑
i∈V

σj ,

and the measure on ‘spins’ σ = (σi )i∈V , σi ∈ {−1, 1}

pβ,h(σ) = Z−1β,he
−βHh(σ).

Interested in the average net magentization

m =
1

n

∑
i∈V

σi .

Consider the complete graph.
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Curie Weiss Concentration

Choose vertex V uniformly and sample σ′V from the conditional
distribution of σV given σj , j 6∈ NV . Yields an exchangeable pair
allowing the result above to imply, taking h = 0 for simplicity,

P
(
|m − tanh(βm)| ≥ β

n
+ t

)
≤ 2e−nt

2/(4+4β).

The magnetization m is concentrated about the roots of the
equation

x = tanh(βx).
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Size Bias Couplings

For a nonnegative random variable Y with finite nonzero mean µ,
we say that Y s has the Y -size bias distribution if

E[Yg(Y )] = µE[g(Y s)] for all g .

• Size biasing may appear, undesirably, in sampling.

• For sums of independent variables, size biasing a single
summand size biases the sum.

• The closeness of a coupling of a sum Y to Y s is a type of
perturbation that measures the dependence in the summands
of Y .

• If X is a non trivial indicator variable then X s = 1.
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Bounded Size Bias Coupling implies Concentration

Let Y be a nonnegative random variable with finite positive mean
µ. Suppose there exists a coupling of Y to a variable Y s having
the Y -size bias distribution that satisfies Y s ≤ Y + c for some
c > 0 with probability one. Then,

max (1t≥0P(Y − µ ≥ t), 1−µ≤t≤0P(Y − µ ≤ t)) ≤ b(t;µ, c)

where

b(t;µ, c) =

(
µ

µ+ t

)(t+µ)/c

et/c .

Ghosh and Goldstein (2011), Improvement by Arratia and
Baxendale (2013)

Poisson behavior, rate exp(−t log t) as t →∞.
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Bounded Coupling Concentration Inequality

For the right tail, say, using that for x ≥ 0 the function
h(x) = (1 + x) log(1 + x)− x obeys the bound

h(x) ≥ x2

2(1 + x/3)
,

we have

P(Y − µ ≥ t) ≤ exp

(
− t2

2c(µ+ t/3)

)
.
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Proof of Upper Tail Bound
For θ ≥ 0,

eθY
s

= eθ(Y+Y s−Y ) ≤ ecθeθY . (1)

With mY s (θ) = EeθY s
, and similarly for mY (θ),

µmY s (θ) = µEeθY
s

= E[YeθY ] = m′Y (θ)

so multiplying by µ in (1) and taking expectation yields

m′Y (θ) ≤ µecθmY (θ).

Integration yields

mY (θ) ≤ exp
(µ
c

(
ecθ − 1

))
and the bound is obtained upon choosing θ = log(t/µ)/c in

P(Y ≥ t) = P(e−θteθY ≥ 1) ≤ e−θt+
µ
c (ecθ−1).
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Size Biasing Sum of Exchangeable Indicators

Suppose X is a sum of nontrivial exchangeable indicator variables
X1, . . . ,Xn, and that for i ∈ {1, . . . , n} the variables X i

1, . . . ,X
i
n

have joint distribution

L(X i
1, . . . ,X

i
n) = L(X1, . . . ,Xn|Xi = 1).

Then

X i =
n∑

j=1

X i
j

has the X -size bias distribution X s , as does the mixture X I when I
is a random index with values in {1, . . . , n}, independent of all
other variables.

In more generality, pick index I with probability P(I = i)
proportional to EXi .
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Applications

1. The number of local maxima of a random function on a graph

2. The number of vertices in an Erdős-Rényi graph exceeding
pre-set thresholds

3. The d-way covered volume of a collection of m balls placed
uniformly over a volume m subset of Rp
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Local Maxima on Graphs

Let G = (V, E) be a given graph, and for every v ∈ V let Vv ⊂ V
be the neighbors of v , with v ∈ V. Let {Cg , g ∈ V} be a collection
of independent and identically distributed continuous random
variables, and let Xv be the indicator that vertex v corresponds to a
local maximum value with respect to the neighborhood Vv , that is

Xv (Cw ,w ∈ Vv ) =
∏

w∈Vv\{v}

1(Cv > Cw ), v ∈ V.

The sum

Y =
∑
v∈V

Xv

is the number of local maxima on G.
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Size Biasing {Xv , v ∈ V}

If Xv = 1, that is, if v is already a local maxima, let Xv = X.
Otherwise, interchange the value Cv at v with the value Cw at the
vertex w that achieves the maximum Cu for u ∈ Vv , and let Xv be
the indicators of local maxima on this new configuration. Then
Y s , the number of local maxima on XI , where I is chosen
proportional to EXv , has the Y -size bias distribution.

We have

Y s ≤ Y + c where c = max
v∈V

max
w∈Vv

|Vw |.
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Self Bounding and Configuration Functions

The collection of sets Πk ⊂ Ωk , k = 0, . . . , n is hereditary if
(x1, . . . , xk) ∈ Πk implies (xi1 , . . . , xij ) ∈ Πj for any
1 ≤ i1 < . . . < iij ≤ k . Let f : Ωn → R be the function that assigns
to x ∈ Ωn the size k of the largest subsequence of x that lies in
Πk . With fi (x) the function f evaluated on x after removing its i th

coordinate, we have

0 ≤ f (x)− fi (x) ≤ 1 and
n∑

i=1

(f (x)− fi (x)) ≤ f (x)

as removing a single coordinate from x reduces f by at most one,
and there at most f = k ‘important’ coordinates. Hence,
configuration functions are (a, b) = (1, 0) self bounding.



Background Stein and Pair Couplings Size Bias Applications Zero Bias Matrix Concentration Summary

Self Bounding Functions

The number of local maxima is a configuration function, with
(xi1 , . . . , xij ) ∈ Πj when the vertices indexed by i1, . . . , ij are local
maxima; hence the number of local maxima Y is a self bounding
function. Hence, Y satisfies the concentration bound

P(Y − E[Y ] ≥ t) ≤ exp

(
− t2

2(E[Y ] + t/3)

)
.

Size bias bound is of Poisson type with tail rate exp(−t log t).
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Multinomial Occupancy Models

Let Mα be the degree of vertex α ∈ [m] in an Erdős-Rényi random
graph. Then

Yge =
∑
α∈[m]

1(Mα ≥ dα)

obeys the concentration bound b(t;µ, c) with c = supα∈[m] dα + 1.

Unbounded couplings can more easily be constructed than
bounded ones, for instance, by giving the chosen vertex α the
number of edges from the conditional distribution given Mα ≥ dα.
A coupling bounded by supα∈[m] dα may be constructed by adding
edges, or not, sequentially, to the chosen vertex, with probabilities
depending on its degree. Degree distributions are log concave.
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Multinomial Occupancy Models

Similar remarks apply to

Yne =
∑
α∈[m]

1(Mα 6= dα).

For some models, not here but e.g. multinomial urn occupancy, the
indicators of Yge are negatively associated, though not for Yne.
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The d-way covered volume on m balls in Rp

Let X1, . . . ,Xm be the uniform and independent over the torus
Cn = [0, n1/p)p, and unit balls B1, . . .Bm placed at these centers.
Then deviations of t or more from the mean by

Vk = Vol

 ⋃
r⊂[m]

|r |≥d

⋂
α∈r

Bα


are bounded by b(t;µ, c) with c = dπp.
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Zero Bias Coupling

For the mean zero, variance σ2 random variable, we say Y ∗ has
the Y -zero bias distribution when

E[Yf (Y )] = σ2E[f ′(Y ∗)] for all smooth f .

Restatement of Stein’s lemma: Y is normal if and only if
Y ∗ =d Y .
If Y and Y ∗ can be coupled on the same space such that
|Y ∗ − Y | ≤ c a.s., then under a mild MGF assumption

P(Y ≥ t) ≤ exp

(
− t2

2(σ2 + ct)

)
,

and with 4σ2 + Ct in the denominator under similar conditions.
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Combinatorial CLT

Zero bias coupling can produce bounds for Hoeffdings statistic

Y =
n∑

i=1

aiπ(i)

when π is chosen uniformly over the symmetric group Sn, and
when its distribution is constant over cycle type.

Permutations π chosen uniformly from involutions, π2 = id,
without fixed points; arises in matched pairs experiments.
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Combinatorial CLT, Exchangeable Pair Coupling

Under the assumption that 0 ≤ aij ≤ 1, using the exchangeable
pair Chatterjee produces the bound

P(|Y − µA| ≥ t) ≤ 2 exp

(
− t2

4µA + 2t

)
,

while under this condition the zero bias bound gives

P(|Y − µA| ≥ t) ≤ 2 exp

(
− t2

2σ2A + 16t

)
,

which is smaller whenever t ≤ (2µA − σ2A)/7, holding
asymptotically everywhere if aij are i.i.d., say, as then Eσ2A < EµA.
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Matrix Concentration Inequalities

Application in high dimensional statistics, variable selection, matrix
completion problem.
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Matrix Concentration Inequalities
Paulin, Mackay and Tropp, Stein pair Kernel coupling. Take
(Z ,Z ′) exchangeable and X ∈ Hd×d such that

X = φ(Z ) and X ′ = φ(Z ′),

and anti-symmetric function Kernel function K such that

E [K (Z ,Z ′)|Z ] = X .

With

VX =
1

2
E [(X − X ′)2|Z ] and VK =

1

2
E [K (Z ,Z ′)2|Z ]

if there exist s, c , v such that

VX � s−1(cX + vI ) and VK � s(cX + vI ),

then one has bounds, such as,

P(λmax(X ) ≥ t) ≤ d exp

(
−t2

2v + 2ct

)
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Matrix Concentration by Size Bias

For X a non-negative random variable with finite mean, we say X s

has the X -size bias distribution when

E [Xf (X )] = E [X ]E [f (X s)]
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Matrix Concentration by Size Bias

For X a positive definite random matrix with finite mean, we say
X s has the X -size bias distribution when

tr (E [Xf (X )]) = tr (E [X ]E [f (X s)]) .

For a product X = γA with γ a non-negative, scalar random
variable and A a fixed positive definite matrix, X s = γsA.
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Size Bias Matrix Concentration

If X =
∑n

k=1 Yk , with Y1, . . . ,Yn independent, then

trE [Xf (X )] =
n∑

k=1

trE [Yk f (X )] =
n∑

k=1

tr
(
E [Yk ]E [f (X (k))]

)

May bound by

n∑
k=1

λmax(E [Yk ])trE [f (X (k))],

but doing so will produce a constant in the bound of value

n∑
k=1

λmax(EYk) rather than λmax(EX ).



Background Stein and Pair Couplings Size Bias Applications Zero Bias Matrix Concentration Summary

Size Bias Matrix Concentration

If X =
∑n

k=1 Yk , with Y1, . . . ,Yn independent, then

trE [Xf (X )] =
n∑

k=1

trE [Yk f (X )] =
n∑

k=1

tr
(
E [Yk ]E [f (X (k))]

)
May bound by

n∑
k=1

λmax(E [Yk ])trE [f (X (k))],

but doing so will produce a constant in the bound of value

n∑
k=1

λmax(EYk) rather than λmax(EX ).



Background Stein and Pair Couplings Size Bias Applications Zero Bias Matrix Concentration Summary

Summary

Concentration of measure results can provide exponential tail
bounds on complicated distributions.

Most concentration of measure results require independence.

Size bias and zero bias couplings, or perturbations, measure
departures from independence. Bounded couplings imply
concentration of measure (and central limit behavior.)

Unbounded couplings can also be handled under special
conditions – e.g., the number of isolated vertices in the
Erdös-Rényi random graph (Ghosh, Goldstein and Raič).
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