Spring 2024, MATH 408, Mid-Term Exam 1: Solutions and more

Problem 1. Given the set of numbers $30,55,60,70,65$, and assuming that this is an independent random sample from a normal population, construct a 95% confidence interval for the standard deviation. Show your work by filling in the corresponding numerical values:

- sample mean $=56.000$
- $s_{n}=15.572$
- the two quantiles of χ^{2} you use: with $n=5$, use χ_{4}^{2}, so that the upper quantile is 11.143 (area above/to the right is 0.025), the lower is 0.483 (area above is 0.975)
- the final answer: $[9,45]$

More: How will your solution change if, instead of the individual numbers, you are given the summary statistics $\sum_{k=1}^{n} X_{k}, \sum_{k=1}^{n} X_{k}^{2}$? How will you proceed if n is LARGE (E.G. $n=256$)?

Problem 2. Let X_{1}, \ldots, X_{n} be an independent random sample such that the pdf of each X_{k} is

$$
f(x ; \theta)=\frac{\theta^{3}}{2} x^{2} e^{-\theta x}, x>0, \quad \theta>0
$$

Construct the maximum likelihood estimator of θ. Make sure to verify that you indeed maximized the likelihood function.

Solution/Answer: the likelihood function is $2^{-n} \theta^{3 n}\left(\prod_{k=1}^{n} X_{k}^{2}\right) \cdot \exp \left(-n \theta \bar{X}_{n}\right)$, with \bar{X}_{n} denoting the sample mean. Then the (equivalent) function to maximize is
$\ell(\theta)=n\left(3 \ln \theta-\theta \bar{X}_{n}\right)$. The equation $\ell^{\prime}(\theta)=0$ gives $\theta=3 / \bar{X}_{n}$, which is the global \max of the function: $\ell^{\prime \prime}(\theta)=-3 / \theta^{2}<0$. Thus, $\widehat{\theta}^{(M L E)}=3 / \bar{X}_{n}$.

More: think how you would construct a confidence interval for θ given numerical values of n and \bar{X}_{n}. You can try both normal approximation (for large n) AND THE EXACT PIVOT BASED ON THE DISTRIBUTION OF $n \bar{X}_{n}$. Then think how to construct a confidence interval for $1 / \sqrt{\theta}$ or some other non-linear function of θ.

Problem 3. Suppose that two independent random samples from two populations X and Y resulted in the following numerical values for the sample mean and standard deviation:

$$
\bar{X}_{n}=11.2, s_{n, X}=8.5, \bar{Y}_{n}=10.5, s_{n, Y}=7.0
$$

Assume that $n=550$. Is there a (statistically) significant difference between the population means of X and Y ? Justify your conclusion by computing the corresponding P value.

Solution/Answer: using large sample approximation (more precisely, combining the CLT with LLN and the Slutsky theorem), \bar{X}_{n} is approximately normal with mean μ_{X} (the population mean of X) and variance $\sigma_{X}^{2} / n \approx s_{n, X}^{2} / n ; \bar{Y}_{n}$ is approximately normal with mean μ_{Y} (the population mean of Y) and variance $\sigma_{X}^{2} / n \approx s_{n, X}^{2} / n$.

Then $\sqrt{n}\left(\bar{X}_{n}-\bar{Y}_{n}\right)\left(s_{n, X}^{2}+s_{n, Y}^{2}\right)^{-1 / 2}$ is approximately standard normal and the corresponding two-sided test statistic is $\phi=\sqrt{n}\left|\bar{X}_{n}-\bar{Y}_{n}\right|\left(s_{n, X}^{2}+s_{n, Y}^{2}\right)^{-1 / 2}$. The observed value is $\phi^{*}=$ 1.5 corresponding to the P value $\mathbb{P}(|Z|>1.5)=0.136$, meaning that the numbers do not indicate a statistically significant difference between the population means.

More: assuming the same values for the sample means and standard deviations, think about the following questions. Will the conclusion change if $n=500$ (or any $n<550$, for that matter) and why? What is the smallest value of n that WOULD LEAD to a different conclusion? What if we are only interested in whether the sample mean of X is bigger?

Problem 4. Let X_{1}, \ldots, X_{n} be an independent random sample from the distribution with pdf

$$
f(x ; \theta)=\frac{\theta^{3}}{2} x^{2} e^{-\theta x}, \quad x>0, \theta>0
$$

Construct the most powerful test of $H_{0}: \theta=2$ against $H_{1}: \theta=5$ at the level $\alpha=0.05$.
Solution/Answer: The ratio of likelihoods that we want to be small when rejecting H_{0} is, up to a constant, $\exp \left((-2+5) n \bar{X}_{n}\right)=\exp \left(3 n \bar{X}_{n}\right)$, where \bar{X}_{n} is the sample mean. As a result, we reject H_{0} if $n \bar{X}_{n}$ is small.

Call the original distribution $\operatorname{Gamma}(3, \theta)$. Because, under the null hypothesis $\theta=$ 2 the population is $\operatorname{Gamma}(3,2)$, we conclude that, under the null hypothesis, $n \bar{X}_{n}$ is Gamma $(3 n, 2)$, so that the rejection rule at level 0.05 is $n \bar{X}_{n} \leq \operatorname{Gamma}(3 n, 2)_{0.95}$, where the quantile on the right corresponds to the ''area to the right of the point'). From problem 2 we know that the sample mean is MLE for $3 / \theta$, that is, the bigger the θ, the smaller the value of \bar{X}_{n} we expect to measure, confirming that the rejection rule makes sense.

More: ASSUming $n=30$, what is the power of this test? See if you get upper and lower bounds using the χ^{2} tables and a more precise value using your favorite STATISTICAL SOFTWARE.

Problem 5. For the first-year students at a certain university, the correlation between SAT scores and first-year GPA was 0.36 . Assume the distribution of the scores is jointly normal. Predict the percentile rank on the first-year GPA for a student whose percentile rank on the SAT was 85%.

Answer: with Φ denoting the standard normal cdf, we compute the predicted ranking as $\Phi\left(0.36 \Phi^{-1}(0.85)\right)=\Phi(0.36 * 1.0364)=0.64546=65 \%$

More: how will your answer change if, for some strange reasons, the correLation is negative: $\rho=-0.36$? Can you think of a situation where the correlation is naturally negative and propose a corresponding problem?

