Instructions:

- No notes, no books or other printed materials (including printouts from the web), no collaboration with anybody (or anything, like AI).
- You should have access to a calculator or some other computing device, and to the χ^{2} and F distribution tables. Instead of the tables, you are welcome to use the statistical functions available on your computing device.
- Answer all questions, show your work, and clearly indicate your answers; upload the solutions to GradeScope.

- Each problem is worth 10 points.

Problem 1.

Below is part of a two-way ANOVA table for $b=5$ blocks and $k=6$ treatments. Fill out the rest of the table.

Source	SS	df	MS	F	Prob $>F$
Blocks	80	4	20	2.105	$0.118045835 \ldots$
Treatments	210	5	42	4.42	$0.007124324 \ldots$
Error	190	20	9.5		
Total	480	29			

Answers are in smaller font. Note that, using the table, you can only conclude that $\mathbb{P}\left(F_{4,20}>2.105\right)>0.1$ and $\mathbb{P}\left(F_{5,20}>4.42\right) \in(0.005,0.01)$

Problem 2.
To test whether a die is fair, 64 rolls were made, and the corresponding outcomes were as follows:

Face value	Observed frequency
1	8
2	9
3	15
4	15
5	9
6	8

Estimate the P-value if the χ^{2} test is used.
Solution: for the value φ^{*} of the test statistic, which is the sum of observed-minuswith expected equal to $64 / 6=32 / 3$, we get

$$
\varphi^{*}=2\left((24-32)^{2}+(27-32)^{2}+(45-32)^{2}\right) /(32 \cdot 3)=(64+25+169) / 48=5.375
$$

and the P-value is

$$
\mathbb{P}\left(\chi_{5}^{2}>\varphi^{*}\right)=0.37184731 \ldots
$$

Using the table, you can only conclude that the P-value is bigger than 0.1 (and less than 0.9).

Problem 3. Assume that the following is an independent random sample from population X with a continuous cdf $F_{X}(x)=F(x)$:

$$
\begin{array}{lllll}
14.4 & 15.5 & 13.3 & 11.1 & 12.2,
\end{array}
$$

and assume that the following is an independent random sample from population Y with $\operatorname{cdf} F_{Y}(x)=$ $F(x+\theta)$:

$$
\begin{array}{lllll}
8.8 & 10.0 & 7.7 & 4.4 & 0.6
\end{array}
$$

Compute the P-value of the sign test for the null hypothesis $\theta=0$ against the alternative $\theta>0$. Note that the alternative means that the random variable X is more likely to be large, that is, $\mathbb{P}(X>Y)>1 / 2$.

Solution: with the test statistic $M=\sum_{k=1}^{5} I\left(X_{k}>Y_{k}\right)$ we get $M^{*}=5$ (all X samples are bigger than the corresponding Y samples), and therefore P-value $=\mathbb{P}(\mathcal{B}(5,1 / 2) \geq 5)=\mathbb{P}(\mathcal{B}(5,1 / 2)=5)=2^{-5}=1 / 32$.

Problem 4. For the two samples in Problem 3, compute the Spearman rank correlation coefficient.

Solution. For the ranks of X, that is, the positions of X_{k} in the sample arranged in increasing order, we get $4,5,3,1,2$; the corresponding ranks of Y_{k} are $4,5,3,2,1$ and the sum of the squares of the differences of the ranks is 2.
Using the ''no-tie formula'' for r_{s}, with $n=5$, we get $r_{s}=1-(6 \cdot 2) /(5 \cdot 24)=1-0.1=$ 0.9

Problems 5. A coin-making machine produces pennies with unknown probability p to turn up heads; this probability is equally likely to be any number between 0 and 1 .

A coin pops out of the machine, flipped 22 times and lands heads 5 times. Compute the Bayesian estimate \hat{p} of p.

Solution. Using the idea of conjugate priors (Beta/Binomial), we conclude that, given the prior $\operatorname{Beta}(1,1)$ (uniform), the posterior is $\operatorname{Beta}(5+1,17+1)$, and then \hat{p}, being the posterior mean, is $(5+1) /(22+2)=1 / 4$.

