Spring 2024, MATH 408, Final Exam

Wednesday, May 1; 11am-1pm
Instructor - S. Lototsky (KAP 248D; x0-2389; lototsky@usc.edu)

Instructions:

- No notes, no books, or other printed materials (including printouts from the web), no collaboration with anybody (or anything, like AI).
- You should have access to a calculator or some other computing device, and to the normal, t, χ^{2}, and F distribution tables. Instead of the tables, you are welcome to use the statistical functions available on your computing device.
- Answer all questions, show your work, and clearly indicate your answers; upload the solutions to GradeScope.
- Each problem is worth 10 points.

A summary of main distributions

Name	Notation	pdf/pmf	Mean	Variance
Binomial	$\mathcal{B}(n, p)$	$\binom{n}{k} p^{k}(1-p)^{n-k}$	$n p$	$n p(1-p)$
Poisson	$\mathcal{P}(\lambda)$	$e^{-\lambda} \lambda^{k} / k!$	λ	λ
Beta	$\operatorname{Beta}(a, b)$	$\frac{x^{a-1}(1-x)^{b-1}}{B(a, b)}$	$\frac{a}{a+b}$	$\frac{a b}{(a+b)^{2}(a+b+1)}$
Gamma	$\operatorname{Gamma}(a, \theta)$	$\frac{\theta^{a} x^{a-1} e^{-\theta x}}{\Gamma(a)}$	$\frac{a}{\theta}$	$\frac{a}{\theta^{2}}$
Normal	$\mathcal{N}\left(\mu, \sigma^{2}\right)$	$\left(2 \pi \sigma^{2}\right)^{-1} \exp \left(-(x-\mu)^{2} /\left(2 \sigma^{2}\right)\right)$	μ	σ^{2}

Problem 1. Given the set of numbers $30,55,60,70,65$, and assuming that this is an independent random sample from a normal population, construct a 95% confidence interval for the mean. Show your work by filling in the corresponding numerical values:

- sample mean $\bar{X}_{n}=56.000$
- $s_{n}=15.572$
- the quantile of the t distribution you use: with $n=5$ and $\alpha / 2=0.025$, get $t_{4,0.025}=$ 2.776,
- the final answer: $\bar{X}_{n} \pm \frac{s_{n}}{\sqrt{n}} t_{4,0.025} \approx 56 \pm 19=[37,75]$

Problem 2. Let X_{1}, \ldots, X_{n} be an independent random sample such that the pdf of each X_{k} is

$$
f(x ; \theta)=\frac{1}{2 \theta^{3}} x^{2} e^{-x / \theta}, x>0, \quad \theta>0 .
$$

Construct the maximum likelihood estimator $\hat{\theta}$ of θ. Make sure to Verify that you indeed MAXIMIZED THE LIKELIHOOD FUNCTION.

Solution/Answer: the likelihood function is $2^{-n} \theta^{-3 n}\left(\prod_{k=1}^{n} X_{k}^{2}\right) \cdot \exp \left(-n \bar{X}_{n} / \theta\right)$, with \bar{X}_{n} denoting the sample mean. Then the (equivalent) function to maximize is
$\ell(\theta)=n\left(-3 \ln \theta-\bar{X}_{n} \theta^{-1}\right)$. The equation $\ell^{\prime}(\theta)=0$ gives $-3 \theta^{-1}+\bar{X}_{n} \theta^{-2}$ or $\hat{\theta}=\bar{X}_{n} / 3$, which, indeed, is the global max of the function: $\ell^{\prime}(\theta)>0$ if $\theta<\hat{\theta}$ and $\ell^{\prime}(\theta)<0$ if $\theta>\hat{\theta}$; note that ℓ has an inflection point at $\theta=2 \hat{\theta}$.

Problem 3. Suppose that two independent random samples from two populations X and Y resulted in the following numerical values for the sample mean and standard deviation:

$$
\bar{X}_{n}=11.2, s_{n, X}=8.5, \bar{Y}_{n}=10.5, s_{n, Y}=7.0
$$

Assume that $n=550$. Can you claim that the population mean of X is significantly bigger than the population mean of Y ? Justify your conclusion by computing the corresponding P value.

Solution/Answer: using large sample approximation (more precisely, combining the CLT with LLN and the Slutsky theorem), \bar{X}_{n} is approximately normal with mean μ_{X} (the population mean of X) and variance $\sigma_{X}^{2} / n \approx s_{n, X}^{2} / n ; \bar{Y}_{n}$ is approximately normal with mean μ_{Y} (the population mean of Y) and variance $\sigma_{Y}^{2} / n \approx s_{n, Y}^{2} / n$.

Then $\sqrt{n}\left(\bar{X}_{n}-\bar{Y}_{n}\right)\left(s_{n, X}^{2}+s_{n, Y}^{2}\right)^{-1 / 2}$ is approximately standard normal and the corresponding one-sided test statistic is $\phi=\sqrt{n}\left(\bar{X}_{n}-\bar{Y}_{n}\right)\left(s_{n, X}^{2}+s_{n, Y}^{2}\right)^{-1 / 2}$. The observed value is $\phi^{*}=$ 1.5 corresponding to the P value $\mathbb{P}(Z>1.5)=0.068>0.05$. Therefore, you cannot claim that the population mean of X is significantly bigger than the population mean of Y.

Problem 4. Let X_{1}, \ldots, X_{n} be an independent random sample from the distribution with pdf

$$
f(x ; \theta)=\frac{1}{2 \theta^{3}} x^{2} e^{-x / \theta}, \quad x>0, \theta>0 .
$$

Construct the most powerful test of $H_{0}: \theta=2$ against $H_{1}: \theta=5$ at the level $\alpha=0.05$.
Solution/Answer: The ratio of likelihoods that we want to be small when rejecting H_{0} is, up to a constant, $\exp \left((-0.5+0.2) n \bar{X}_{n}\right)=\exp \left(-0.3 n \bar{X}_{n}\right)$, where \bar{X}_{n} is the sample mean. As a result, we reject H_{0} if $n \bar{X}_{n}$ is LARGE.

Following the notations in the table, the original distribution is Gamma($3,1 / \theta$). Because, under the null hypothesis $\theta=2$ the population is $\operatorname{Gamma}(3,1 / 2)$, we conclude that, under the null hypothesis, $n \bar{X}_{n}$ is $\operatorname{Gamma}(3 n, 1 / 2)$, so that the rejection rule at level 0.05 is $n \bar{X}_{n} \geq \operatorname{Gamma}(3 n, 1 / 2)_{0.05}$, where the quantile on the right corresponds to the ''area to the right of the point''. From problem 2 and the table, we know that the sample mean is MLE for 3θ, that is, the bigger the θ, the bigger the value of \bar{X}_{n} we expect to measure, confirming that the rejection rule makes sense. Note also that $\operatorname{Gamma}(3 n, 1 / 2)=\chi_{6 n}^{2}$.

Problem 5. For the first-year students at a certain university, the correlation between SAT scores and the amount of money borrowed to pay for the study was -0.36 . Assume the joint distribution of the SAT scores and the borrowed money is normal. Predict the percentile rank on the amount of money borrowed for a student whose percentile rank on the SAT was 85%.

Answer: with Φ denoting the standard normal cdf, we use one of the versions of the regression line to compute the predicted ranking as $\Phi\left(-0.36 \Phi^{-1}(0.85)\right)=\Phi(-0.36 \cdot 1.0364)=$
$1-0.64546 \approx 35 \%$.
Problem 6. Below is part of a two-way ANOVA table. Fill out the rest of the table.

Source	SS	df	MS	F	Prob $>F$
Blocks	80	4	20	2.105	$0.118045835 \ldots$
Treatments	210	5	42	4.42	$0.007124324 \ldots$
Error	190	20	9.5		
Total	480	29			

Answers are in smaller font. Note that, using the F distribution table, you can only conclude that $\mathbb{P}\left(F_{4,20}>2.105\right)>0.1$ and $\mathbb{P}\left(F_{5,20}>4.42\right) \in(0.005,0.01)$

Problem 7. To test whether a die is fair, 64 rolls were made, and the corresponding outcomes were as follows:

Face value	Observed frequency
1	8
2	9
3	15
4	15
5	9
6	8

Would you consider the die fair using a χ^{2} goodness of fit test? Justify your conclusion.

Solution: for the value φ^{*} of the test statistic, which is the sum of observed-minus-expected-squared-over-expected, with expected equal to $64 / 6=32 / 3$, we get

$$
\varphi^{*}=2\left((24-32)^{2}+(27-32)^{2}+(45-32)^{2}\right) /(32 \cdot 3)=(64+25+169) / 48=5.375
$$

and the P-value is

$$
\mathbb{P}\left(\chi_{5}^{2}>\varphi^{*}\right)=0.37184731 \ldots
$$

Using the table, you can only conclude that the P-value is bigger than 0.1 (and less than 0.9).
Either way, the answer to the question in the problem is YES: based on the P-value, there are no reasons NOT to conclude that the die is fair.

Problem 8. Assume that the following is an independent random sample from population X with a continuous cdf $F_{X}(x)=F(x)$:

$$
\begin{array}{lllll}
14.4 & 15.5 & 13.3 & 12.1 & 12.2,
\end{array}
$$

and assume that the following is an independent random sample from population Y with $\operatorname{cdf} F_{Y}(x)=$ $F(x+\theta)$:

$$
\begin{array}{lllll}
18.8 & 15.0 & 10.7 & 9.4 & 10.6 .
\end{array}
$$

Compute the P-value of the sign test for the null hypothesis $\theta=0$ against the alternative $\theta>0$. Note that the alternative means that the random variable X is more likely to be large, that is, $\mathbb{P}(X>Y)>1 / 2$.

Solution: with the test statistic $M=\sum_{k=1}^{5} I\left(X_{k}>Y_{k}\right)$ we get $M^{*}=4$ (except for the first pair, all other X samples are bigger than the corresponding Y samples), and therefore P-value $=\mathbb{P}(\mathcal{B}(5,1 / 2) \geq 4)=\mathbb{P}(\mathcal{B}(5,1 / 2)=4)+\mathbb{P}(\mathcal{B}(5,1 / 2)=5)=(5+1) \cdot 2^{-5}=3 / 16$.

Problem 9. For the two samples in Problem 3, compute the Spearman rank correlation coefficient.

Solution. For the ranks of X, that is, the positions of X_{k} in the sample arranged in increasing order, we get $4,5,3,1,2$; the corresponding ranks of Y_{k} are $5,4,3,1,2$ and the sum of the squares of the differences of the ranks is 2 . Using the ' 'no-tie formula'' for r_{s}, with $n=5$, we get $r_{s}=1-(6 \cdot 2) /(5 \cdot 24)=1-0.1=$ 0.9 .

Problems 10. In a large class, the number of students absent at a particular lecture can be modeled as a Poisson random variable with mean value λ; the value of λ can be estimated using the Bayesian approach.

Suppose there were three students absent at the first lecture; this suggests Gamma $(3,1)$ as a prior distribution for λ. Assuming all the independence you need, compute the posterior distribution of λ if, over the next $n=20$ lectures, there were a total $N=71$ absences. Use the resulting posterior mean to compute the (posterior) probability that lecture number 22 will have full attendance.

Solution. Using the idea of conjugate priors (Gamma/Poisson), we conclude that, given the prior Gamma $(3,1)$, the posterior is $\operatorname{Gamma}(3+N, n+1)$, with posterior mean $\lambda^{*}=(3+N) /(n+1)=74 / 21 \approx 3.5$. The (posterior) probability of having full attendance at any subsequent lecture is then

$$
\mathbb{P}\left(\mathcal{P}\left(\lambda^{*}\right)=0\right)=e^{-\lambda^{*}} \approx 0.03
$$

