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A Closer Look at the Compensating
Polar Planimeter
John Eggers

John Eggers (jeggers@ucsd.edu, MR ID 1228813,
ORCID ID 000-0001-8064-7004) received his Ph.D. in
Mathematics from the University of California at San Diego
in 1995 where he is now a faculty member of the
Mathematics Department. His primary work is in
undergraduate education. This may have led to his interest
in juggling, making and throwing boomerangs, and
collecting and playing with planimeters.

Although much has been written on the subject of polar planimeters, they still re-
main relatively obscure instruments. This is unfortunate: not only do they provide a
remarkably quick and precise method for measuring areas, they have a fascinating
history and are a delightful example of Green’s theorem to show calculus students
(or colleagues, for that matter). Perhaps part of the reason polar planimeters are not
discussed in calculus courses is that an explicit computation with the relevant vector
field using Green’s theorem is somewhat complicated. (There are geometric explana-
tions of planimeter operation that avoid Green’s theorem, but it is debatable whether
they are simpler. See [6, 9].) In this paper, we avoid tedious computation by applying
Green’s theorem to an implicit representation of the planimeter vector field. The re-
sulting simplification should make the explanation of the polar planimeter accessible
to any calculus student with a knowledge of partial derivatives and a modest back-
ground of linear algebra. We will also discuss two other important features specific to
polar planimeters: (1) the neutral circle, and (2) how compensating polar planimeters
compensate.

A brief description of planimeter operation
A polar planimeter is a mechanical device used to measure the area of a region by
tracing the boundary of the region. Figure 1 shows a compensating polar planimeter
from the author’s collection that indicates how it is used.

The instrument consists of three major components: a (1) pole arm, (2) tracer arm,
and (3) measuring wheel. The pole arm merely rotates about the pole, the tracer arm
is connected to the free end of the pole arm by a pivot joint (a ball and socket joint
in the case of the compensating polar planimeter pictured in Figure 1), and the mea-
suring wheel is attached to the tracer arm with its axis parallel to the tracer arm. The
area enclosed by a simple closed curved is measured by moving the tracer along the
curve clockwise and recording the amount the measuring wheel moves which, as we
will see, is proportional to the area enclosed by the curve. The dial keeps track of

doi.org/10.1080/07468342.2020.1702852
MSC: 00A69; 26B12; 97A30
c© 2020 The Authors. Published with license by Taylor & Francis Group, LLC.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits
non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly
cited, and is not altered, transformed, or built upon in any way.

VOL. 51, NO. 2, MARCH 2020 THE COLLEGE MATHEMATICS JOURNAL 105

mailto:jeggers@ucsd.edu
http://mathscinet.ams.org/mathscinet/mrauthorid/1228813
http://orcid.org/000-0001-8064-7004
http://dx.doi.org/10.1080/07468342.2020.1702852
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. A compensating polar planimeter.

how many complete rotations are made by the measuring wheel, and the guide wheel
merely balances the instrument so that it does not tip over while tracing. See [10]
for a more complete description of the technical aspects of using a polar planimeter,
including how to take into account the area of the neutral circle and how to make use
of a compensating polar planimeter.

The polar planimeter was invented by Jakob Amsler in 1854 (see [9]) and Amsler
published a paper describing it in 1856 (see [1], and [4] for a link to [1]). The polar
planimeter is not the only type of planimeter; there are other types of planimeters. See
[11] for a brief mathematical discussion of several types of planimeters; see [9,12] for
a more complete historical discussion of planimeters.

Analysis of planimeter operation
The basic design of a polar planimeter is remarkable in its simplicity: as indicated
above, it consists of two rigid arms connected by a pivot joint. An idealized version is
depicted in Figure 2. One arm, called the pole arm with length P , has an end fixed at a
point (0, 0) called the pole, about which the pole arm is free to rotate. The other arm,
called the tracer arm of length T , is connected at one end to the free end of the pole
arm by a pivot joint (a, b) that is free to rotate. At the other end of the tracer arm is the
tracer point (x, y) which is used to trace the boundary curve C (assumed to be a simple
closed curve) of the region D. A measuring wheel W is attached to the tracer arm with
its axis parallel to the tracer arm. In order to simplify the ensuing computations, the
measuring wheel W of our idealized planimeter is drawn coincident with the tracer
point. The vector τ in Figure 2 represents the unit vector perpendicular to the tracer
arm in the direction of positive measuring wheel motion.

It is clear that placing the measuring wheel coincident with the tracer point is an
impractical design for a usable planimeter. However, the computations resulting from
placing it there in our idealized planimeter will be correct since, as we will see, the dis-
placement M of the measuring wheel during a normal tracing operation is independent
of the placement of the measuring wheel W along the tracer arm. We define normal
tracing operation to mean that the curve is traced with the pole of the planimeter out-
side the region enclosed by the curve. We will consider what happens when the pole
of the planimeter is placed inside the region enclosed by the curve in the “The neutral
circle” section of this paper.

To see that the total wheel displacement M during a normal tracing operation is
independent of the placement of the measuring wheel, we first observe that the dis-
placement of a tracer arm can be decomposed into a component perpendicular to
the tracer arm and a component arising from rotation about the pivot, as indicated
in Figure 3. The parameter w represents the displacement of the measuring wheel W
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Figure 2. An idealized polar planimeter.

from the pivot (a, b) along the tracer arm. Note that on some planimeters, the pivot is
between the measuring wheel and the tracer point, in which case w would be negative.

Figure 3. Decomposition of wheel motion.

As indicated in Figure 3, a wheel displacement �M resulting from a tracer dis-
placement from (x1, y1) − (a1, b1) to (x2, y2) − (a2, b2) can be expressed in the form
�M = w�θ1 + �s2 + w�θ3, where the displacements are performed in the order in-
dicated by the numeric subscripts. �θ1 is the angle of rotation that places the tracer
arm perpendicular to the line joining the initial pivot position (a1, b1) to the final pivot
position (a2, b2) so that �s2 is a displacement perpendicular to the tracer arm. �θ3 is
the angle of rotation placing the tracer point at its final position (x2, y2). We see that
�M = �s + w�θ .

We conclude that the total wheel displacement can be expressed as M = ∫
C

ds +
w

∫
C

dθ , where
∫

C
ds is the contribution from motion perpendicular to the tracer arm

and w
∫

C
dθ is the contribution from rotational motion about the pivot. We now ob-

serve that the geometric constraint on the tracer arm during a normal tracer operation
implies that

∫
C

dθ = 0 since the tracer arm must return to its original position without
making a complete revolution (since the pole is not inside the region enclosed by the
curve). Thus, during a normal tracing operation, M = ∫

C
ds, which is independent of

the placement of the measuring wheel along the tracer arm, as claimed.
In Amsler’s original design for the polar planimeter (see Figure 4), the pivot joint

(a, b) was constrained to lie on one side of the line joining the pole (0, 0) and the tracer
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point (x, y). With this constraint, the coordinates (a, b) of the pivot joint are uniquely
determined by the coordinates (x, y) of the tracer point.

We will denote by � the open disk of radius P + T centered at the pole (0, 0) and
write ∂� for its bounding circle. Note that ∂� is the circle the planimeter traces with
its pole and tracer arms fully extended and that all points accessible to the planimeter
lie in �.

However, not all points of � are accessible to the planimeter. Thus, we define the
set A ⊂ � of accessible points to be the open annular region
A = {

(x, y) | (P − T )2 < x2 + y2 < (P + T )2
}
. This definition precludes the pos-

sibility that the pole and tracer arms would be parallel with the tracer point at an
accessible point (x, y). That is, (x, y) an accessible point implies (x, y) �= λ(a, b) for
any λ. In particular, the pole (0, 0) is not an accessible point.

We define a set S to be accessible if the closure of S is contained in A. Thus, a
simply connected domain D is accessible precisely when all points of both D and its
boundary curve are accessible. Since a simple closed curve is traceable precisely when
it is accessible, we will use the terminology “traceable curve” and “accessible curve”
interchangeably.

Accessible curves fall into one of two categories: those that do not enclose the pole
(0, 0) and those that do enclose (0, 0). Tracing an accessible curve C that does not
enclose the pole (0, 0) results in a normal tracing operation, in which case the enclosed
domain D is also accessible, as depicted in Figure 2. Curves that enclose the pole will
be considered in the “The neutral circle” section.

Since Green’s theorem will be used to prove that a polar planimeter actually mea-
sures the area enclosed by a simple closed curve by tracing the curve, we will state
Green’s theorem here for reference. Although there are stronger versions of Green’s
theorem (see, e.g., [2, 3, 5]), we will use the form of Green’s theorem stated in most
textbooks:

Theorem (Green’s theorem). Let D be a simply connected domain bounded by
a piecewise continuously differentiable simple closed curve C. Let P(x, y) and
Q(x, y) be continuously differentiable on a neighborhood of D ∪ C. Then,∫

C

P dx + Q dy =
∫∫

D

(
∂Q

∂x
− ∂P

∂y

)
dx dy.

Figure 4. An Amsler polar planimeter.

There are many explanations for why a planimeter works, but they are all based on
the fact that the measuring wheel is constrained to roll in a direction perpendicular
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to the tracer arm. This means the displacement M of the measuring wheel may be
expressed as the line integral around the simple closed curve C of the unit vector τ (see
Figure 2) perpendicular to the tracer arm T and oriented to point in the direction of
positive wheel motion; that is, M = ∫

C
τ · dr. Thus, adopting the standard convention

that positive orientation corresponds to a counter-clockwise traversal around C, we
have τ = 1

T
(− (y − b) , x − a), where T is the length of the tracer arm, and

M =
∫

C

τ · dr = 1

T

∫
C

− (y − b) dx + (x − a) dy,

where (x, y) are the coordinates of the tracer point moving along the curve C and
(a, b) are the coordinates of the pivot joint connecting the pole arm and tracer arm.
In practice, planimeters are manufactured so that positive wheel displacement corre-
sponds to a clockwise traversal of C, but we will stay with the standard mathematical
convention to avoid confusion.

Since the pivot coordinates (a, b) are functions of the coordinates (x, y), applying
Green’s theorem to the line integral representing the measuring wheel displacement M

yields

M = 1

T

∫∫
D

[
2 −

(
∂a

∂x
+ ∂b

∂y

)]
dx dy,

where D is the simply connected domain bounded by C. Thus, if we demonstrate
that ∂a

∂x
+ ∂b

∂y
= 1 on D, it will follow immediately that the displacement M of the

measuring wheel is proportional to the area A(D) of the region D. While it is possible
to obtain an explicit expression for the partial derivatives in terms of (x, y) (see, e.g.,
[7]), it is easier to obtain an implicit expression for ∂a

∂x
+ ∂b

∂y
. To do this, observe that

(a, b) satisfy

a2 + b2 = P 2,

(x − a)2 + (y − b)2 = T 2,

where P and T are the length of the pole arm and tracer arm, respectively. It follows
that (a, b) satisfy the following system of partial differential equations:

(1) a
∂a

∂x
+ b

∂b

∂x
= 0, (2) a

∂a

∂y
+ b

∂b

∂y
= 0,

(3) x
∂a

∂x
+ y

∂b

∂x
= x − a, and (4) x

∂a

∂y
+ y

∂b

∂y
= y − b.

Treating this as a system of four linear equations in the four unknowns
∂a

∂x
,

∂a

∂y
,

∂b

∂x

and
∂b

∂y
, we find that

∂a

∂x
= −b(x − a)

ay − bx
,

∂a

∂y
= −b(y − b)

ay − bx
,

∂b

∂x
= a(x − a)

ay − bx
, and

∂b

∂y
= a(y − b)

ay − bx
.
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Therefore,

∂a

∂x
+ ∂b

∂y
= ay − bx

ay − bx
= 1, provided (x, y) �= λ(a, b) for any constant λ.

We saw previously that the condition (x, y) �= λ(a, b) for any λ holds for all ac-
cessible points (x, y) and that the domain D enclosed by an accessible simple closed
curve C not encircling the pole (0, 0) is also accessible. In this situation, the above
argument shows that the planimeter vector field τ = 1

T
(− (y − b) , x − a) is con-

tinuously differentiable in a neighborhood of D ∪ C. If, in addition, C is piecewise
continuously differentiable, it follows from Green’s theorem that the wheel displace-

ment M = 1

T

∫∫
D

dx dy = 1

T
A(D), and we have the following:

Theorem (Planimeter theorem). Given a polar planimeter with tracer arm length
T and an accessible piecewise continuously differentiable simple closed curve C. If the
domain D enclosed by C does not contain the pole of the planimeter, then

T M = A(D)

where A(D) is the area of D and M is the displacement of the planimeter’s measuring
wheel.

A practical consequence of this result is that the tracer arm length T acts as a scale
factor for the measuring wheel. In fact, this is how planimeters are calibrated and many
of the early planimeter models had adjustable-length tracer arms so that they could be
quickly adjusted to read the enclosed area using different scales.

The neutral circle
As we have seen, Green’s theorem cannot be applied directly to the situation where
the pole (0, 0) is in the domain D. To see what happens in this situation, we first
consider the special case of the disk �β of radius R = P cos(α) + T cos(β) centered
at the pole (0, 0). The boundary circle ∂�β can be traced with the tracer arm inclined
at a small fixed angle β with the radial segment from (0, 0) to the tracer point, as
in Figure 5. Note that P sin(α) = T sin(β) by the law of sines, so that P 2 cos2(α) =
P 2 − T 2 + T 2 cos2(β). Denoting by θ the angle the radial vector (x, y) makes with the
positive x-axis, the planimeter vector field τ = (− sin(θ − β), cos(θ − β)) along ∂�β

and its component tangent to ∂�β is cos(β). Thus, the measuring wheel displacement
M∂�β

is M∂�β
= 2π cos(β) [P cos(α) + T cos(β)]; whereas, the area enclosed by �β

is

A(�β) = π [P cos(α) + T cos(β)]2 = π [P 2 − T 2 + 2T cos2(β) + 2PT cos(α) cos(β)].

We conclude that

A(�β) = T M∂�β
+ π

(
P 2 − T 2

)
.

Next, we consider a simple closed curve C interior to � and enclosing (0, 0), as in
Figure 6. Since C is interior to �, C is interior to a disk �β for a sufficiently small
angle β. Since the region �β \ D interior to ∂�β and exterior to C does not contain
(0, 0), by an application of Green’s theorem, its area can be measured dire ctly by the
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Figure 5. Circle centered at pole.

planimeter: A(�β) − A(D) = T M∂�β
− T MC . Thus, A(D) = T MC + A(�β) −

T M∂�β
= T MC + π (P 2 − T 2) for every simple closed curve C enclosing an ac-

cessible domain D containing (0, 0). For most polar planimeters, the pole arm length
P is greater than the tracer arm length T , and under the assumption that P > T , the
quantity RN = √

P 2 − T 2 is called the radius of the neutral circle. When our idealized
planimeter is set up to trace a circle centered at (0, 0) with radius RN = √

P 2 − T 2,
we see that T , RN , and P form a right triangle with hypotenuse P so that the measur-
ing wheel’s axis is tangent to the circle and its displacement after tracing the circle is
zero. Hence the name “neutral circle.”

Figure 6. Pole inside.
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We have seen that when the curve C enclosed the pole (0, 0), the area A(D) =
T MC + πR2

N , where the radius of the neutral circle RN = √
P 2 − T 2 for our idealized

polar planimeter. However, unlike the situation where the curve C does not enclose
the pole (0, 0), the measuring wheel displacement MC along C does depend on the
placement of the measuring wheel along the tracer arm T when C encloses the pole
(0, 0). This implies that the radius of the neutral circle RN depends on the placement
of the measuring wheel along the tracer arm of the particular planimeter being used.

Observe that the relationship A(�β) = T M∂�β
+ π

(
P 2 − T 2

)
that we derived

above remains true in the limit as β tends to 0; that is, A(�) = T M∂� + π
(
P 2 − T 2

)
since π (P + T )2 = T · 2π (P + T ) + π

(
P 2 − T 2

)
. This means we could have de-

termined the radius of the neutral circle by doing the above computation with the
planimeter fully extended, even though the hypotheses of Green’s theorem are not met
when the planimeter is fully extended.

To compute RN for a planimeter with its measuring wheel displaced a distance
w from the pivot (a, b) along the tracer arm T , we fully extend the planimeter, as
indicated in Figure 7. (Note: Some planimeters situate the measuring wheel on the
pole side of the pivot. The computation of RN in that case is similar and left to the
interested reader.)

Figure 7. Extended planimeter.

Tracing the circle ∂� of radius P + T with the planimeter fully extended, we see
that the enclosed area is A(D) = π (P + T )2 and the measuring wheel displacement
M∂� = 2π (P + w). Thus, the area of the neutral circle is

πR2
N = A(D) − T M∂� = π (P + T )2 − 2πT (P + w) = π

[(
P 2 − w2

)
+ (T − w)2

]
.

It follows that the radius of the neutral circle RN =
√(

P 2 − w2
) + (T − w)2.

The geometry of the neutral circle is depicted in Figure 8. Note how the direction the
measuring wheel rolls is orthogonal to the path it traverses as the neutral circle CN is
traced so that the measuring wheel displacement after tracing the neutral circle is zero.
Perhaps it’s worth mentioning that w = T for our idealized planimeter and, in that
case, the formula for the radius of the neutral circle RN reduces to RN = √

P 2 − T 2,
as it should.

In practice, most planimeter manufacturers tested each instrument they produced to
determine the area of its neutral circle and included this information with the instru-
ment, as in Figure 9.

The compensating polar planimeter
In the original design of polar planimeters pioneered by Jakob Amsler, the tracer and
pole arms are permanently attached by a hinged joint. In 1894, Gottlieb Coradi in-
troduced the compensating polar planimeter, based on a design patented by Lang (and
sometimes called the Lang–Coradi planimeter) in 1893 in Switzerland [9]. This design
has persisted essentially unchanged to the present day. (See Figure 10.)
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Figure 8. Geometry of neutral circle.

Figure 9. Area of neutral circle on data card.

Figure 10. A Coradi compensating polar planimeter.
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In a compensating polar planimeter, the pole and tracer arms are separate pieces
that fit together via a ball-and-socket pivot joint; Figure 11 shows this for the planime-
ter used in Figure 1. This design allows the instrument to be set up in two distinct
orientations with the pivot joint on either side of the line through the pole and tracer
point (see Figure 13). By taking readings with each orientation of the pivot joint and
averaging the results, errors caused by misalignment of the measuring wheel exactly
cancel; thus, the design allows one to compensate for this type of error.

Figure 11. Parts of a compensating polar planimeter.

To see that this design actually compensates for a misaligned measuring wheel, we
recall that τ = 1

T
(− (y − b) , x − a) is the unit vector perpendicular to the tracer arm

and in the direction of positive wheel motion, and we set ρ = 1
T
(x − a, y − b) be the

unit vector parallel to the tracer arm in the direction from the pivot (a, b) toward the
tracer point (x, y). Then, if the measuring wheel axis is misaligned by an angle ϑ

(hopefully small!), the unit vector w in the direction of positive wheel displacement
is no longer perpendicular to the tracer arm and can be expressed as w = cos(ϑ)τ −
sin(ϑ)ρ. (See Figure 12.)

Thus, the displacement M of the measuring wheel after tracing a curve C enclosing
a domain D is given by

M = cos(ϑ)

∫
C

τ · dr − sin(ϑ)

∫
C

ρ · dr

= cos(ϑ)

T
A(D) − sin(ϑ)

∫
C

ρ · dr.

In other words,

A(D) = T sec(ϑ) M + T tan(ϑ)

∫
C

ρ · dr.

Assuming that ϑ is constant, the factor sec(ϑ) can be compensated for by adjusting
the tracer arm length T ; however, the term involving

∫
C

ρ · dr cannot be “calibrated
away” since it depends on the curve C.

Consider what happens if the compensating polar planimeter is placed in the two
possible configurations. At any point r = (x, y) on the curve C, there are two possible
values for the unit vector ρ: ρL and ρR (see Figure 13).
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Figure 12. Measuring wheel misaligned by ϑ .

Figure 13. Two configurations of a compensating polar planimeter.

Since the two configurations are symmetric about the line connecting the pole (0, 0)

and the tracer point (x, y), ρL + ρR is parallel to the vector r = (x, y) and the length
of ρL + ρR depends only on the distance r = √

x2 + y2 between the pole (0, 0) and
the tracer point (x, y). In fact,

ρL + ρR = 1

T

[
1 − P 2 − T 2

r2

]
r = 1

T
∇

[
1

2
r2 − (

P 2 − T 2
)

log(r)

]
.

Thus, ρL + ρR is a gradient field and it follows that
∫

C
ρL · dr + ∫

C
ρR · dr = 0 for ev-

ery simple closed curve not passing through the pole (0, 0). This shows that averaging
the readings of the compensating polar planimeter taken with the two configurations
eliminates the error due to misalignment of the measuring wheel.

The design of the compensating polar planimeter allows more precise measurement
and by the 1930s the compensating polar planimeter had essentially displaced the orig-
inal Amsler design.

Epilogue
Planimeters are fascinating instruments that deserve to be better known. They have
an interesting history (see, e.g., [9, 12]) and are a perfect example of a mechanical
implementation of Green’s theorem. In fact, planimeters are still manufactured today
and find a variety of interesting uses (see, e.g., [8]).

Acknowledgments. The author gratefully thanks the referees for a careful review and for
astute recommendations which substantially improved this paper.

Summary. A polar planimeter measures the area of a region by tracing its perimeter. In this
paper, we (1) show a simple approach to analyzing the operation of a polar planimeter, (2)
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explain what a neutral circle is and its significance, (3) explain what it is that a compensating
polar planimeter compensates for, and (4) provide a glimpse of the fascinating history of this
instrument.
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[2] Apostol, T. M. (1957). Mathematical Analysis: A Modern Approach to Advanced Calculus. Boston:
Addison-Wesley.

[3] Bochner, S. (1955). Green-Goursat theorem. Math. Z. 63: 230–242.
[4] Casselman, B., Eggers, J. (2008). The Mathematics of Surveying: Part II. The Planimeter. American Math-

ematical Society Feature Column, June–July. ams.org/featurecolumn/archive/surveying-two.html
[5] Cohen, P. J. (1959). On Green’s theorem. Proc. Amer. Math. Soc. 10(1): 109–112.
[6] Foote, R. L. (2009). How planimeters work. persweb.wabash.edu/facstaff/footer/Planimeter/HowPlani-

metersWork.htm
[7] Gatterdam, R. W. (1981). The planimeter as an example of Green’s theorem. Amer. Math. Monthly. 88(9):

701–704.
[8] Gebruder HAFF GmbH. Examples of use of all planimeters. haff.com/anwendungen e.htm
[9] Henrici, O. (1894). Report on planimeters. Report of the Sixty-Fourth Meeting of the British Association

for the Advancement of Science, pp. 496–523.
[10] Keuffel & Esser Company. Compensating polar planimeters (1957 manual). mccoys-kecatalogs.com/

KEManuals/Planimeter 4236/Planimeter 4236 1957.htm
[11] Leise, T. (2007). As the planimeter’s wheel turns: planimeter proofs for calculus class. Coll. Math. J. 38(1):

24–31.
[12] Shaw, H. S. H. (1886). Mechanical Integrators, Including the Various Forms of Planimeters. D. Van Nostran.

116 © THE AUTHOR(S). PUBLISHED WITH LICENSE BY TAYLOR & FRANCIS

http://www.ams.org/featurecolumn/archive/surveying-two.html
http://persweb.wabash.edu/facstaff/footer/Planimeter/HowPlani-metersWork.htm
http://persweb.wabash.edu/facstaff/footer/Planimeter/HowPlani-metersWork.htm
http://www.haff.com/anwendungen_e.htm
https://www.mccoys-kecatalogs.com/KEManuals/Planimeter_4236/Planimeter_4236_1957.htm
https://www.mccoys-kecatalogs.com/KEManuals/Planimeter_4236/Planimeter_4236_1957.htm

	A brief description of planimeter operation
	Analysis of planimeter operation
	The neutral circle
	The compensating polar planimeter
	Epilogue

