
Math 606, Summer 20241: Extreme Values and Rare Events.

Notations.

(1) 1{·} — the indicator function for the event {·}.
(2) N (0, 1) — standard Gaussian random variable.
(3) X(1) ≤ X(2) ≤ · · · ≤ X(n) — the ordered sample X1, . . . , Xn (order statistics).

Abbreviations

(1) iid: independent and identically distributed.

Ideas for Homework

General Exercises

(1) Recall that F = F (x), x ∈ R, is a cumulative distribution function if F has the
following properties:
• for every x, F is right-continuous and has a limit from the left (F (x) = F (x+), F (x−)

exists);
• F is non-decreasing (for every x < y, F (x) ≤ F (y));
• limx→−∞ F (x) = 0, limx→+∞ F (x) = 1.
Let fn = fn(x), x ∈ R, n ≥ 1, and f = f(x) be cumulative distribution functions such that

limn→∞ fn(x) = f(x) for every x ∈ R, and assume that the limit function f is continuous.
Explain why the convergence of fn to f is uniform on R. [Make an effort to provide all the
details how, given ε > 0, there exists an Nε such that |fn(x) − f(x)| < ε for all n > Nε

and all x ∈ R. You can start by noticing that common limits at infinity effectively reduce
the problem to a compact interval, and then uniform continuity of f and monotonicity of
everything will finish the job. The main challenge is to keep track of all the epsilons while
ensuring that the inequalities are in the right direction].

(2) Let fn, n ≥ 1, and f be mappings from a metric space X to a metric space Y . Define the
following two types of convergence:
• Uniform fn ⇒ f if limn→∞ supx∈X dY

(
fn(x), f(x)

)
= 0.

• Continuous fn V f if limn→∞ dX(xn, x0) = 0 implies limn→∞ dY
(
fn(xn), f(x0)

)
= 0.

(a) Explain why uniform convergence is equivalent to continuous convergence if X and Y
are complete and separable, X is compact, and the limit mapping f is continuous.

(b) Is is possible to converge uniformly but not continuously?
(c) Is it possible to converge continuously but not uniformly?

(3) Let F = F (x) be a cumulative distribution function on R. Define the left-continuous

inverse of F by

F←(u) = min{x ∈ R : F (x) ≥ u}, u ∈ (0, 1).

Confirm the following claims:
• The function F← is well defined, non-decreasing, and is continuous from the left:
F←(u) = F←(u−);
• u ≤ F (x) if and only if F←(u) ≤ x;
• If U is a uniform random variable on (0, 1), then the random variable F←(U) has

cumulative distribution function F ;
• If the function F is continuous and X is a random variable with cumulative distribution

function F , then F (X) is a uniform random variable on (0, 1);
• If Fn ⇒ F and F is continuous, then F←n ⇒ F←.
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(4) Let X1, X2, . . . be iid random variables with cdf F = F (x): F (x) = P(X1 ≤ x). Define
Mn = max{X1, . . . , Xn} and x0 = sup{x : F (x) < 1}. Explain why

lim
n→∞

Mn = x0

with probability one. Note that x0 = +∞ is a possibility.
(5) Identify the extreme value distribution (for the max) in each of the following cases:

• Normal, Gamma, Beta, Cauchy;
• Poisson, Geometric, Negative Binomial;
• Your favorite discrete and/or continuous distribution not mentioned above.

This is harder than it looks: for normal, Gamma, Beta, and Cauchy, we get Gumbel,
Gumbel, Weibul, and Frechet, respectively (some hints are in Chapter 1 of Resnick and in
Exercises 1.7 and 1.8 in De Haan-Ferreira); Poisson and Geometric are not in the domain
of attraction of any of the extreme value distributions (see Examples 1.7.14 and 1.7.15 in
Leadbetter-Lindgren-Rootzen or Exercise 1.13 in de Haan-Ferreira). Some of the problems
below come back to this question.

(6) Let X1, X2, . . . be iid random variables. Determine the sequence of (non-random) numbers
an, n ≥ 1, such that

P
(

lim sup
n→∞

Xn

an
= 1

)
= 1 (1.1)

if the distribution of Xk is
• Normal, Gamma, Cauchy;
• Poisson, Geometric, Negative Binomial;
• Some other discrete and/or continuous distribution that is not bounded from above.

(7) Do the previous problem with

P
(

lim sup
n→∞

max{X1, . . . , Xn}
an

= 1

)
= 1 (1.2)

instead of (1.1). What distributions require different sequences an in (1.1) and (1.2)?
(8) Let X1, X2, . . . be iid random variables with characteristic function ϕ(t) = e−|t|

α
, and assume

that α ∈ (0, 2). Define Sn = X1 + . . .+Xn.
• Show that

P

(
lim sup
n→∞

∣∣∣∣ Snn1/α

∣∣∣∣1/(ln lnn)

= e1/α

)
= 1. (1.3)

This is Problem 3 from §4 of Chapter IV in the second edition of Shiryaev’s Probability.
• What happens if α = 2?
• What happens if α > 2?

(9) Let U1, . . . , Un be iid random variables, uniform on the interval [a, a+ θ]. Denote by U(1) <
. . . < U(n) the corresponding order statistics and define V1 = U(1), Vk = U(k) − U(k−1),
k = 2, . . . , n, Vn+1 = a+ θ − U(n).
• Identify the distribution of each U(k).
• Confirm that the random variables V1, . . . , Vn+1 are exchangeable and compute EVk.
• Determine the non-random numbers αn so that the limit limn→∞ αn max1≤k≤n+1 Vk

exists in distribution, and identify the limit.
• Determine the non-random numbers βn so that the limit limn→∞ βn min1≤k≤n+1 Vk exists

in distribution, and identify the limit.
(10) Let Z be a standard normal random variable.

• Prove that, for every x > 1,

1√
2π

x

1 + x2
e−x

2/2 ≤ P(Z ≥ x) ≤ 1√
2π x

e−x
2/2. (1.4)
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[This is all about integration by parts. For the lower bound, start by computing the

derivative of x−1e−x
2/2; then note that the function f(x) = x2/(1 + x2) is increasing for

x > 0.]
• Derive an analog of (1.4) for P(|Z| ≥ x) that would hold for all x ≥ 0.
• Confirm, numerically or otherwise, that the function

F (x) = 2−22
1−41x/10

, x > 0, (1.5)

can be a good approximation of P(Z ≤ x). In what range of values x would you
use such an approximation? The reference for (1.5): A. Soranzo and E. Epure, Very
Simply Explicitly Invertible Approximations of Normal Cumulative and Normal Quan-
tile Function, Applied Mathematical Sciences, volume 8, number 87, 4323–4341, 2014,
http://dx.doi.org/10.12988/ams.2014.45338.

(11) Let Xk, k ≥ 1 be iid with zero mean, unit variance, and finite third moment. Denote by Φ
the cdf of the standard normal random variable.
• Show that if ε ∈ (0, 1) and xn = (1− ε)

√
lnn, then

lim
n→∞

1− P
(
X1+...+Xn√

n
≤ xn

)
1− Φ(xn)

= 1. (1.6)

• Will (1.6) continue to hold with ε = 0?
(12) Confirm that

ln(n+ 1) <
n∑
k=1

1

k
< 1 + lnn, n = 2, 3, 4, . . .

and

lim
n→∞

( n∑
k=1

1

k
− lnn

)
exists (the limit is the Euler-Marscheroni constant γ = 0.577 . . .).

(13) Confirm that, as x→ +∞, the functions x 7→
∑

k≤x(1/k) and x 7→ (lnx)sin(ln lnx) are slowly

varying, and the functions x 7→ 2 + sin x and x 7→ xesin(lnx) are not regularly varying. [See
Appendix B in de Haan-Ferreira, in particular, Example B.1.2 and Theorem B.1.6.]

(14) Let Xk, k ≥ 1, be iid with cdf F , and define x0 = sup{x : F (x) < 1}. Recall that Xn is a
record if Xn > max{X1, . . . , Xn−1}.
• Prove that the total number of records is finite if and only if F (x0−) < 1.
• Prove that, for a < b ≤ x0, the probability to have no records taking values in the

interval (a, b] is P(X1 > b)/P(X1 > a).
(15) Confirm that a two-dimensional cdf F = F (x, y) is max-id if and only if

F (a, y)F (b, x) ≤ F (a, x)F (b, y)

for all a < b and x < y.
(16) Let X(k), k = 1, 2, 3 be the order statistics of an independent sample from the geometric

distribution: P(X = n) = (1 − p)pn, n = 0, 1, 2, . . .. Compute the probability that X(1) <
X(2) < X(3).

An outline: after some combinatorial analysis, the required probability turns out to be 1 −
3P(X1 = X2) + 2P(X1 = X2 = X3); by direct computation, for m iid geometric,

P(X1 = . . . = Xm) =
(1− p)m

1− pm
.

(17) Let X(k), k = 1, 2, 3 be the order statistics of an independent sample from the standard
normal distribution. Confirm that EX(3) = 3/(2

√
π).
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(18) Let X(k), k = 1, . . . , n be the order statistics of an independent sample from the standard
Cauchy distribution. Show that if r is a real number such that r < k < n − r + 1, then
E|X(k)|r <∞.

(19) For each of the three extreme value distributions (Frechet, Gumbell, Weibull), compute the
mean, the variance, the mode, and the median. Some of them are infinite and some of them
involve the Euler Gamma function and/or the Euler-Mascheroni constant.

(20) Let

F (x) = 1− 1

x
, x ≥ 1. (1.7)

Determine numbers an > 0 and bn ∈ R so that limn→∞

(
F (anx+ bn)

)n
= e−x

−1
, x > 0.

(21) LetX1, X2, . . . be iid with cdf (1.7). Confirm that if limn→∞(k/n) = 0, then limn→∞X(n−k) =
+∞ with probability one. [Assume that X(n−k) < r infinitely often for some r > 0 and get a

contradiction with k/n→ 0; this is Lemma 3.2.1 in de Haan and Ferreira book].

(22) Confirm that, when it comes to extreme values, every Gamma distribution is in the domain
of attraction of Gumbel.

(23) True of false: each of the three extreme value distributions is in its own domain of attraction?
Explain your conclusion.

(24) Let X and Y be iid and not bounded from above. Compute the value of the limit

lim
x→∞

P(X + Y > x)

P(X > x)

for as many different distributions as possible (sometimes, the limit is infinite). Can you
state and prove a general result?

(25) Consider the function F (x) = 1− e−x−sin(x), x ≥ 0.
• Confirm that F is a cdf.
• What can you sam about the limit, as n → ∞, of the maximum of n iid random

variables with distribution F? [Apparently, F is not in the domain of attraction of any

of the extreme value distributions; looking at a sequence e2πn can help. For more hints, see

Exercise 1.18 in de Haan-Ferreira]

(26) Use normal approximation of the Beta distribution to establish normal approximation of
k-th uniform order statistic in the limit k → ∞, n → ∞, n − k → ∞. What happens if
n−k does not grow to infinity? For related ideas, check out the extreme value book by de Haan

and Ferreira: Lemma 2.2.2 and Exercise 2.6.

(27) (Scheffé’s lemma) If fn, n ≥ 1, is a sequence of pdf-s such that the point-wise limit
limn→∞ fn(x) = f(x) exists and is also a pdf, then limn→∞

∫
R |fn(x)− f(x)| dx = 0.

(28) (D-norm in Rd, generated by random vector Z) Let Z = (Z, . . . , Zd) be a random vector in
Rd satisfying Zk ≥ 0 and EZk = 1 for all k = 1, . . . , d. For x = (x1, . . . , xd), define

‖x‖D = E max
1≤k≤d

(
|x|kZk

)
. (1.8)

Confirm the following claims:
• (1.8) defines a norm on Rd.

• ‖x‖∞ = max1≤k≤d |xk| ≤ ‖x‖D ≤ ‖x‖1 =
∑d

k=1 |x|k.
• If |xk| ≤ |yk| for all k, then ‖x‖D ≤ ‖y‖D.
• ‖ · ‖∞ = ‖ · ‖D with Zk = 1 (non-random Z);
• ‖ · ‖1 = ‖ · ‖D with binomial Zk satisfying Z1 + . . . + Zd = d and P(Zk = d) = 1/d,
P(Zk = 0) = 1 − (1/d). Alternatively, (Z1, . . . , Zd) is a uniform random permutation
of the set (d, 0, . . . , 0).
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• For p ∈ (1,+∞), the corresponding norm ‖x‖p =
(∑d

k=1 |xk|p
)1/p

is also a D-norm,

with iid Zk such that each
(

Γ((p − 1)/p)Zk

)p
has standard Fréchet distribution with

cdf e−1/x, x > 0.
(29) Consider the generalized extreme value distribution

Gr(x) = exp
(
− (1 + rx)−1/r

)
, r ∈ R, 1 + rx > 0. (1.9)

Confirm that, for all r ∈ R, n = 1, 2, . . ., and rx > −1,(
Gr(anx+ b)

)n
= Gr(x), an = nr, bn = (nr − 1)/r.

Recall that, when r = 0, we have x ∈ R, and we take the corresponding limits so that
G0(x) = e−e

−x
, an = 1, and bn = lnn.

(30) With Gr from (1.9) and

x0 = sup{x : P(X ≤ x) < 1},

confirm that a random variable X is in the domain of attraction of Gr, r < 0, if and only if
the random variable Y = 1/(x0−X) is in the domain of attraction of G−r. As an illustration,
consider X that is uniform on (0, 1). [Note that if F is the cdf of X, then the cdf of Y is
F (x0 − x−1)1{x>0}.]

(31) Let X be a random variable with cumulative distribution function F . Confirm that, for
n ≥ 1,

E|X|n = n

∫ +∞

0

xn−1
(
F (−x) +

(
1− F (x)

))
dx.

What happens if n < 1?
(32) Give an example of a random variableX such that E

(
|X|1X<0) = +∞ but E

(
|X(n)|1{X(n)<0}) <

+∞ for some n ≥ 2.
(33) Let X be standard Gaussian. Denote by F the cdf of X. Confirm that

lim
x→+∞

F ′(x)
∫ +∞
x

(1− F (t))dt

(1− F (x))2
= 1.

[Use that 1− F (x) ∼ F ′(x)/x and integrate by parts.]
(34) Consider the Stieltjes-Wigert weight function

ϕ(x) =
1√
π
e−(lnx)

2

, x > 0.

• Confirm that

sn =

∫ +∞

0

xnϕ(x)dx = e(n+1)2/4, n = 0, 1, 2, . . . .

• Confirm that ∫ +∞

0

xn sin(2π lnx)ϕ(x)dx = 0

for every n = 0, 1, 2, . . . and so the polynomials are not complete in L2((0,+∞), ϕ(x)dx).
• Confirm that the integral ∫ ∞

0

eaxϕ(x)dx

diverges for every a > 0, but the integral∫ ∞
0

lnϕ(x)

1 + x2
dx
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and the series ∑
k≥1

1
2k
√
s2k

both converge.
• Give an example of a different function ψ = ψ(x) on (0,+∞) such that ψ(x) ≥ 0 and∫ +∞

0
xnϕ(x)dx =

∫ +∞
0

xnψ(x)dx for all n = 0, 1, 2, . . ..
(35) Check if the zeta random variable, with probability mass function

P(X = n) =
1

ζ(s)ns
, n = 1, 2, . . . , (1.10)

with s > 1 and normalization

ζ(s) =
∑
k≥1

k−s,

is in the domain of attraction of Φs−1.
(36) Construct a discrete distribution in the domain of attraction of Ψα.
(37) Construct a discrete distribution in the domain of attraction of Λ.
(38) True or false: if a sequence of probability measures on R converging vaguely to a proba-

bility measure, then the convergence is, in fact, weak. [Most probably, true: think relative

compactness and Prokhorov’s theorem.]

(39) Let X1, . . . , Xn be iid as X and assume that X is continuous and symmetric: P(X >
a) = P(X < −a), a ≥ 0. Confirm that X(k) and −X(n−k+1) have the same distribution,
k = 1, . . . , n. In particular, if n is odd, then the sample median is also symmetric. How
would you extend the result to discrete random variables?

(40) Confirm that λ1 = π2/4 is the smallest value of the parameter λ so that the boundary-value
problem u′′(x) = −λu(x), x ∈ (0, 1), u(0) = u′(1) = 0, has a non-trivial solution.

Computer Exercises

(1) Investigate several ways to sample from your favourite extreme value distribution.
(2) Compute the first 100 digits in the decimal representation of γ.
(3) Design a procedure to sample from the zeta distribution (1.10) and verify numerically that,

in the limit, the distribution of a suitably normalized max is of the type Ψs−1.
(4) Plot a few realizations of a Poisson random measure in the unit square for various choices

of the mean measure µ. Try several different examples of µ, both absolutely continuous and
discrete. When this becomes too easy, try a singular continuous µ and a product measure
with marginals of different type.

(5) Generate and plot a few sample paths of the extremal process corresponding to some of your
favourite distributions, both discrete and continuous.

(6) Implement Hill’s and/or Pickands estimator for various distributions. Do you see a difference
in performance between distributions with exact polynomial tail (like 1−F (x) = 1/x, x ≥ 1)
and distributions with approximately polynomial tail (like Cauchy)?

(7) Use Monte Carlo simulations to estimate the probability that the sum of 100 iid uniform
(0, 1) random variables is less than 10. What type of importance sampling did you use?
What is the accuracy of your estimate?

Further Thoughts

(1) Is there a limiting version of (1.3) as α→ 0+?
(2) Does it make sense to talk about LLN, CLT, LIL, and LDP in the setting of the extreme

value distributions? What kind of results would you get? Are there connections with the
corresponding results for the original distributions? How about extreme value for extreme
values?
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(3) Assume that X stochastically dominates Y , that is, 1 − FX(x) ≥ 1 − FY (x) (and strict
inequality holds for some x). What can we say about the corresponding extreme value
distributions? What if we consider some other stochastic ordering?

(4) The word kernel has many different meanings, even in mathematics; as a non-negative
definite function, it can determine the distribution of a zero-mean Gaussian process and the
law of a determinant point process. Are there any interesting/useful connections between
the two (very different) processes?

(5) How will Stein’s method work to study convergence to extreme value distributions?
(6) Can we quantify the weak convergence to extreme value distributions in a probability metric

other than Kolmogorov’s? For example, is there hope to get a bound on the total variation
distance, at least in some examples? How about Wasserstein p distance, p ≥ 1?

(7) What kind of functional limit theorems do we get in the setting of extreme values? One
example is (rather scary-looking) Theorem 2.4.2 in the de Haan and Ferreira book; Example
A.0.3 in the same book is much better-looking.

(8) What is the connection between Poisson random measure and compound Poisson process?
(9) How would a Poisson random measure look like if the mean measure is itself random?

Main results of general interest.

(1) The Cauchy functional equation and variations.
(2) Karamata’s theorem about properties of regularly varying functions.
(3) The Fisher-Tippett (generalized extreme value) distribution as an alternative parametriza-

tion covering all classes and types of extreme value distributions.
(4) Convergence of/to types lemma/theorem.
(5) Normalization makes a difference: beside the usual re-scaling that preserves the type, there

are other possibilities, including random location and/or scale.
(6) Regular variation and domains of attraction for various extreme value distributions.
(7) A simple proof of the one-dimensional Skorokhod representation theorem using the proba-

bility integral transform.
(8) Characterization of a random measure by the Laplace functional.
(9) Weak convergence: Portmanteau theorem, continuous mapping, Prokhorov’s theorem

(10) Vague convergence can make the collection of measures into a complete separable metric
space.

(11) The Laplace functional of a random measure is like the characteristic function of a random
variable.

(12) Always look for a chance to apply a Tauberian theorem.
(13) The extremal process and its properties.
(14) Record values can be realized as event times of a Poisson process, leading to convergence

in distribution to a composition of normal and extreme; record times obey the traditional
LLN/CLT/LIL, and best understood by embedding into the extremal process.

(15) The Skorokhod space D, with the standard definition of the metric, is an example of a Polish
space that is not a Polish metric space: to make it complete, another metric is required. It
is also an example of a space that is linear, topological, but not linear topological (addition
is not continuous in the topology generated by the metric).

(16) There are two different ways to define ranks in the sample X1, . . . , Xn,

R(m) =
n∑
k=1

1{Xm≥Xk} or R(m) =
n∑
k=1

1{Xm≤Xk}
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so that the largest element has rank either n or 1. Similarly, there ar two definitions of the
sequential rank

Rn =
n∑
k=1

1{Xn≥Xk} or Rn =
n∑
k=1

1{Xn≤Xk}

(17) Copula and the theorem of A. Sklar.
(18) Associated random variables.
(19) Residual life time and the Pickands-Balkema-de Haan theorem.
(20) Estimating the tail index of a distribution.
(21) Three versions of the Cramér’s theorem on large deviations.


