Convergence of Random Variables¹

The setting: probability space $(\Omega, \mathcal{F}, \mathbb{P})$, random variables $\xi_n = \xi_n(\omega), n \geq 1$, and $\xi = \xi(\omega), \omega \in \Omega$.

Definitions.

- (1) Uniform convergence: $\xi_n \rightrightarrows \xi$ if $\forall \varepsilon > 0 \ \exists N = N(\varepsilon) \ \forall n > N \ \forall \omega \in \Omega : |\xi_n(\omega) \xi(\omega)| < \varepsilon$.
- (2) Point-wise convergence: $\xi_n \xrightarrow{p.w.} \xi$ if $\xi_n(\omega) \to \xi(\omega)$ for all $\omega \in \Omega$, that is, $\forall \varepsilon > 0 \ \forall \omega \in \Omega \ \exists N = N(\varepsilon, \omega) \ \forall n > N : |\xi_n(\omega) \xi(\omega)| < \varepsilon$.
- (3) Complete convergence: $\xi_n \xrightarrow{c.c.} \xi$ if $\sum_{n=1}^{\infty} \mathbb{P}(|\xi_n \xi| > \varepsilon) < +\infty$ for every $\varepsilon > 0$.
- (4) Almost sure convergence: $\xi_n \xrightarrow{a.s.} \xi$ if $\mathbb{P}(\omega : \lim_{n \to \infty} \xi_n(\omega) = \xi(\omega)) = 1$. Also known as convergence with probability one.
- (5) Convergence in L_p , p>0: $\xi_n \xrightarrow{L_p} \xi$ if $\lim_{n\to\infty} \mathbb{E}|\xi_n-\xi|^p=0$.
- (6) Convergence in probability: $\xi_n \xrightarrow{\mathbb{P}} \xi$ if $\lim_{n \to \infty} \mathbb{P}(|\xi_n \xi| > \varepsilon) = 0$ for every $\varepsilon > 0$.
- (7) Convergence in distribution: $\xi_n \xrightarrow{d} \xi$ if $\lim_{n \to \infty} \varphi_{\xi_n}(t) = \varphi_{\xi}(t)$ for every $t \in \mathbb{R}$; $\varphi_{\xi}(t) = \mathbb{E}e^{\mathrm{i}t\xi}$ is the characteristic function of ξ .
- (8) Uniform integrability: the sequence $\{\xi_n, n \geq 1\}$ is uniformly integrable (UI) if

$$\lim_{a \to +\infty} \sup_{n > 1} \mathbb{E}\Big(|\xi_n| \, \mathbb{1}(|\xi_n| > a)\Big) = 0.$$

Each of the following is a sufficient condition for UI:

- $|\xi_n| \leq \eta$ for all n and $\mathbb{E}\eta < +\infty$;
- $\mathbb{E}\sup_n |\xi_n| < \infty$;
- $\sup_n \mathbb{E}g(|\xi_n|) < \infty$ for a non-negative increasing function $g = g(x), x \ge 0$, such that $\lim_{x \to +\infty} \frac{g(x)}{x} = +\infty$. For example, $\sup_n \mathbb{E}|\xi_n|^r < \infty$ for some r > 1.

General implications:

$$\overset{p.v.}{\Longrightarrow} \Leftarrow \Longrightarrow \xrightarrow{c.c.} \Longrightarrow \xrightarrow{a.s.} \Longrightarrow \xrightarrow{\mathbb{P}} \Longrightarrow \xrightarrow{d} : \xrightarrow{L_p} \Longrightarrow \xrightarrow{\mathbb{P}} .$$

The (non-trivial) reasons. $\Rightarrow \xrightarrow{c.c.}$ because \Rightarrow implies $\mathbb{P}(|\xi_n - \xi| > \varepsilon) = 0$ for all sufficiently large n; $\xrightarrow{c.c.} \Rightarrow \xrightarrow{a.s.}$ by the first Borel-Cantelli; $\xrightarrow{a.s.} \Rightarrow \xrightarrow{\mathbb{P}}$ because $\xrightarrow{a.s.}$ means $\lim_{n\to\infty} \mathbb{P}(\sup_{k\geq n} |\xi_k - \xi| > \varepsilon) = 0$; $\xrightarrow{\mathbb{P}} \Rightarrow \xrightarrow{d}$ by the Dominate Convergence Theorem; $\xrightarrow{L_p} \Rightarrow \xrightarrow{\mathbb{P}}$ by Markov's inequality.

Basic counterexamples, with $\Omega = [0, 1]$ and \mathbb{P} the Lebesgue measure,

- (1) the Growing Pulse $\xi_n(x) = n^{\alpha} 1(0 < x < n^{-\beta})$ or $\xi_n(x) = n^{\alpha} 1(0 \le x < n^{-\beta})$ [if DO NOT want ξ_n to converge to zero point-wise], for suitable $\alpha > 0, \beta > 0$, shows that
 - $\bullet \xrightarrow{p.v.} \text{or} \xrightarrow{a.s.} \not \Rightarrow \xrightarrow{L_p} \text{or} \xrightarrow{c.c.}$
 - $\bullet \xrightarrow{c.c.} \not\Rightarrow \Rightarrow \Rightarrow \text{ or } \xrightarrow{p.w.}$
- (2) the Typewriter Sequence $\xi_{n,k} = 1(k2^{-n} < x < (k+1)2^{-n}), k = 0, ..., 2^n 1, n = 0, 1, 2, ...,$ shows that

$$\xrightarrow{L_p}$$
, 0

Special implications

- $(1) \xrightarrow{\mathbb{P}} \Rightarrow \xrightarrow{a.s.}$ if the sequence $\{\xi_n, n \geq 1\}$ is monotone;
- (2) $\xrightarrow{d} \Rightarrow \xrightarrow{\mathbb{P}}$ if the limit ξ is non-random: there exists a real number c such that $\mathbb{P}(\xi = c) = 1$;
- (3) $\xrightarrow{d} \Rightarrow \xrightarrow{a.s.}$ for sums of independent random variables [using Cauchy criterion and zero-one law];

¹Sergey Lototsky, USC

- $(4) \xrightarrow{\mathbb{P}} \Rightarrow \xrightarrow{L_p} \text{ if the sequence } \{|\xi_n|^p, \ n \geq 1\} \text{ is UI.}$
- (5) $\xrightarrow{a.s.} \Rightarrow \xrightarrow{c.c.}$ if the random variables ξ_n are independent AND the limit ξ is non-random [by the second Borel-Cantelli; if the limit ξ is random, then the random variables $\xi_n \xi$ might be dependent and the second Borel-Cantelli will not apply];
- (6) If ξ_n are iid and $\mathbb{E}|\xi_n| < \infty$, then $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \xi_k = \mathbb{E}\xi_1$ both with probability one and in L_1 .
- (7) If $\xi_n \stackrel{\mathbb{P}}{\longrightarrow} \xi$, then $\xi_{n_k} \stackrel{c.c.}{\longrightarrow} \xi$ along a suitable sub-sequence;
- (8) If $\xi_n \xrightarrow{\mathbb{P}} \xi$ and, for some p > 0, $\lim_{n \to \infty} \mathbb{E}|\xi_n|^p = \mathbb{E}|\xi|^p$, then $\{|\xi_n|^p, n \ge 1\}$ is UI and $\xi_n \xrightarrow{L_p} \xi$.

Working with limits

- (1) If M = a.s. or $M = \mathbb{P}$, and $\xi_n \xrightarrow{M} \xi$, $\eta_n \xrightarrow{M} \eta$, then $\xi_n \pm \eta_n \xrightarrow{M} \xi \pm \eta$, $\xi_n \eta_n \xrightarrow{M} \xi \eta$, and, if $\eta \neq 0$, then also $\xi_n/\eta_n \xrightarrow{M} \xi/\eta$.
- (2) If $\xi_n \xrightarrow{M} \xi$, with M = a.s. or \mathbb{P} or d, and f = f(x), $x \in \mathbb{R}$ is a continuous function, then $f(\xi_n) \xrightarrow{M} f(\xi)$. The result is obvious when M = a.s., easy when $M = \mathbb{P}$, and non-trivial [known as the Mann-Wald Theorem] when M = d.
- (3) Slutsky's Theorem: if $\xi_n \xrightarrow{d} \xi$ and $\eta_n \xrightarrow{d} b \in \mathbb{R}$ non-random, then $\xi_n \pm \eta_n \xrightarrow{d} \xi \pm b$, $\xi_n \eta_n \xrightarrow{d} b \xi$, and, if $b \neq 0$, then also $\xi_n/\eta_n \xrightarrow{d} \xi/b$.

Further Facts

- $\bullet \xrightarrow{p.w.}$ corresponds to a topology, but the topology is not metrizable;
- $\stackrel{\mathbb{P}}{\longrightarrow}$ is metrizable: it is explained below how the function $\rho(\xi,\eta) = \mathbb{E}\frac{|\xi-\eta|}{1+|\xi-\eta|}$ defines a metric on the space of random variables, and $\xi_n \stackrel{\mathbb{P}}{\longrightarrow} \xi$ if and only if $\lim_{n\to\infty} \rho(\xi_n,\xi) = 0$;
- $\stackrel{d}{\longrightarrow}$ is metrizable using the Lévy-Prokhorov metric, which is a different story deserving a separate summary;
- $\xrightarrow{a.s.}$ is not metrizable and does not correspond to any topology because every sequence converging in probability has a subsequence converging with probability one, and there are sequences that converge in probability but not with probability one.
- $\stackrel{\mathbb{P}}{\longrightarrow}$ is metrizable. Consider the function $h(x) = x/(1+x), \ x \ge 0$, so that $\rho(\xi, \eta) = \mathbb{E}h(|\xi \eta|)$. The function satisfies h(0) = 0, and, for x > 0, 0 < h(x) < 1, h'(x) > 0, h''(x) < 0. In particular, the derivative h' is decreasing so that $h(x) = xh'(x^*) > xh'(x)$, $0 < x^* < x$ (Mean Value Theorem), and then, for 0 < y < x and $z \in (y, x + y)$,

$$h(x + y) = h(y) + h'(z)x < h(y) + h'(x)x < h(y) + h(x).$$

Then the triangle inequality follows from

$$|x-z| \le |x-y| + |y-z| \implies h(|x-z|) \le h(|x-y| + |y-z|) \le h(|x-y|) + h(|y-z|).$$

Similarly, for every $\varepsilon > 0$,

$$\rho(\xi, \eta) = \mathbb{E}(h(|\xi - \eta|)I(|\xi - \eta| \le \varepsilon)) + \mathbb{E}(h(|\xi - \eta|)I(|\xi - \eta| > \varepsilon))$$

and therefore

$$\frac{\varepsilon}{1+\varepsilon} \mathbb{P}(|\xi-\eta|>\varepsilon) \le \rho(\xi,\eta) \le \varepsilon + \mathbb{P}(|\xi-\eta|>\varepsilon).$$

The bottom line: there are many functions h that introduce a metric on the space of random variables; all these metrices are equivalent and metrize convergence in probability; the corresponding space of random variables is denoted by $L^0(\Omega, \mathcal{F}, \mathbb{P})$ (or L_0) and is a Polish space.