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Concentration and Coupling
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Concentration inequalities for occupancy models with
log-concave marginals
Main idea: How to get bounded, size biased couplings for certain
multivariate occupancy models, then use existing methods to get
concentration inequalities

Outline
1. The models
2. Some methods for concentration inequalities
3. Our main result
4. Applications

I Erdös-Rényi random graph
I Germ-grain models
I Multinomial counts
I Multivariate hypergeometric sampling

5. Comparisons
I McDiarmid’s Inequality
I Negative association
I Certifiable functions
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Setup

Occupancy model M = (Mα)

Mα may be
I degree count of vertex α in an Erdös-Rényi random graph
I # of grains containing point α in a germ-grain model
I # of balls in box α in multinomial model
I # balls of color α in sample from urn of colored balls

We consider statistics like

Yge =
m∑
α=1

1{Mα ≥ d}, Yeq =

∫
1{M(x) = d}dx

Yge =
m∑
α=1

wα1{Mα ≥ dα}, Yeq =

∫
w(x)1{M(x) = d(x)}dx

Jay Bartroff (USC) Concentration for occupancy models 1.Jul.14 4 / 28



Some Methods for Concentration Inequalities
McDiarmid’s (Bounded Difference) Inequality

If
X1, . . . ,Xn independent
Y = f (X1, . . . ,Xn), f measurable
there are ci such that

sup
xi ,x ′

i

∣∣f (x1, . . . , xi , . . . , xn)− f (x1, . . . , x ′i , . . . , xn)
∣∣ ≤ ci ,

then

P(Y − µ ≥ t) ≤ exp

(
− t2

2
∑n

i=1 c2
i

)
for all t > 0,

and a similar left tail bound.
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Some Methods for Concentration Inequalities
Negative Association (NA)

X1,X2, ...,Xm are NA if

E(f (Xi ; i ∈ A1)g(Xj ; j ∈ A2)) ≤ E(f (Xi ; i ∈ A1))E(g(Xj ; j ∈ A2))

for any
A1,A2 ⊂ [m] disjoint,
f ,g coordinate-wise nondecreasing.

Dubashi & Ranjan 98
If X1,X2, ...,Xm are NA indicators, then Y =

∑m
i=1 Xi satisfies

P(Y − µ ≥ t) ≤
(

µ

µ+ t

)t+µ

et for all t > 0

= O (exp(−t log t)) as t →∞.
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Some Methods for Concentration Inequalities
Certifiable Functions

McDiarmid & Reed 06
If X1,X2, ...,Xn independent and Y = f (X1,X2, ...,Xn) where f is
certifiable:

There is c such that changing any coordinate xj changes the value
of f (x) by at most c,
If f (x) = s then there is C ⊂ [n] with |C| ≤ as + b such that that
yi = ci ∀i ∈ C implies f (y) ≥ s,

Then

P(Y − µ ≤ −t) ≤ exp
(
− t2

2c2(aµ+ b + t/3c)

)
for all t > 0,

= O(exp(−t)) as t →∞.

A similar right tail bound.
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Some Methods for Concentration Inequalities
Bounded Size Bias Couplings

If there is a coupling Y s of Y with the Y -size bias distribution and
Y s ≤ Y + c for some c > 0 with probability one, then

max {P(Y − µ ≥ t),P(Y − µ ≤ −t)} ≤ bµ,c(t).

Ghosh & Goldstein 11: For all t > 0,

P (Y − µ ≤ −t) ≤ exp
(
− t2

2cµ

)
P (Y − µ ≥ t) ≤ exp

(
− t2

2cµ+ ct

)
.

b exponential as t →∞.
Arratia & Baxendale 13:

bµ,c(t) = exp
(
−µ

c
h
(

t
µ

))
, h(x) = (1 + x) log(1 + x)− x .

b Poisson as t →∞.
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Main Result

M = (Mα)α∈[m], Mα lattice log-concave

Yge =
∑
α∈[m]

wα1{Mα ≥ dα}, Yne =
∑
α∈[m]

wα1{Mα 6= dα}.

Main Result (in words)
1. If M is bounded from below and can be closely coupled to a

version M ′ having the same distribution conditional on
M ′α = Mα + 1, then there is a bounded size biased coupling
Y s

ge ≤ Yge + C and the above concentration inequalities hold.
2. If M is non-degenerate at (dα) and can be closely coupled to a

version M ′ having the same distribution conditional on M ′α 6= dα,
then there is a bounded size biased coupling Y s

ne ≤ Yne + C′ and
the above concentration inequalities hold.
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Main Result
A few more details on Part 1
M = f (U) where
U is some collection of random variables
f is measurable

Closely coupled means given Uk ∼ L(Vk ) := L(U|Mα ≥ k), there is
coupling U+

k and constant B such that

L(U+
k |Uk ) = L(Vk |M+

k ,α = Mk ,α + 1) and Y+
k ,ge, 6=α ≤ Yk ,ge,6=α + B,

where Yk ,ge, 6=α =
∑

β 6=α 1(Mk ,β ≥ dβ).

The constant is
C = |w |(B|d |+ 1)

where |w | = max wα, |d | = max dα.

Part 2 is similar.
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Main Result
Main Ingredients in Proof

Incrementing Lemma
If M is lattice log-concave then there is π(x ,d) ∈ [0,1] such that if

M ′ ∼ L(M|M ≥ d) and B|M ′ ∼ Bern(π(M ′,d)),

then
M ′ + B ∼ L(M|M ≥ d + 1).

Extension of Goldstein & Penrose 10 for M Binomial, d = 0
Analogous versions for

L(M|M ≤ d) ↪→ L(M|M ≤ d − 1)
L(M) ↪→ L(M|M 6= d)

where ↪→ means “coupled to”
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Main Result
Main Ingredients in Proof

Mixing Lemma (Goldstein & Rinnott 96)
A nonnegative linear combination of Bernoullis with positive mean can
be size biased by

1. choosing a summand with probability proportional to its mean,
2. replacing chosen summand by 1, and
3. modifying other summands to have correct conditional distribution.
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Main Result
Main Steps in Proof of Part 1

1. Induction on k : Given Uk ,U+
k , let

Uk+1 =

{
U+

k with probability π(Mk ,α, k)
Uk otherwise.

Uk+1 has correct distribution by Incrementing Lemma.
2. Using k = dα case of induction and Mixing Lemma, mixing

Yα
ge = f (Udα) with probabilities ∝ wαP(Mα ≥ dα) yields size biased

Y s
ge ≤ Yge + |w |(B|d |+ 1).
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Application 1: Erdös-Rényi random graph

m vertices
Independent edges with probability pα,β = pβ,α ∈ [0,1).
Constructing U+

k from Uk :
1. Selection non-neighbor β of α with probability

∝ pα,β
1− pα,β

2. Add edge connecting β to α

This affects at most 1 other vertex so B = 1 and

Y s
ge ≤ Yge + |w |(|d |+ 1).
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Application 1: Erdös-Rényi random graph

Applying this to Yis = m − Yge with dα = 1:

P(Yis − µis ≤ −t) = P(Yge − µge ≥ t) ≤ exp
(

−t2

4(m − µis + t/3)

)
Ghosh, Goldstein, & Raič 11 studied Yis using an unbounded size
biased coupling

P(Yis − µis ≤ −t) ≤ exp
(
−t2

4µis

)
New bound

I an improvement for t ≤ 6µis − 3m
I applicable for all dα
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Application 2: Germ-Grain Models

Used in forestry, wireless sensor networks, material science, . . .
Germs Uα ∼ fα strictly positive on [0, r)p

Grains Bα = closed ball of radius ρα centered at Uα

d : [0, r)p → {0,1, . . . ,m} = # of intersections we’re interested in
at x ∈ [0, r)p

Choice of r relative to p, ρα guarantees nontrivial distribution of

M(x) = # of grains containing at point x ∈ [0, r)p

=
∑
α∈[m]

1{x ∈ Bα}

Yge =

∫
[0,r)p

w(x)1{M(x) ≥ d(x)}dx

= (weighted) volume of d-way intersections of grains
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Application 2: Germ-Grain Models
Main ideas in proof

Different approach:
1. Generate U0 independent of U1, . . . ,Um

2. Compute U0, . . . ,Ud(U0) and set Y s
ge = Yge(Md(U0))

3. Y s
ge has size bias distribution by Conditional Lemma with

A = {M(U0) ≥ d(U0)}:

Conditional Lemma (Goldstein & Penrose 10)
If P(A) ∈ (0,1) < 1 and Y = P(A|F), then Y s has the Y -size bias
distribution if L(Y s) = L(Y |A).
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Application 2: Germ-Grain Models
Main ideas in proof
Argument: Generate U0 ∼ w(x)/

∫
w . Given Uk ∼ L(U0|M(U0) ≥ k),

with probability π(Mk (U0), k) choose germ β with probability

∝
pβ(U0)

1− pβ(U0)
, where pβ(x) = P(x ∈ Uβ),

from germs whose grains do not contain U0, replace it with U ′β ∼ PU0

to get Uk+1, where

PU0(V ) = P(Uβ ∈ V |D(Uβ,U0) ≤ ρβ).

Otherwise Uk+1 = Uk .

Volume increase replacing Uβ by U ′β at most νp|ρ|p
(νp = vol. of unit ball)
Volume increase between U0 and Ud(U0) at most νp|ρ|p|d |
Y s

ge increases Yge by at most νp|ρ|p|d ||w |
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Application 3: Multinomial Counts

n balls independently into m boxes
Applications in species trapping, linguistics, . . .
# empty boxes proved asymptotically normal by Weiss 58, Rényi
62 in uniform case
Englund 81: L∞ bound for # of empty cells, uniform case
Dubashi & Ranjan 98: Concentration inequality via NA
Penrose 09: L∞ bound for # of isolated balls, uniform and
nonuniform cases
Bartroff & Goldstein 13: L∞ bound for all d ≥ 2, uniform case
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Application 3: Multinomial Counts

pα,j = prob. that ball j ∈ [n] falls in box α ∈ [m]

Mα = # balls in box α

=
∑
j∈[n]

1{ball j falls in box α}

Constructing U+
k from Uk : Choose ball j 6∈ box α with probability

∝
pα,j

1− pα,j

and add it to box α.

Y s
ge, 6=α ≤ Yge, 6=α so B = 0, thus Y s

ge ≤ Yge + |w |
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Application 4: Multivariate Hypergeometric Sampling

Urn with n =
∑

α∈[m] nα colored balls, nα balls of color α
Sample of size s drawn without replacement
Mα = # balls in sample of color α
Applications in sampling (and subsampling) theory, gambling,
coupon-collector problems

Constructing U+
k from Uk : Select non-α colored ball in sample with

probability

∝
nα(j)/n

1− nα(j)/n
, α(j) = color of ball j

and replace it with α-colored ball

Y s
ge, 6=α ≤ Yge, 6=α so B = 0, thus Y s

ge ≤ Yge + |w |
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Comparison 1: McDiarmid’s Inequality

If
X1, . . . ,Xn independent
Y = f (X1, . . . ,Xn), f measurable
there are ci such that

sup
xi ,x ′

i

∣∣f (x1, . . . , xi , . . . , xn)− f (x1, . . . , x ′i , . . . , xn)
∣∣ ≤ ci ,

then

P(Y − µ ≥ t) ≤ exp

(
− t2

2
∑n

i=1 c2
i

)
for all t > 0,

and a similar left tail bound.
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Comparison 1: McDiarmid’s Inequality
Erdös-Rényi random graph

m vertices, probability p of edge,

Yge = f (X1, . . . ,X(m
2)
), Xi = 1{edge between vertex pair i},

f has bounded differences with ci = 2

McDiarmid⇒ P(Yeq − µge ≤ −t) ≤ exp
(

−t2

4m(m − 1)

)

Size-bias⇒ P(Yeq − µge ≤ −t) ≤ exp
(

−t2

2(d + 1)µge

)
≤ exp

(
−t2

2m(d + 1)

)
since µge ≤ m.
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Comparison 2: Negative Association

X1,X2, ...,Xm are NA if

E(f (Xi ; i ∈ A1)g(Xj ; j ∈ A2)) ≤ E(f (Xi ; i ∈ A1))E(g(Xj ; j ∈ A2))

for any
A1,A2 ⊂ [m] disjoint,
f ,g coordinate-wise nondecreasing.

Dubashi & Ranjan 98
If X1,X2, ...,Xm are NA indicators, then Y =

∑m
i=1 Xi satisfies

P(Y − µ ≥ t) ≤
(

µ

µ+ t

)t+µ

et for all t > 0

= O (exp(−t log t)) as t →∞.
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Comparison 2: Negative Association

Both NA and our method yield same order bound for Yge in
Multinomial counts
Multivariate hypergeometric sampling

but NA cannot be applied to:
Yne in multinomial counts
Yne in multivariate hypergeometric sampling
Yge or Yne in Erdös-Rényi random graph
Yge or Yne in germ-grain models
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Comparison 3: Certifiable Functions

McDiarmid & Reed 06
If X1,X2, ...,Xn independent and Y = f (X1,X2, ...,Xn) where f is
certifiable:

There is c such that changing any coordinate xj changes the value
of f (x) by at most c,
If f (x) = s then there is C ⊂ [n] with |C| ≤ as + b such that that
yi = ci ∀i ∈ C implies f (y) ≥ s,

Then

P(Y − µ ≤ −t) ≤ exp
(
− t2

2c2(aµ+ b + t/3c)

)
for all t > 0,

= O(exp(−t)) as t →∞.

A similar right tail bound.
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Comparison 3: Certifiable Functions

Asymptotically O(e−t).
Best possible rate via log Sobolev inequalities(?)

Multinomial Occupancy: We showed C = |w | so if wα = 1,

P(Yge − µge ≤ −t) ≤ exp
(
−t2

2µge

)
.

Similar for right tail, Yne
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Merci pour votre attention!
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