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Let f : R→ R be a function satisfying

f (x + y) = f (x) + f (y), (0.1)

for all x, y ∈ R. Historical records at the École Polytechnique
(see Appendix II in [2]) tell us that Cauchy’s lecture on the 28th
of November 1818 to the first year students was on finding all
the possible continuous functions that satisfy (0.1). In addition to
this, he also talked about some variations such as

f (x + y) = f (x) f (y),

for all x, y ∈ R. The functional equation (0.1) is now known as
Cauchy’s functional equation. Cauchy showed that every contin-
uous solution of (0.1) is linear, i.e., given by f (x) = x f (1), while
Darboux observed that continuity at just one point is enough to
get the same conclusion. Moving ahead, in 1905, Hamel con-
structed discontinuous solutions using the notion of what is now
known as a Hamel basis. In this note, we begin by recalling these
well documented contributions and then discuss two very interest-
ing short papers written independently by Banach and Sierpiński
on this topic. Both appear in the first volume of Fundamenta
Mathematicae, bear the same title and prove the same theorem
that every Lebesgue measurable solution of (0.1) is also of the
form f (x) = x f (1), but by different methods. In what follows,
Lebesgue measure on the real line will be denoted by m.

1 Continuous Solutions
Keywords

Continuous solutions, Hamel ba-
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To discuss continuous solutions, first restrict f to Q, the rationals
and regard f : Q→ R. By setting x = y = 0 in (0.1), observe that
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Since f is an odd
function, it follows that
f (x) = cx for all x ∈ Q.

f (0) = 2 f (0) and hence f (0) = 0. Let c = f (1) and by appealing
to (0.1) once again, note that

f (2) = f (1) + f (1) = 2c.

By induction, it follows that f (n) = cn for every integer n ≥ 1.
But then

0 = f (0) = f (x + (−x)) = f (x) + f (−x),

for every x ∈ R and this shows that f (x) = − f (−x), i.e., f is an
odd function. In particular,

f (−n) = − f (n) = −cn,
for n ≥ 1. It follows that f (n) = cn for every integer n.

For a positive rational p/q ∈ Q,

q f (p/q) = f (p/q) + f (p/q) + . . . + f (p/q) = f (p) = cp

where the second equality is a consequence of repeatedly apply-
ing (0.1). Therefore f (p/q) = cp/q and hence f (x) = cx for all
positive rationals x. Since f is an odd function, it follows that
f (x) = cx for all x ∈ Q. Thus, f : Q → R is linear and note that
all of this is a consequence of just (0.1) – no further assumptions
on f are needed.

Now assume that f is continuous on R. Pick x ∈ R and choose a
sequence of rationals pi/qi converging to x. By continuity of f at
x,

f (x) = f
(
lim
i→∞ pi/qi

)
= lim

i→∞ f (pi/qi) = lim
i→∞ cpi/qi = cx,

and hence f is linear on R as claimed.

That f is linear also follows if f is assumed to be merely contin-
uous at a single point. Indeed, let f be continuous at x0 ∈ R and
let x ∈ R be arbitrary. Then

lim
h→x

f (h) = lim
h→x

f (h − x + x − x0 + x0)

= lim
h→x

( f (h − x + x0) + f (x − x0))

= lim
h→x

f (h − x + x0) + f (x − x0)

= f (x0) + f (x − x0) = f (x).
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As f is measurable,
Lusin’s theorem shows
that there is a closed set
F ⊂ [0, 1] with
m(F) ≥ 2/3 on which f
is continuous.

Here, the second, third and fifth equalities are due to (0.1) while
the fourth one holds by the continuity of f at x0. Hence, f is
continuous everywhere and by the above discussion, it must nec-
essarily be linear.

2 Measurable Solutions are Linear: Banach’s Proof

By the above discussion, it suffices to show that a measurable
solution of (0.1) is continuous at x = 0. For this, it is enough to
prove that for each ε > 0, there exists a δ > 0 such that

| f (h) − f (0)| = | f (h)| < ε,

for all h ∈ (0, δ); note that as f is odd, it is enough to consider
only positive values of h. Let ε > 0 be given. As f is measurable,
Lusin’s theorem shows that there is a closed set F ⊂ [0, 1] with
m(F) ≥ 2/3 on which f is continuous. As F is compact, f is
uniformly continuous on F. Therefore, there exists δ ∈ (0, 1/3)
such that

| f (x) − f (y)| < ε,
whenever x, y ∈ F and |x − y| < δ. Fix h ∈ (0, δ) and let

F − h = {x − h : x ∈ F}.

By translation invariance, m(F − h) = m(F) ≥ 2/3.

Claim: The sets F and F − h are not disjoint.

If F and F − h were disjoint, then

1 + h = m([−h, 1]) ≥ m(F ∪ (F − h)) = m(F) + m(F − h) ≥ 4/3,

and hence h ≥ 1/3. But this contradicts 0 < h < δ < 1/3.
Therefore, we may choose a ∈ F∩ (F−h) and then both a, a+h ∈
F. Since the distance between them is h which is less than δ, the
uniform continuity of f on F along with (0.1) shows that

| f (h)| = | f (a + h) − f (a)| < ε.

This completes the proof.
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3 Measurable Solutions are Linear: Sierpiński’s Proof

Let P,Q ⊂ R be sets of
positive Lebesgue

measure. Then there
exist p ∈ P and q ∈ Q

such that p − q ∈ Q.

Sierpiński’s proof uses the following lemma that is of indepen-
dent interest.

Let P,Q ⊂ R be sets of positive Lebesgue measure. Then there
exist p ∈ P and q ∈ Q such that p − q ∈ Q.

To prove this, we may assume that both P,Q are bounded. Let I
be a compact interval containing Q. By the definition of Lebesgue
measure, there exists, for ε = m(P)m(Q)/6m(I) > 0, a countable
collection of intervals I1, I2, . . . whose union covers P and

∞∑
i=1

m(Ii) < m(P) + ε. (3.1)

By subdividing the intervals Ii’s, if necessary, we may suppose
that the length of each Ii is less than m(I). Since the sum of the
lengths of the intervals Ii forms a convergent series, there exists
an integer N such that

∞∑
i=N+1

m(Ii) < ε. (3.2)

Note that

R = (P ∩ I1) ∪ (P ∩ I2) ∩ · · · ∪ (P ∩ IN),

and R1 = P \R are both measurable (since P is) and R1 is covered
by the intervals IN+1, IN+2, . . . the sum of whose lengths is less
than ε by (3.2). Consequently,

m(R) > m(P) − ε.
and hence

m(P)− ε < m(R) ≤ m(P∩ I1)+m(P∩ I2)+ . . .+m(P∩ IN). (3.3)

Note that m(P) − ε = m(P)(1 − m(Q)/6m(I)) > 0. Now, if

m(P ∩ Ii) ≤
(
m(P) − ε
m(P) + ε

)
m(Ii),
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for all 1 ≤ i ≤ N, then

m(P ∩ I1) + m(P ∩ I2) + . . . + m(P ∩ IN) ≤
(
m(P) − ε
m(P) + ε

)
(m(I1) + m(I2)

+ . . . + m(IN)) < m(P) − ε,

and this contradicts (3.3). Hence, there is an interval, say Ik (1 ≤
k ≤ N) with

m(P ∩ Ik) >

(
m(P) − ε
m(P) + ε

)
m(Ik).

We may also suppose that both end points of Ik are rational by
a suitably small adjustment. Let Ik = [a, b] and consider those
intervals of the form Ik+nm(Ik) = [a+n(b−a), b+n(b−a)], n ∈ Z
which intersect I. Since I is compact, there are only finitely many
such translated intervals with this property. Also, note that a pair
of these translated intervals are either disjoint or intersect only at
the end points.

Let s be the cardinality of the set

S = {n ∈ Z : the interval [a + n(b − a), b + n(b − a)] intersects I}.

A moment’s thought shows that (s − 2)m(Ik) ≤ m(I) and hence

sm(Ik) ≤ m(I) + 2m(Ik) < 3m(I).

Claim: The sets Q and
⋃

n∈S
(
(P ∩ Ik) + nm(Ik)

)
are not disjoint.

Note that both sets are contained in the union of Ik + nm(Ik) as n
varies in S. If these sets were disjoint, then

sm(Ik) = m
(⋃

n∈S
Ik + nm(Ik)

) ≥ m(Q) + m(
⋃
n∈S

(
(P ∩ Ik) + nm(Ik)

)
= m(Q) + sm(P ∩ Ik) > m(Q) + s

(
m(P) − ε
m(P) + ε

)
m(Ik).

Thus,

m(Q) < 2sεm(Ik)/(m(P) + ε) < 6εm(I)/m(P)

which is false, as ε = m(P)m(Q)/6m(I).
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It followsThe set of reals R is an
infinite dimensional

vector space over the
rationals Q.

that there exists q ∈ Q∩⋃
n∈S

(
(P∩ Ik)+nm(Ik)

)
. Since

m(Ik) = b − a ∈ Q, there exists p ∈ P whose distance from q is
rational.

Sierpiński now considers the function g(x) = f (x)− x f (1), where
f is a measurable function satisfying (0.1). It can be checked that
g also satisfies (0.1) and hence g(x) = 0 for all x ∈ Q as explained
earlier. It remains to show that g(x) = 0 for all x ∈ R. To this end,
let

A± = {x ∈ R : ±g(x) > 0}.
As g is an odd function, x 
→ −x is a bijection between A+ and
A− and hence they have the same Lebesgue measure. If m(A+) =
m(A−) > 0, the previous lemma shows that there are points a+ ∈
A+ and a− ∈ A− such that a+ − a− ∈ Q. Therefore g(a+ − a−) = 0.
But then g(a+ − a−) = g(a+) − g(a−) and this would mean that
g(a+) = g(a−) which is a contradiction. Hence, A+ and A− have
measure zero and so does their union A. The function g vanishes
precisely on R \A. If there were a point a ∈ R with g(a) � 0, then
the set

H = {x ∈ R : g(x + a) = 0},
which is obtained by merely translatingR\A by a units, must have
positive measure since Lebesgue measure is translation invariant
and R \ A has positive measure. On the other hand, for x ∈ H,

g(x) = −g(a) � 0,

by (0.1) and so x ∈ A. This implies that H ⊂ A and hence m(H) =
0. Contradiction!

4 Discontinuous Solutions

The set of reals R is an infinite dimensional vector space over the
rationals Q. By using the axiom of choice, there exists a collec-
tion of reals {rα} such that every x ∈ R can be expressed uniquely
as a finite linear combination of some of the rα’s, i.e.,

x =
m∑

i=1

λirαi
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where the λi’s are in Q and m depends on x. The collection {rα}
forms a Hamel basis for R over Q.

Define a function f on the set {rα} by setting f (rα) = sα, where
{sα} is an arbitrary collection of reals. Extend f to all of R by
linearity. Then f satisfies (0.1) as can be checked. This solution
cannot be continuous, or for that matter measurable, since the
only solutions are of the form f (x) = cx for some c and this
can only happen if f (x)/x is constant for all x. This means that
sα/rα = c for all α which is certainly not always true since the
choice of sα is entirely up to us.

We conclude by observing that the graphs of such solutions to
the Cauchy functional equation are dense in R2. Let f be a non-
linear solution to (0.1). Choose non-zero reals x1, x2 such that
f (x1)/x1 � f (x2)/x2. The vectors (x1, f (x1)) and (x2, f (x2)) are
linearly independent over R and so they span R2, i.e., an arbitrary
(x, y) ∈ R2 can be written as

(x, y) = c1(x1, f (x1)) + c2(x2, f (x2)),

for real constants c1, c2. Choose rational sequences an, bn con-
verging to c1, c2 respectively. The sequence an(x1, f (x1))+bn(x2, f (x2))
evidently converges to (x, y). It remains to note that each point
an(x1, f (x1)) + bn(x2, f (x2)) belongs to the graph of f since

f (anx1 + bnx2) = an f (x1) + bn f (x2),

by (0.1).
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