
Spring 2024, MATH 408, Final Exam

Wednesday, May 1; 11am–1pm
Instructor — S. Lototsky (KAP 248D; x0–2389; lototsky@usc.edu)

Instructions:

• No notes, no books, or other printed materials (including printouts from the
web), no collaboration with anybody (or anything, like AI).
• You should have access to a calculator or some other computing device, and

to the normal, t, χ2, and F distribution tables. Instead of the tables, you are
welcome to use the statistical functions available on your computing device.
• Answer all questions, show your work, and clearly indicate your answers;

upload the solutions to GradeScope.
• Each problem is worth 10 points.

A summary of main distributions

Name Notation pdf/pmf Mean Variance

Binomial B(n, p)
(
n
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)
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Poisson P(λ) e−λλk/k! λ λ
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Normal N (µ, σ2) (2πσ2)−1 exp
(
− (x− µ)2/(2σ2)

)
µ σ2

Problem 1. Given the set of numbers 30, 55, 60, 70, 65, and assuming that this is an independent
random sample from a normal population, construct a 95% confidence interval for the mean. Show
your work by filling in the corresponding numerical values:

• sample mean X̄n = 56.000
• sn = 15.572
• the quantile of the t distribution you use: with n = 5 and α/2 = 0.025, get t4,0.025 =

2.776,
• the final answer: X̄n ± sn√

n
t4,0.025 ≈ 56± 19 = [37, 75]

Problem 2. Let X1, . . . , Xn be an independent random sample such that the pdf of each Xk is

f(x; θ) =
1

2θ3
x2e−x/θ, x > 0, θ > 0.

Construct the maximum likelihood estimator θ̂ of θ. Make sure to verify that you indeed
maximized the likelihood function.
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Solution/Answer: the likelihood function is 2−nθ−3n

(∏n
k=1X

2
k

)
·exp

(
−nX̄n/θ

)
, with

X̄n denoting the sample mean. Then the (equivalent) function to maximize is

`(θ) = n(−3 ln θ − X̄nθ
−1). The equation `′(θ) = 0 gives −3θ−1 + X̄nθ

−2 or θ̂ = X̄n/3,

which, indeed, is the global max of the function: `′(θ) > 0 if θ < θ̂ and `′(θ) < 0 if

θ > θ̂; note that ` has an inflection point at θ = 2θ̂.

Problem 3. Suppose that two independent random samples from two populations X and Y
resulted in the following numerical values for the sample mean and standard deviation:

X̄n = 11.2, sn,X = 8.5, Ȳn = 10.5, sn,Y = 7.0.

Assume that n = 550. Can you claim that the population mean of X is significantly bigger than
the population mean of Y ? Justify your conclusion by computing the corresponding P value.

Solution/Answer: using large sample approximation (more precisely, combining the

CLT with LLN and the Slutsky theorem), X̄n is approximately normal with mean µX (the

population mean of X) and variance σ2
X/n ≈ s2n,X/n; Ȳn is approximately normal with

mean µY (the population mean of Y ) and variance σ2
Y /n ≈ s2n,Y /n.

Then
√
n(X̄n−Ȳn)(s2n,X+s2n,Y )−1/2 is approximately standard normal and the corresponding

one-sided test statistic is φ =
√
n(X̄n−Ȳn)(s2n,X+s2n,Y )−1/2. The observed value is φ∗ =

1.5 corresponding to the P value P(Z > 1.5) = 0.068 > 0.05. Therefore, you cannot

claim that the population mean of X is significantly bigger than the population mean

of Y .

Problem 4. Let X1, . . . , Xn be an independent random sample from the distribution with pdf

f(x; θ) =
1

2θ3
x2e−x/θ, x > 0, θ > 0.

Construct the most powerful test of H0 : θ = 2 against H1 : θ = 5 at the level α = 0.05.

Solution/Answer: The ratio of likelihoods that we want to be small when rejecting

H0 is, up to a constant, exp
(

(−0.5+0.2)nX̄n

)
= exp(−0.3nX̄n), where X̄n is the sample

mean. As a result, we reject H0 if nX̄n is LARGE.

Following the notations in the table, the original distribution is Gamma(3, 1/θ).
Because, under the null hypothesis θ = 2 the population is Gamma(3, 1/2), we conclude

that, under the null hypothesis, nX̄n is Gamma(3n, 1/2), so that the rejection rule

at level 0.05 is nX̄n ≥ Gamma(3n, 1/2)0.05, where the quantile on the right corresponds

to the ‘‘area to the right of the point’’. From problem 2 and the table, we know that

the sample mean is MLE for 3θ, that is, the bigger the θ, the bigger the value of X̄n

we expect to measure, confirming that the rejection rule makes sense. Note also that

Gamma(3n, 1/2) = χ2
6n.

Problem 5. For the first-year students at a certain university, the correlation between SAT
scores and the amount of money borrowed to pay for the study was -0.36. Assume the joint distri-
bution of the SAT scores and the borrowed money is normal. Predict the percentile rank on the
amount of money borrowed for a student whose percentile rank on the SAT was 85%.

Answer: with Φ denoting the standard normal cdf, we use one of the versions of the

regression line to compute the predicted ranking as Φ(−0.36Φ−1(0.85)) = Φ(−0.36·1.0364) =
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1− 0.64546 ≈ 35%.

Problem 6. Below is part of a two-way ANOVA table. Fill out the rest of the table.

Source SS df MS F Prob > F

Blocks 80 4 20 2.105 0.118045835...

Treatments 210 5 42 4.42 0.007124324...

Error 190 20 9.5

Total 480 29

Answers are in smaller font. Note that, using the F distribution table, you can

only conclude that P(F4,20 > 2.105) > 0.1 and P(F5,20 > 4.42) ∈ (0.005, 0.01)

Problem 7. To test whether a die is fair, 64 rolls were made, and the corresponding outcomes
were as follows:

Face value Observed frequency
1 8
2 9
3 15
4 15
5 9
6 8

Would you consider the die fair using a χ2 goodness of fit test? Justify your conclusion.

Solution: for the value ϕ∗ of the test statistic, which is the sum of

observed-minus-expected-squared-over-expected, with expected equal to 64/6 = 32/3,
we get

ϕ∗ = 2((24− 32)2 + (27− 32)2 + (45− 32)2)/(32 · 3) = (64 + 25 + 169)/48 = 5.375

and the P-value is

P(χ2
5 > ϕ∗) = 0.37184731...

Using the table, you can only conclude that the P-value is bigger than 0.1 (and less

than 0.9).

Either way, the answer to the question in the problem is YES: based on the P-value,
there are no reasons NOT to conclude that the die is fair.

Problem 8. Assume that the following is an independent random sample from population X
with a continuous cdf FX(x) = F (x):

14.4 15.5 13.3 12.1 12.2,
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and assume that the following is an independent random sample from population Y with cdf FY (x) =
F (x+ θ) :

18.8 15.0 10.7 9.4 10.6.

Compute the P -value of the sign test for the null hypothesis θ = 0 against the alternative θ > 0.
Note that the alternative means that the random variable X is more likely to be large, that is,
P(X > Y ) > 1/2.

Solution: with the test statistic M =
∑5

k=1 I(Xk > Yk) we get M∗ = 4 (except

for the first pair, all other X samples are bigger than the corresponding Y samples),

and therefore

P-value= P(B(5, 1/2) ≥ 4) = P(B(5, 1/2) = 4) + P(B(5, 1/2) = 5) = (5 + 1) · 2−5 = 3/16.

Problem 9. For the two samples in Problem 3, compute the Spearman rank correlation coeffi-
cient.

Solution. For the ranks of X, that is, the positions of Xk in the sample arranged

in increasing order, we get 4, 5, 3, 1, 2; the corresponding ranks of Yk are 5, 4, 3, 1, 2 and

the sum of the squares of the differences of the ranks is 2.
Using the ‘‘no-tie formula’’ for rs, with n = 5, we get rs = 1−(6·2)/(5·24) = 1−0.1 =
0.9.

Problems 10. In a large class, the number of students absent at a particular lecture can be
modeled as a Poisson random variable with mean value λ; the value of λ can be estimated using
the Bayesian approach.

Suppose there were three students absent at the first lecture; this suggests Gamma(3, 1) as a prior
distribution for λ. Assuming all the independence you need, compute the posterior distribution of
λ if, over the next n = 20 lectures, there were a total N = 71 absences. Use the resulting pos-
terior mean to compute the (posterior) probability that lecture number 22 will have full attendance.

Solution. Using the idea of conjugate priors (Gamma/Poisson), we conclude that,

given the prior Gamma(3, 1), the posterior is Gamma(3+N, n+1), with posterior mean

λ∗ = (3+N)/(n+1) = 74/21 ≈ 3.5. The (posterior) probability of having full attendance

at any subsequent lecture is then

P
(
P(λ∗) = 0

)
= e−λ

∗ ≈ 0.03.


