On the Error Bound in the Normal Approximation for Jack Measures (Joint work with Le Van Thanh)

Louis H. Y. Chen
National University of Singapore

International Colloquium on Stein's Method, Concentration Inequalities, and Malliavin Calculus

June 29 - July 22014
Château de la Bretesche
Missillac, Loire-Atlantique, France

Outline

- Partitions of positive integers
- Young diagram and Young Tableau
- Plancherel measure
- Normal approximation for Character Ratios
- Jack measures
- Normal Approximation for Jack Measures
- Main Theorems
- Zero-bias Coupling
- Rosenthal Inequality for Zero-bias Coupling
- Normal Approximation for Zero-bias Coupling
- Zero-bias Coupling for Jack Measures
- Sketch of Proof of Main Theorems
- Summary

Partitions of Positive Integers

- A partition of a positive integer n is a finite non-increasing sequence of positive integers $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{l}>0$ such that $\sum_{i=1}^{l} \lambda_{i}=n$. Write $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$.
- The λ_{i} are called the parts of the partition λ and the number l of parts called the the length of λ.
- We write $\lambda \vdash n$ to denote " λ is a partition of n ".
- Denote that set of all partitions of n by \mathcal{P}_{n} and the set of all partitions by \mathcal{P}, that is, $\mathcal{P}=\bigcup_{n=0}^{\infty} \mathcal{P}_{n}$. By convention, the empty sequence forms the only partition of zero.

Partitions of Positive Integers

- Let $p(n)$ be the partition function, that is, the number of partitions of n.
- An important and fundamental question is to evaluate $p(n)$.
- Euler started the analytic theory of partitions by providing an explicit formula for the generating function of $p(n)$:

$$
\mathcal{F}(q):=\sum_{n=0}^{\infty} p(n) q^{n}=\prod_{k=1}^{\infty} \frac{1}{1-q^{k}} .
$$

- In a celebrated series of memoirs published in 1917 and 1918, Hardy and Ramanujan established:

$$
p(n)=\frac{1}{4 n \sqrt{3}} e^{\pi \sqrt{\frac{2}{3} n}}\left(1+O\left(\frac{1}{\sqrt{n}}\right) .\right.
$$

Young Diagram

- To each partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{l}\right)$ is associated its Young diagram (shape).

Young Tableau

- A standard Young tableau T with the shape $\lambda \vdash n$ is a one-to-one assignment of the numbers $1,2, \ldots, n$ to the squares of λ in such a way that the numbers increase along the rows and down the columns. See, for example, $n=9$.

1	3	4	7
2	5	6	λ_{2}
8	λ_{l}		
9			

- Let d_{λ} denote the total number of standard Young tableaux associated with a given shape λ.

Plancherel Measure

- The set of irreducible representations of the symmetric group S_{n} of permutations of $1,2, \ldots, n$ can be parameterized by $\lambda \in \mathcal{P}_{n}$.
- The degree (dimension) of the irreducible representation indexed by λ is equal to d_{λ}.
- The Burnside identity is:

$$
\sum_{\lambda \vdash n} d_{\lambda}^{2}=n!\quad\left(\text { that is, } \quad \sum_{\lambda \vdash n} \frac{d_{\lambda}^{2}}{n!}=1\right) .
$$

- The Plancherel measure is a probability measure on $\lambda \vdash n$ (also on the irreducible representations of S_{n}, parameterized by λ) given by:

$$
P(\{\lambda\})=\frac{d_{\lambda}^{2}}{n!} .
$$

Plancherel Measure

- The first row of a random partition distributed according to the Plancheral measure has the same distribution as the longest increasing subsequence of a random permutation distributed according to the uniform measure.
- Let $l(\pi)$ be the length of the longest increasing subsequence of the random permutation π. It is knwon that $(l(\pi)-2 \sqrt{n}) / n^{1 / 6}$ converges to the Tracy-Widom distribution. (Baik, Deift and Johansson (1999), J. Amer. Math. Soc.)

Character Ratio

- The character of a group representation is a function on the group that associates to each group element the trace of the corresponding matrix. It is called irreducible if it is the character of an irreducible representation.
- Let $\chi^{\lambda}(12)$ be the irreducible character parametrized by λ evaluated on the transposition (12).
- The quantity $\frac{\chi^{\lambda}(12)}{d_{\lambda}}$ is called a character ratio.
- The eigenvalues for the random walk on the symmetric group generated by transpositions are the character ratios $\chi^{\lambda}(12) / d_{\lambda}$, each occcuring with multipicity d_{λ}^{2}. Diaconis and Shahshahani (1981), Z. Wahr. Verw. Gebiete.
- Character ratios also play an essential role in work on the moduli spaces of curves (see Eskin and Okounkov (2001), Invent. Math. and Okounkov and Pandharipande (2005), Proc. Sympos. Pure Math., 80, Part 1, Amer. Math. Soc.).

Normal Approximation for Character Ratios

Let

$$
W_{n}=\sqrt{\binom{n}{2}} \frac{\chi^{\lambda}(12)}{d_{\lambda}}
$$

and let Φ be the $\mathcal{N}(0,1)$ distribution function. Assume $n \geq 2$ and let $x \in \mathbb{R}$.

- Kerov (1993), Compt. Rend. Acad. Sci. Paris.

$$
W_{n} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1) \text { as } n \longrightarrow \infty .
$$

- Fulman (2005), Trans. AMS (using Stein's method)

$$
\left|P\left(W_{n} \leq x\right)-\Phi(x)\right| \leq 40.1 n^{-1 / 4}
$$

Normal Approximation for Character Ratios

- Fulman (2006) Trans. AMS (using martingales)

$$
\left|P\left(W_{n} \leq x\right)-\Phi(x)\right| \leq C n^{-s} \text { for any } s<1 / 2
$$

- Shao and Su (2006), Proc. AMS (using Stein's method)

$$
\left|P\left(W_{n} \leq x\right)-\Phi(x)\right| \leq C n^{-1 / 2}
$$

Jack Measures

The Jack_{α} measure, $\alpha>0$, is a probaility measure on $\lambda \vdash n$ given by:

$$
\operatorname{Jack}_{\alpha}(\lambda)=\frac{\alpha^{n} n!}{\prod_{x \in \lambda}(\alpha a(x)+l(x)+1)(\alpha a(x)+l(x)+\alpha)}
$$

where in the product over all boxes x in the partition λ,
(i) $a(x)$ denotes the number of boxes in the same row of x and to the right of x (the "arm" of x),
(ii) $l(x)$ denotes the number of boxes in the same column of x and below x (the "leg" of x).

Jack Measures

For example, take $n=5$ and λ as shown below.

$$
\lambda=\begin{array}{|l|l|l|}
\hline & \\
\hline & \\
\hline
\end{array}
$$

$$
\begin{aligned}
\operatorname{Jack}_{\alpha}(\lambda) & =\frac{\alpha^{n} n!}{\prod_{x \in \lambda}(\alpha a(x)+l(x)+1)(\alpha a(x)+l(x)+\alpha)} \\
& =\frac{60 \alpha^{2}}{(2 \alpha+2)(3 \alpha+1)(\alpha+2)(2 \alpha+1)(\alpha+1)} .
\end{aligned}
$$

Jack Measures

- The Jack_{α} measure with $\alpha=2 / \beta$ is a discrete analog of Dyson's β ensembles in random matrix theory, which are tractable for $\beta=1,2,4$.
- The joint probability density for the eigenvalues
$x_{1} \geq x_{2} \geq \cdots \geq x_{n}$ of the Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE) and Gaussian symplectic ensemble(GSE) is given by

$$
\frac{1}{Z_{\beta}} \exp \left(-\frac{x_{1}^{2}+\cdots+x_{n}^{2}}{2}\right) \Pi_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)^{\beta}
$$

for $\beta=1,2,4$ respectively.

- The Jack_{α} measure with $\alpha(=2 / \beta)=2,1,1 / 2$ has group theoretical interpretation.

Jack Measures

- In the case $\alpha=1$,

$$
\begin{gathered}
\operatorname{Jack}_{\alpha}(\lambda)=\frac{\alpha^{n} n!}{\prod_{x \in \lambda}(\alpha a(x)+l(x)+1)(\alpha a(x)+l(x)+\alpha)} \\
=\frac{n!}{\prod_{x \in \lambda} h^{2}(x)}
\end{gathered}
$$

where $h(x)=a(x)+l(x)+1$ is the hook length of the box x.

- The hook-length formula states that

$$
d_{\lambda}=\frac{n!}{\prod_{x \in \lambda} h(x)}
$$

- Hence the Plancherel measure can be expressed as

$$
P(\{\lambda\})=\frac{d_{\lambda}^{2}}{n!}=\frac{n!}{\prod_{x \in \lambda} h^{2}(x)},
$$

which agrees with the Jack_{α} measure for $\alpha=1$.

Normal Approximation for Jack Measures

Let

$$
W_{n, \alpha}=W_{n, \alpha}(\lambda)=\frac{\sum_{i}\left(\alpha\binom{\lambda_{i}}{2}-\binom{\lambda_{i}^{\prime}}{2}\right)}{\sqrt{\alpha\binom{n}{2}}}
$$

where the partition $\lambda \vdash n$ is chosen according to the Jack_{α} measure, λ_{i} is the length of the i th row of λ and λ_{i}^{\prime} the length of the i th column of λ.

If $\alpha=1$,

$$
W_{n, \alpha}=\sqrt{\binom{n}{2}} \frac{\chi^{\lambda}(12)}{d_{\lambda}}
$$

by the Frobenius formula.

Normal Approximation for Jack Measures

Assume $n \geq 2$ and let $x \in \mathbb{R}$.

- Fulman (2004), J. Comb. Theory Ser. A

For $\alpha \geq 1$,

$$
\left|P\left(W_{n, \alpha} \leq x\right)-\Phi(x)\right| \leq \frac{C_{\alpha}}{n^{1 / 4}} .
$$

He conjectured that for $\alpha \geq 1$, the optimal bound is a univeral
constant multiplied by $\max \left\{\frac{1}{\sqrt{n}}, \frac{\sqrt{\alpha}}{n}\right\}$.

- Fulman (2006) Trans. AMS (using martingales)

For $\alpha \geq 1$,

$$
\left|P\left(W_{n, \alpha} \leq x\right)-\Phi(x)\right| \leq \frac{C_{\alpha}}{n^{1 / 2-\epsilon}} \quad \text { for any } \epsilon>0
$$

Normal Approximation for Jack Measures

- Fulman (2006), Ann. Comb. (using Stein's method) For $\alpha \geq 1$,

$$
\left|P\left(W_{n, \alpha} \leq x\right)-\Phi(x)\right| \leq \frac{C_{\alpha}}{n^{1 / 2}}
$$

- Fulman and Goldstein (2011), Comb. Probab. Comput. (using Stein's method and zero-bias coupling) For $\alpha>0$,

$$
\|F-\Phi\|_{1} \leq \sqrt{\frac{2}{n}}\left(2+\sqrt{2+\frac{\max (\alpha, 1 / \alpha)}{n-1}}\right)
$$

where $F(x)=P\left(W_{n, \alpha} \leq x\right)$.

Main Theorems

Chen and Thanh (2014), Preprint
Theorem 1
For $\alpha>0$,

$$
\sup _{x \in \mathbb{R}}\left|P\left(W_{n, \alpha} \leq x\right)-\Phi(x)\right| \leq 9 \max \left\{\frac{1}{\sqrt{n}}, \frac{\max \{\sqrt{\alpha}, 1 / \sqrt{\alpha}\} \log n}{n}\right\}
$$

Remarks.

1. For $\alpha=1$, the theorem reduces to one for character ratios under explicit.
2. For $\alpha \geq 1$, the bound becomes $9 \max \left\{\frac{1}{\sqrt{n}}, \frac{\sqrt{\alpha} \log n}{n}\right\}$, which is close to that conjectured by Fulman (2004).

Main Theorems

Chen and Thanh (2014), Preprint
Theorem 2
For $\alpha>0$ and $p \geq 2$, and for $x \in \mathbb{R}$,
$\left|P\left(W_{n, \alpha} \leq x\right)-\Phi(x)\right| \leq \frac{C_{p}}{1+|x|^{p}} \max \left\{\frac{1}{\sqrt{n}}, \frac{\max \{\sqrt{\alpha}, 1 / \sqrt{\alpha}\} \log n}{n}\right\}$
where C_{p} is a constant depending only on p.
Remarks.

1. For $\alpha=1$, the theorem reduces to one for character ratios under the Plancherel measure with the bound $\frac{C_{p}}{1+|x|^{p}} \frac{1}{\sqrt{n}}$.
2. For $\alpha \geq 1$, the bound becomes $\frac{C_{p}}{1+|x|^{p}} \max \left\{\frac{1}{\sqrt{n}}, \frac{\sqrt{\alpha} \log n}{n}\right\}$.

Zero-bias Coupling

Goldstein and Reinert (1997), Ann. Appl. Probab.

- For W with $E W=0$ and $\operatorname{Var}(W)=B^{2}$, there always exisits W^{*} such that $E W f(W)=B^{2} E f^{\prime}\left(W^{*}\right)$ for absolutely continuous functions f for which the expectations exist.
- The distribution of W^{*} is called W-zero-biased.
- W^{*} must necessarily be absolutely continuous and its density function is given by $B^{-2} E W I(W>x)$.
- Not easy to find couplings of W with W^{*} which are effective for normal approximation.
- Effective couplings are known for $W=\sum_{i=1}^{n} X_{i}$, where the X_{i} are independent and for $W=\sum_{i=1}^{n} a_{i \pi(i)}$ where π is a random permutation (Goldstein (2005), J. Appl. Probab.).

Rosenthal Inequality for Zero-bias Coupling

Chen and Thanh (2014), Preprint

Proposition 3

Let W be such that $E W=0$ and $\operatorname{Var}(W)=B^{2}>0$. Suppose W-zero-biased W^{*} is defined on the same probability space as W.
Then for $p \geq 2$,

$$
E|W|^{p} \leq \kappa_{p}\left\{B^{p}+B^{2} E\left|W^{*}-W\right|^{p-2}\right\}
$$

where $\kappa_{p}=2^{(p-2)+(p-4)+\ldots}(p-1)(p-3) \ldots$.
If $W=\sum_{i=1}^{n} X_{i}$, where the X_{i} are independent with zero mean, then

$$
E|W|^{p} \leq \kappa_{p} B^{p}+\bar{\kappa}_{p} \sum_{i=1}^{n} E\left|X_{i}\right|^{p}
$$

where $\bar{\kappa}_{p}=2 \max \left\{1,2^{p-3}\right\} \kappa_{p}$.

Normal Approximation for Zero-bias Coupling

Chen and Thanh (2014), Preprint

Theorem 4

Let $E W=0$ and $\operatorname{Var}(W)=1$. Suppose the zero-biased W^{*} is defined on the same probability space as W. Let $T=W^{*}-W$.

1. Then

$$
\sup _{x \in \mathbb{R}}\left|P\left(W^{*} \leq x\right)-\Phi(x)\right| \leq \sqrt{E T^{2}}+\frac{\sqrt{2 \pi}}{4} E|T|
$$

2. Assume $E|T|^{2 p} \leq 1$ for some $p \geq 2$. Then for all $x \in \mathbb{R}$,

$$
\left|P\left(W^{*} \leq x\right)-\Phi(x)\right| \leq \frac{C_{p}\left(\sqrt{E T^{2}}+\sqrt{E T^{4}}+E|T|^{p+1}+E|T|^{p+2}\right)}{1+|x|^{p}} .
$$

Normal Approximation for Zero-bias Coupling

Sketch of proof of Theorem 4 part 2
Since $(-W)^{*}=-W^{*}$ and in view of part 1 , it suffices to assume $x \geq 2$. Using the properties of the solution of the Stein equation,

$$
\begin{gathered}
\left|P\left(W^{*} \leq x\right)-\Phi(x)\right| \leq \frac{C_{p}\left(E|T|+E|T|^{p+1}+E|T|^{p+2}\right)}{1+x^{p}} \\
+\frac{C_{p}\left(\sqrt{\left.E|W|\right|^{2 p} E|T|^{2}}+\sqrt{E|W|^{2 p+2} E|T|^{2}}+\sqrt{E|W|^{2 p} E|T|^{4}}\right)}{1+x^{p}} .
\end{gathered}
$$

Since $E|T|^{2 p} \leq 1$, by the Rosenthal inequality,

$$
E|W|^{p+2} \leq C_{p}\left(1+E|T|^{2 p}\right) \leq C_{p} .
$$

Similarly,

$$
E|W|^{2 p} \leq C_{p} .
$$

Zero-bias Coupling for Jack Measures

Kerov's growth process (Kerov (2000), Funct. Anal. Appl.) gives a sequence of partitions $(\lambda(1), \lambda(2), \ldots, \lambda(n))$, where for each $j, \lambda(j)$ is a partition of j distributed according to the Jack_{α} measure. Using this process, one can show that

$$
W_{n, \alpha}(\lambda)=\frac{\sum_{x \in \lambda} c_{\alpha}(x)}{\sqrt{\alpha\binom{n}{2}}}
$$

where $c_{\alpha}(x)$ denotes the " α-content" of x, which is defined as $c_{\alpha}(x)=\alpha[($ column number of $x)-1]-[($ row number of $\left.x)-1)\right]$.

Zero-bias Coupling for Jack Measures

In the diagram below, representing a partition of 7, each box is filled with its α-content.

Recall that
$c_{\alpha}(x)=\alpha[($ column number of $x)-1]-[($ row number of $\left.x)-1)\right]$.

0	1a	2α	3α
-1	a-1		
-2			

Zero-bias Coupling for Jack Measures

Fulman and Goldstein (2011), Comb. Probab. Comput., The statistic $W_{n, \alpha}$ and its zero-biased $W_{n, \alpha}^{*}$ are coupled as follows:

$$
W_{n, \alpha}=V_{n, \alpha}+\eta_{n, \alpha} \quad \text { and } \quad W_{n, \alpha}^{*}=V_{n, \alpha}+\eta_{n, \alpha}^{*}
$$

where $\eta_{n, \alpha}^{*}$ is $\eta_{n, \alpha}$-zero-biased, $V_{n, \alpha}, \eta_{n, \alpha}$ and $\eta_{n, \alpha}^{*}$ are defined on the same probability space,

$$
\begin{gathered}
V_{n, \alpha}=\sum_{x \in \nu} c_{\alpha}(x) / \sqrt{\alpha\binom{n}{2}}=\sqrt{\frac{n-2}{n}} W_{n-1, \alpha}, \\
\eta_{n, \alpha}=c_{\alpha}(\lambda / \nu) / \sqrt{\alpha\binom{n}{2}},
\end{gathered}
$$

ν is a partition of $n-1$ chosen from the Jack_{α} measure, and $c_{\alpha}(\lambda / \nu)$ denotes the α-content of the box added to ν to obtain λ.
Some moment bounds on $\eta_{n, \alpha}$ are also obtained.

Sketch of Proof of Main Theorems

Chen and Thanh (2014), Preprint
Lemma 5
For $p \geq 1$ and $\alpha \geq 1$,

$$
\begin{aligned}
& P\left(\left|\eta_{n, \alpha}\right| \geq \frac{p \sqrt{2 e^{3}}}{\sqrt{n-1}}\right) \leq \frac{n}{2 \pi\left(p^{2} e\right)^{p \sqrt{e^{3} n / \alpha}}}, \\
& P\left(\left|\eta_{n, \alpha}^{*}\right| \geq \frac{p \sqrt{2 e^{3}}}{\sqrt{n-1}}\right) \leq \frac{\alpha n^{2}}{2 \pi\left(p^{2} e\right)^{p} \sqrt{e^{3} n / \alpha}} .
\end{aligned}
$$

Recall that $W_{n, \alpha}^{*}-W_{n, \alpha}=\eta_{n, \alpha}^{*}-\eta_{n, \alpha}$.

Sketch of Proof of Main Theorems

Theorem 6

Let $E W=0$ and $\operatorname{Var}(W)=1$. Suppose the zero-biased W^{*} is defined on the same probability space as W. Let $T=W^{*}-W$ and let $\epsilon \geq 0$.

1. Then
$\sup _{x \in \mathbb{R}}|P(W \leq x)-\Phi(x)| \leq \sqrt{E T^{2}}+\frac{\sqrt{2 \pi}}{4} E|T|+\frac{\epsilon}{\sqrt{2 \pi}}+P(|T|>\epsilon)$.
2. Assume $E|T|^{2 p} \leq 1$ for some $p \geq 2$. Then for all $x \in \mathbb{R}$,

$$
\begin{aligned}
& |P(W \leq x)-\Phi(x)| \leq \frac{C_{p}\left(\sqrt{E T^{2}}+\sqrt{E T^{4}}+E|T|^{p+1}+E|T|^{p+2}\right)}{1+|x|^{p}} . \\
& +\frac{\epsilon+\sqrt{P(|T|>\epsilon)}}{1+|x|^{p}} .
\end{aligned}
$$

Sketch of Proof of Main Theorems

- Theorem 6 is deduced from Theorem 4.
- Combine Lemma 5 and Theorem 6 to prove Theroem 1 and Theorem 2 for $\alpha \geq 1$.
- For $0<\alpha<1$, note that from the definition of the Jack_{α} measure, $P_{\alpha}(\lambda)=P_{1 / \alpha}\left(\lambda^{t}\right)$, where λ^{t} is the transpose partition of λ.
- Also from its defintion, $W_{n, \alpha}(\lambda)=-W_{n, 1 / \alpha}\left(\lambda^{t}\right)$.

Summary

- The Jack_{α} measure on partitions of a positive integer is a discrete analog of Dyson's β ensembles in random matrix theory.
- For $\alpha=1$, the Jack_{α} measure agrees with the Plancherel measure on the irreducible representations of the symmetric group.
- We obtained both uniform and non-uniform Berry-Esseen bounds for $W_{n, \alpha}=\frac{\sum_{i}\left(\alpha\binom{\lambda_{i}}{2}-\binom{\lambda_{i}^{\prime}}{2}\right)}{\sqrt{\alpha\binom{n}{2}}}$, where $\alpha>0$ and the partition λ is chosen from the Jack_{α} measure. If $\alpha=1, W_{n, \alpha}$ coincides with $\sqrt{\binom{n}{2}} \frac{\chi^{\lambda}(12)}{d_{\lambda}}$.
- For $\alpha \geq 1$, we came close to solving a conjecture of Fulman (2004).

Thank You

