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Applications of exact extreme value theorem
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In this paper we prove that it is sufficient to use Pareto distribution to
approximate the tail of a slowly varying heavy-tailed distribution. Several
applications of the results are considered.

INTRODUCTION

An extreme value theorem due to Gnedenko (1943), Balkema and de Haan (1974)
and Pickands (1975) states that, for a broad class of the distributions, as the
truncation point increases, the excess distribution converges to a generalized
Pareto distribution (GPD). A result that seems to have been overlooked states that,
for heavy-tailed distributions, the excess distribution converges to a specific type
of GPD namely the shifted Pareto distribution. More precisely, the convergence
results can be stated in two different ways.

(A) The non-exact theorem states that for heavy-tailed distributions, the dis-
tribution function is slowly varying if and only if the excess distribution
converges to a generalized Pareto distribution.

(B) The exact theorem states that for heavy-tailed distributions, the distribution
function is slowly varying if and only if the excess distribution converges to
a Pareto distribution.

The non-exact theorem (A) is well known and is used to justify fitting
distribution tails with GPD. Clearly, the exact result is stronger than the non-exact
result and allows for replacing GPD with a much more simple Pareto distribution.
In this paper we provide a simple proof of the convergence result (B) and show
how, by using Pareto distribution instead of GPD, one can significantly simplify
many computations.

Let us recall the main definitions and results for application of extreme value
theory (EVT) to the excess distribution convergence (Embrechts (2000)).

For a random variable X with cumulative distribution function (cdf) F and a
threshold u, the excess distribution function Fu is defined as follows:

Fu = Pr[X − u � x | X > u] = F(x + u) − F(u)

1 − F(u)

To define the set of distributions for which EVT can be applied we introduce the
following.
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DEFINITION 1 A function L is slowly varying if for any t > 0:

lim
u→∞

L(tu)

L(u)
= 1

DEFINITION 2 F ∈ RVξ with ξ > 0 if F(x) = 1 − L(x)x−1/ξ for some slowly
varying function L.

In order to formulate the convergence statement we introduce the notion of
distance between distributions, namely for two cdfs F and G we define the
distance as:

d(F, G) = sup
x

|F(x) − G(x)|

Finally recall that, for ξ > 0, the GPD is given by:

Gξ,β(x) = 1 − (1 + ξx/β)−1/ξ for x � 0

THEOREM 3 (Pickands–Balkema–de Haan) For a cdf F , F ∈ RVξ with ξ > 0 if
and only if there exists β(u) such that:

lim
u→∞ d(Fu, Gξ,β(u)) = 0

The above theorem is usually formulated for a wider class of distributions than
that which we consider (RVξ with ξ > 0), but we will limit ourselves to the case
of heavy-tailed distributions (ξ > 0). Although the theorem is formulated as an
existence result, the function β(u) seems to be unknown; in fact it is the following.

LEMMA 4 For a cdf F , F ∈ RVξ with ξ > 0 the function β(u) can be selected as
β(u) = ξu.

Interestingly enough, GPD with β(u) = ξu is equivalent to a Pareto distribu-
tion.

Let us recall that a cdf of a Pareto distribution is usually defined as:

Pα,u(x) = 1 −
(

u

x

)α

for x � u

A Pareto distribution, unlike an excess distribution, does not start from 0.
However if one shifts it to 0 and replaces parameter α by 1/ξ , one obtains:

P̂ξ,u(x) = 1 −
(

u

x + u

)1/ξ

for x � 0

Thus:
Gξ,ξu(x) = P̂ξ,u(x)

A Pareto distribution is much easier to use than GPD. We will give several
practical applications of this result in the following sections.
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EXACT EVT PROOF

In this section we provide a simple proof for the exact EVT theorem for heavy-
tailed distributions.

THEOREM 5 (Exact EVT) For a cdf F , F ∈ RVξ with ξ > 0 if and only if:

lim
u→∞ d(Fu, P̂ξ,u) = 0

Moreover, the choice β(u) = ξu is asymptotically unique ie, for any β(u) with
limu→∞ d(Fu, Gξ,β(u)) = 0, it follows that limu→∞ β(u)/(ξu) = 1.

PROOF Let us introduce an auxiliary distribution function:

�u(x) = Pr

[
X − u

u
> x

∣∣∣∣ X > u

]
= F(u(x + 1)) − F(u)

1 − F(u)

Note that �u has two convenient properties:

d(�u, P̂ξ,1) = sup
0�x

∣∣∣∣1 − F(u(x + 1))

1 − F(u)
− (x + 1)−1/ξ

∣∣∣∣

= sup
0�y

∣∣∣∣1 − F(y + u)

1 − F(u)
−

(
y

u
+ 1

)−1/ξ ∣∣∣∣ = d(Fu, P̂ξ,u)

and, if F(x) = 1 – L(x) x−1/ξ , then:

�u(x) = 1 − (x + 1)−1/ξ L(u (x + 1))

L(u)

= P̂ξ,1(x) − (x + 1)−1/ξ

(
L(u (x + 1))

L(u)
− 1

)

(⇒) Assume that F ∈ RVξ with ξ > 0. Then from the second property of �u and
Definition 1 it follows that, for any fixed x:

lim
u→∞ �u(x) = P̂ξ,1(x)

As pointwise convergence to a continuous distribution implies uniform conver-
gence, we conclude that:

lim
u→∞ d(�u, P̂ξ,1) = lim

u→∞ sup
x

|�u(x) − P̂ξ,1(x)| = 0

The theorem now follows from the first property of �u.

(⇐) The convergence:
lim

u→∞ d(Fu, P̂ξ,u) = 0

together with the first property of �u implies that, for any x:

lim
u→∞ �u(x) = P̂ξ,1(x)
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From the second property of �u we conclude that, for any x > 0:

lim
u→∞

L(u(x + 1))

L(u)
= 1

Thus, for any t > 1:

lim
u→∞

L(tu)

L(u)
= 1

As for 0 < t < 1, 1/t > 1 we obtain:

lim
u→∞

L(t u)

L(u)
= lim

w→∞
L(w)

L((1/t)w)
= 1

Therefore, by Definition 1, L is a slowly varying function and F ∈ RVξ .
To prove that the choice β(u) = ξu is asymptotically unique note that:

2−1/ξ −
(

1 + uξ

β

)−1/ξ

= |Gξ,β(u)(u) − P̂ξ,u(u)| � d(Gξ,β(u), P̂ξ,u)

� d(P̂ξ,u, Fu) + d(Fu, Gξ,β(u))

The right-hand side of the above inequality converges to 0. Thus, limu→∞ β(u)/

(ξu) = 1.

HILL’S ESTIMATOR

As the first application of exact EVT, we will obtain Hill’s estimate for the tail
coefficient ξ . Assume that we have some losses from a RVξ distribution and we
need to estimate the tail coefficient ξ . The tail coefficient can be estimated as
follows:

1. Select a threshold u > 0.
2. Select all losses greater than or equal to u and subtract u from them.
3. Fit the shifted Pareto distribution to the selected losses using a maximum

likelihood estimator. Use the maximum likelihood solution ξ as the estima-
tor.

The maximum likelihood method when applied to a Pareto distribution leads
to simple formulas and therefore to a simple estimate for ξ . Denote by xk, . . . , xn

the losses greater than or equal to a selected threshold u. The probability
distribution function for the shifted Pareto distribution is given by:

p̂ξ,u(x) = d

dx
P̂ξ,u(x) = d

dx
(1 − (1 + x/u)−1/ξ ) = 1

ξu
(1 + x/u)−1/ξ−1

The loglikelihood function is equal to:

n∑
i=k

log[p̂ξ,u(xk − u)] =
n∑

i=k

[(−1/ξ − 1) log[xk/u] − log[ξu]]
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The only parameter that needs to be estimated is ξ . Taking the derivative of the
loglikelihood function with respect to ξ we obtain:

d

dξ

n∑
i=k

log[p̂ξ,u(xk − u)] =
n∑

i=k

[(1/ξ2) log[xk/u] − 1/ξ ]

Setting the derivative to be equal to zero, we obtain the estimator for the tail
coefficient ξ :

ξ = 1

n − k + 1

n∑
i=k

log[xk/u].

The above estimate is exactly the Hill’s estimator (Hill (1975)).

CONVERGENCE RATE

As the second application of the exact EVT we consider the speed of the EVT
convergence as a function of the threshold. Determining the speed of convergence
helps in selecting the threshold to obtain a desired precision and is clearly of large
practical interest. Using the exact EVT theorem we will show that the rate of
convergence can be very slow.

Let us consider a cdf:

F(x) = 1 − log(x)

x

Clearly F ∈ RV1 and therefore its tail is approximated by a Pareto distribution
with ξ = 1. To estimate the convergence rate we need to compute d(Fu, P̂1,u)

where:

Fu(x) = 1 − log(x + u)

log(u)

u

x + u
; P̂1,u(x) = 1 − u

x + u

To find the point with the largest distance between Fu(x) and P1,u(x) we need to
solve the equation:

d

dx
[Fu(x) − P1,u(x)] = 0

One can easily check that the above equation has a unique solution x∗ = (e − 1)u.
Thus:

d(Fu, P̂1,u) = |Fu((e − 1)u) − P̂1,u((e − 1)u)| = 1

e log(u)

The above example demonstrates that the convergence rate can be very slow. For
example, if the original threshold is 10,000, in order to double the precision of
approximation one needs to increase the threshold to 100,000,000.

CONCLUSIONS

The non-exact version of the extreme value theorem is the main justification to
use a GPD for distribution tail modeling (cf, Embrechts (2000) and Beirlant et al
(2004)).

Based on the non-exact version of the theorem, a number of OpRisk models
selected GPD to model the large losses. However, after careful analysis of EVT,
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one realizes that there are several fundamental problems in using EVT and GPD
for tail modeling.

The first problem is that EVT cannot be used to estimate quantiles as it does
not imply quantile convergence (cf, Makarov (2006)). That is, EVT implies
convergence of GPD to the target distribution in the sense of Kolmogorov–
Smirnov, but fails, in most cases, to imply the quantile convergence.

In this paper we have raised another problem in using GPD. It has been proved
that, for the heavy-tailed distribution, the GPD is in fact the usual Pareto. In view
of the result, a question arises: is there any reason to use GPD instead of Pareto
distribution to model tails of heavy-tailed distributions?

REFERENCES

Balkema, A. A., and de Haan, L. (1974). Residual life time at great age. The Annals of
Probability 2(5), 792–804.

Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J. (2004). Statistics of Extremes (Wiley
Series In Probability and Statistics). Wiley, New York.

Embrechts, P. (2000). Extremes and Integrated Risk Management. Risk Books, London.

Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d’une série aléatoire.
Annals of Mathematics 44, 423–453.

Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution.
The Annals of Statistics 3(5), 119–131.

Makarov, M. (2006). Extreme value theory and high quantile convergence. Journal of
Operational Risk 2, 51–57.

Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics
3, 119–131.

Journal of Operational Risk Volume 2/Number 1, Spring 2007




