Spring 2024, MATH 408, Mid-Term Exam 1: Solutions and more

Problem 1. Given the set of numbers 30, 55, 60, 70, 65, and assuming that this is an independent random sample from a normal population, construct a 95% confidence interval for the standard deviation. Show your work by filling in the corresponding numerical values:

- sample mean = 56.000
- $s_n = 15.572$
- the two quantiles of χ^2 you use: with n = 5, use χ_4^2 , so that the upper quantile is 11.143 (area above/to the right is 0.025), the lower is 0.483 (area above is 0.975)
- the final answer: [9, 45]

More: How will your solution change if, instead of the individual numbers, you are given the summary statistics $\sum_{k=1}^{n} X_k$, $\sum_{k=1}^{n} X_k^2$? How will you proceed if n is large (e.g. n = 256)?

Problem 2. Let X_1, \ldots, X_n be an independent random sample such that the pdf of each X_k is

$$f(x;\theta) = \frac{\theta^3}{2} x^2 e^{-\theta x}, \ x > 0, \ \theta > 0.$$

Construct the maximum likelihood estimator of θ . Make sure to verify that you indeed maximized the likelihood function.

Solution/Answer: the likelihood function is $2^{-n} heta^{3n}\Biggl(\prod_{k=1}^n X_k^2\Biggr)\cdot \exp\left(-n hetaar{X}_n
ight)$, with

 \bar{X}_n denoting the sample mean. Then the (equivalent) function to maximize is $\ell(\theta) = n(3\ln\theta - \theta \bar{X}_n)$. The equation $\ell'(\theta) = 0$ gives $\theta = 3/\bar{X}_n$, which is the global max of the function: $\ell''(\theta) = -3/\theta^2 < 0$. Thus, $\hat{\theta}^{(MLE)} = 3/\bar{X}_n$.

MORE: THINK HOW YOU WOULD CONSTRUCT A CONFIDENCE INTERVAL FOR θ GIVEN NU-MERICAL VALUES OF n AND \bar{X}_n . YOU CAN TRY BOTH NORMAL APPROXIMATION (FOR LARGE n) AND THE EXACT PIVOT BASED ON THE DISTRIBUTION OF $n\bar{X}_n$. Then think how to construct a confidence interval for $1/\sqrt{\theta}$ or some other non-linear function of θ .

Problem 3. Suppose that two independent random samples from two populations X and Y resulted in the following numerical values for the sample mean and standard deviation:

$$X_n = 11.2, \ s_{n,X} = 8.5, \ Y_n = 10.5, \ s_{n,Y} = 7.0.$$

Assume that n = 550. Is there a (statistically) significant **difference** between the population means of X and Y? Justify your conclusion by computing the corresponding P value.

Solution/Answer: using large sample approximation (more precisely, combining the CLT with LLN and the Slutsky theorem), \bar{X}_n is approximately normal with mean μ_X (the population mean of X) and variance $\sigma_X^2/n \approx s_{n,X}^2/n$; \bar{Y}_n is approximately normal with mean μ_Y (the population mean of Y) and variance $\sigma_X^2/n \approx s_{n,X}^2/n \approx s_{n,X}^2/n$. Then $\sqrt{n}(\bar{X}_n - \bar{Y}_n)(s_{n,X}^2 + s_{n,Y}^2)^{-1/2}$ is approximately standard normal and the corresponding

Then $\sqrt{n}(\bar{X}_n - \bar{Y}_n)(s_{n,X}^2 + s_{n,Y}^2)^{-1/2}$ is approximately standard normal and the corresponding two-sided test statistic is $\phi = \sqrt{n}|\bar{X}_n - \bar{Y}_n|(s_{n,X}^2 + s_{n,Y}^2)^{-1/2}$. The observed value is $\phi^* = 1.5$ corresponding to the *P* value $\mathbb{P}(|Z| > 1.5) = 0.136$, meaning that the numbers do not indicate a statistically significant difference between the population means.

More: Assuming the same values for the sample means and standard deviations, think about the following questions. Will the conclusion change if n = 500 (or any n < 550, for that matter) and why? What is the smallest value of n that would lead to a different conclusion? What if we are only interested in whether the sample mean of X is bigger?

Problem 4. Let X_1, \ldots, X_n be an independent random sample from the distribution with pdf

$$f(x;\theta) = \frac{\theta^3}{2} x^2 e^{-\theta x}, \ x > 0, \ \theta > 0$$

Construct the most powerful test of $H_0: \theta = 2$ against $H_1: \theta = 5$ at the level $\alpha = 0.05$.

Solution/Answer: The ratio of likelihoods that we want to be small when rejecting H_0 is, up to a constant, $\exp\left((-2+5)n\bar{X}_n\right) = \exp(3n\bar{X}_n)$, where \bar{X}_n is the sample mean. As a result, we reject H_0 if $n\bar{X}_n$ is small.

Call the original distribution $\operatorname{Gamma}(3,\theta)$. Because, under the null hypothesis $\theta = 2$ the population is $\operatorname{Gamma}(3,2)$, we conclude that, under the null hypothesis, $n\bar{X}_n$ is $\operatorname{Gamma}(3n,2)$, so that the rejection rule at level 0.05 is $n\bar{X}_n \leq \operatorname{Gamma}(3n,2)_{0.95}$, where the quantile on the right corresponds to the 'area to the right of the point'. From problem 2 we know that the sample mean is MLE for $3/\theta$, that is, the bigger the θ , the smaller the value of \bar{X}_n we expect to measure,

confirming that the rejection rule makes sense.

More: Assuming n = 30, what is the power of this test? See if you get upper and lower bounds using the χ^2 tables and a more precise value using your favorite statistical software.

Problem 5. For the first-year students at a certain university, the correlation between SAT scores and first-year GPA was 0.36. Assume the distribution of the scores is jointly normal. Predict the percentile rank on the first-year GPA for a student whose percentile rank on the SAT was 85%.

Answer: with Φ denoting the standard normal cdf, we compute the predicted ranking as $\Phi(0.36\Phi^{-1}(0.85)) = \Phi(0.36*1.0364) = 0.64546 = 65\%$

More: how will your answer change if, for some strange reasons, the correlation is negative: $\rho = -0.36$? Can you think of a situation where the correlation is naturally negative and propose a corresponding problem?