MATH 445 Mid-Term Exam 2 with solutions Wednesday, November 20, 2024

Instructor — S. Lototsky (KAP 248D; x0-2389; lototsky@usc.edu)

Instructions:

- No notes, no books or other printed materials (including printouts from the web), no collaboration with anybody (or anything, like AI).
- Answer all questions, show your work (when appropriate), upload solutions to Gradescope.

Problem 1. Let f(x) = |x|, |x| < 1. Denote by $S_f(x)$ the sum of the Fourier series of f. Draw the graph of S_f for $x \in [-4, 4]$ and evaluate (a) $S_f(3)$ (b) $S_f(5/2)$.

Solution: S_f has period 2 and $S_f(x) = |x|$, |x| < 1, so S_f is continuous, $S_f(3) = S_f(1) = f(1-) = 1$, $S_f(5/2) = S_f(-1/2) = 1/2$.

Problem 2. The Fourier transform of the function

$$f(t) = \begin{cases} 1, & \text{if } |t| \le 1, \\ 0, & \text{if } |t| > 1 \end{cases}$$

is $\widehat{f}(\omega) = \sqrt{\frac{2}{\pi}} \frac{\sin \omega}{\omega}$. Use the result to evaluate the integral $I = \int_0^\infty \frac{\sin \omega}{\omega} d\omega$.

Solution: From $1 = f(0) = (2\pi)^{-1/2} \int_{-\infty}^{+\infty} \widehat{f}(\omega) d\omega = 2(2\pi)^{-1/2} (2/\pi)^{1/2} I = (2/\pi)I$ we conclude $I = \pi/2$.

Problem 3. The Fourier transform of the function $f(x) = e^{-x^2/2}$ is $\hat{f}(\omega) = e^{-\omega^2/2}$. Compute the Fourier transform of the function $g(x) = xe^{-(x-1)^2}$.

Solution: with $p(x) = f(2^{1/2}x)$ and h(x) = xp(x), we have g(x) = p(x-1) + h(x-1) so that $\widehat{g}(\omega) = e^{-i\omega}(\widehat{p}(\omega) + \widehat{h}(\omega))$. Next, $\widehat{p}(\omega) = 2^{-1/2}\widehat{f}(2^{-1/2}\omega) = 2^{-1/2}e^{-\omega^2/4}$, $\widehat{h}(\omega) = i\widehat{p}'(\omega) = -i2^{-1/2}2^{-1}\omega e^{-\omega^2/4}$. Putting it all together, $\widehat{g}(\omega) = e^{-i\omega-(\omega^2/4)}2^{-1/2}(1-i2^{-1}\omega)$. There are alternative solutions leading to the same answer.

Problem 4. Use separation of variables to find a non-constant solution u = u(t, x) of the equation $u_t = u^2 u_x$ such that the function u = u(t, x) is defined for all x > -1 and t < 1.

Solution: u(t,x) = F(t)G(x), $F'G = F^2G^2FG'$, $(F'F^{-3})(t) = (GG')(x) = c$, $-(F^{-2})' = (G^2)' = 2c$, $F = (a - 2ct)^{-1/2}$, $G = (b + 2cx)^{1/2}$, taking 2c = a = b = 1 ensures that the domain of F is t < 1 and the domain of G is x > -1, leading to the answer $u(t,x) = \sqrt{(1+x)/(1-t)}$.

Problem 5. Solve the following initial-boundary value problem:

$$u_{tt} = 25u_{xx}, \ u = u(t, x), \ t > 0, \ x \in (0, \pi), u(0, x) = \sin(2x) - 3\sin(4x), u_t(0, x) = 0, u(t, 0) = 0, u(t, \pi) = 0.$$

Solution: from the zero initial and boundary conditions, $u = \sum_{k\geq 1} A_k \cos(5kt) \sin(kx)$, and then, from the non-zero initial condition, $A_2 = 1$, $A_4 = -3$, $A_k = 0$ otherwise, so $u(t,x) = \cos(10t)\sin(2x) - 3\cos(20t)\sin(4x)$.

Properties of the Fourier series and transform

Series	Name	Transform		
$c_k(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx$	Forward	$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) e^{-ix\omega} dx$		
$S_f(x) = \sum_{k=-\infty}^{+\infty} c_k(f) e^{\mathbf{i}kx}$	Inverse	$I_f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\omega) e^{ix\omega} d\omega$		
$c_0(f) = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} f(x) dx$	Obvious	$\hat{f}(0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x) dx$		
$\sum_{k=-\infty}^{+\infty} c_k(f) = S_f(0) = \frac{\tilde{f}(0+) + \tilde{f}(0-)}{2}$	Obvious	$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \hat{f}(\omega) d\omega = I_f(0)$ $= \frac{f(0+) + f(0-)}{2}$		
$\lim_{ k \to \infty} c_k(f) = 0$	Riemann-Lebesgue: $f \in L_1$	$\lim_{ \omega \to\infty} \hat{f}(\omega) = 0, \ \hat{f} \text{ continuous}$		
$\sum_{k=-\infty}^{+\infty} c_k(f) ^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) ^2 dx$	Parseval/Plancherel: $f \in L_2$	$\int_{-\infty}^{+\infty} \hat{f}(\omega) ^2 d\omega = \int_{-\infty}^{+\infty} f(x) ^2 dx$		
Further properties of the Fourier transform				

Function	Fourier transform	Function	Fourier transform
f(x)	$\hat{f}(\omega) = \mathcal{F}[f](\omega)$	$\hat{f}(x)$	$f(-\omega)$
f(x-a)	$e^{-\mathrm{i}a\omega}\hat{f}(\omega)$	$e^{\mathbf{i}ax}f(x)$	$\hat{f}(\omega-a)$
$f(x/\sigma)$	$\sigma \hat{f}(\sigma \omega)$	$e^{-x^2/2}$	$e^{-\omega^2/2}$
f'(x)	$\mathfrak{i}\omega\hat{f}(\omega)$	xf(x)	$\mathfrak{i}\hat{f}'(\omega)$
$f^{\prime\prime}(x)$	$-\omega^2 \hat{f}(\omega)$	$x^2f(x)$	$-\hat{f}''(x)$
$\int f(x)dx$	$rac{\hat{f}(\omega)}{\mathfrak{i}\omega}$	$\left \begin{array}{c} \frac{f(x)}{x} \end{array} \right $	$\frac{1}{\mathfrak{i}}\int \widehat{f}(\omega)d\omega$
(f * g)(x)	$\sqrt{2\pi}\hat{f}(\omega)\hat{g}(\omega)$	$\int f(x)g(x)$	$\frac{1}{\sqrt{2\pi}}(\hat{f}*\hat{g})(\omega)$
$e^{- x }$	$\sqrt{\frac{2}{\pi}} \frac{1}{1+\omega^2}$	$\frac{1}{1+x^2}$	$\sqrt{rac{\pi}{2}} e^{- \omega }$
$1(x \le 1)$	$\sqrt{\frac{2}{\pi}} \frac{\sin \omega}{\omega}$	$\left \frac{\sin \omega}{\omega} \right $	$\sqrt{\frac{\pi}{2}} 1 (x \le 1)$
$\delta_a(x)$	$e^{-i\omega a}/\sqrt{2\pi}$	$\cos(ax)$	$\sqrt{\pi/2} \Big(\delta_a(\omega) + \delta_{-a}(\omega) \Big)$

=