
Extreme Values: In distribution vs Path-wise1

Background. Given a sequence of random variables

X1, X2, X3, . . . ,

the objective is to understand the behavior of X∗n = max(X1, . . . , Xn) and X∗,n = min(X1, . . . , Xn).
Because of the equality

min(X1, . . . , Xn) = −max(−X1, . . . ,−Xn),

it is enough to understand one of the two.

The iid case. If Xk are iid as X, then, depending on the upper tail of the distribution of X, the
suitably normalized distribution of X∗n converges to Weibull, Fréchet, or Gumbel distribution. By
Borell-Cantelli, the normalization leads to the almost sure behavior of X∗n.

Example 1. X is uniform on [0, 1]. Then

P (1−X∗n > x) = P (X∗n < 1− x) = (1− x)n,

so that
lim
n→∞

P
(
n(1−X∗n) > x

)
= e−x

(a particular case of Weibull), and then, by Borell-Cantelli, we get the following limit with proba-
bility one:

lim sup
n→∞

− ln(1−Xn)

lnn
= 1.

Example 2. X is exponential with mean 1:

P (X > x) = e−x, x > 0.

Then
P (X∗n < x) = (1− e−x)n,

so that
lim
n→∞

P
(
X∗n < x + lnn

)
= e−e

−x

(Gumbel), and then, by Borell-Cantelli, we get the following limits with probability one:

lim
n→∞

X∗n
lnn

= 1, lim sup
n→∞

Xn

lnn
= 1.

Example 3. X is normal, mean zero, variance one. Now the exact normalization leading to Gumbel
involves the Lambert function W = W (z), the inverse of f(z) = zez. The corresponding almost
sure limit is rather explicit:

lim sup
n→∞

Xn√
2 lnn

= 1. (1.1)

Non-iid case is obviously much harder. The two examples where something can be done are
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• Gaussian case: if Xn is a stationary Gaussian sequence with mean zero and reasonably weak
dependence, then (1.1) still holds.
• The CLT setting: if Sn is a sum of iid random variables with mean zero and variance one, so

that Sn/
√
n converges in distribution to standard Gaussian, then we have the law of iterated

logarithm

lim sup
n→∞

Sn√
2n ln(lnn)

= 1;

in fact, the limit points of the sequence

{
Sn√

2n ln(lnn)
, n ≥ 5

}
are dense in [−1, 1]. Note also

that, even though Sn/
√
n is (almost) standard Gaussian for large n, the sup grows much

slower than (1.1): effects of dependence.


