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MATHEMATICAL NOTES

Eprtep By F. A. FIckEN, University of Tennessee

Material for this department should be sent to F. A. Ficken, University of Tennessee,
Knoxuville 16, Tenn.

A REMARK ON STIRLING’S FORMULA

HEerBERT RoBBINS, Columbia University

We shall prove Stirling’s formula by showing thatforz=1, 2, - - -

(1) n! = Vﬂnn+1/2e—n . g™

where 7, satisfies the double inequality

1 1
2 —_— <l < —
12 + 1 12n

The usual textbook proofs replace the first inequality in (2) by the weaker in-
equality

0< 7
or

1

m < 7s.
Proof. Let
Sn = log (n!) = ni; log (p + 1)
=

and write
3 log (p+1) = 4y + 8, —
where

pan|
4, =f log # dz, b, = }[log (p + 1) — log p],
»

»+1
o= [ togwdz— 3llog (¢ + 1) + log 5],
b4

The partition (3) of log (p+41), regarded as the area of a rectangle with base
(p, p+1) and height log (p+41), into a curvilinear area, a triangle, and a small
sliver* is suggested by the geometry of the curve y=Ilog x. Then

* Taken from G. Darmois, Statistique Mathématique, Paris, 1928, pp. 315-317. The only nov-
elty of the present note is the inequality (7) which permits the first part of the estimate (2).
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1955] MATHEMATICAL NOTES 27

n—1

n n—1
Sa= 2, (4dp + b, — &) =f logzdx+3logn — Y .
=1 1 p=1
Since [log x dx =x log x —x we can write
n—1
@) Sa=(m+Plogn—n+1-2 e,
p=1

where

. _Zﬁ'l'llo (?-l-l)_l
D 2 g » .
Using the well known series
14« 3 g8 >
1 =2 B IR TR
(20 2SS

valid for l x[ <1, and setting x=(2p+1)-1, so that (14x)/(1 —x) =(p+1)/p, we
find that

1 1 1
S Ay Tserdn Timryr

We can therefore bound e, above and below:

(%) €p

1 1
© & <3a+1 {1+ G+ Tmrn T }

__ 1 1 _i<i__1__)
RECTES N 1 12\p p+1)’
(2p + 12

(N &> ! {1+ R ! +}
P32+ 1)t 32p+ 1) [3(2p 4+ 1))

_ 1 1 1 1 1
T 3(2p + 1)2 1 12( 1 i)'
1 Pt P14

3(2pit 1)
Now define
(8 B = Z €p, Tn = Z €p,
=1 p=n

where from (6) and (7) we have

1 1
9 —<B<L—-
®) T 12
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28 MATHEMATICAL NOTES [January

Then we can write (4) in the form
So=m+Hlogn —n+1—B+r,,
or, setting C=¢'"5, as
nl = C nr+li2g—n. grm
where 7, is defined by (8), €, by (5), and from (6) and (7) we have
m_l- <1< 1—2’;

The constant C, known from (9) to lie between e11/12 and ¢!2/13, may be shown by
one of the usual methods to have the value +/2z. This completes the proof.

The preceding derivation was motivated by the geometrically suggestive par-
tition (3). The editor has pointed out that the inequalities (6) and (7) permit the
following brief proof* of (2). Let

Up = nlp=@HlDen,

Then the series

1 \nt1/2 1 1
log(l'l';) =ty Tsamr T
together with (6) and (7) yield the inequalities
1 1 _ 1 e {
S P PAFRLI P | ="_1(1+7>"+”2
12 12
1/1 1
<en {55

Hence

U, = Upe=V12n
increases and
Wy = une—-ll(l2n+1)
decreases, while
Uy, < Wy = Vyel/120 (2D

Since

7 = ell12 w = el2/18

* A modification of that attributed to Cesaro by A. Fisher, Mathematical theory of probabili-
ties, New York, 1936, pp. 93-95.
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it follows that
1w—C,  w,—oC, 1, <C<w, V2 < lUB,
Thus
%, = Ce™

where 7, satisfies (2).

ON RESTRICTED FUNCTIONS

BURNETT MEYER, University of Arizona

Let f(x) be a real function of a real variable defined on a set E. Let P be a
point property of f. The function f is said to be peculiar with respect to the prop-
erty P if there exists a partition of E into two subsets, E; and E,, each every-
where dense in E, such that the property P holds at every point of E; and fails
to hold at every point of E;. Functions peculiar with respect to continuity and
differentiability are well known.

In a recent paper [2], H. P. Thielman investigated two generalizations of
continuity—neighborliness, a concept defined by Bledsoe [1], and cliquish-
ness. He showed that, although there are functions peculiar with respect to con-
tinuity, neighborliness, and differentiability, there exists no function which is
peculiar with respect to cliquishness. It is the purpose of this note to define an-
other point property which is similar to cliquishness in this respect.

Let f(x) be defined on a set E, and let a be a limit point of E. The function
f(x) is said to be restricted at the point a if lim sup,., f(x) and lim inf,., f(x) are
both finite. Otherwise, f(x) is said to be unrestricted at a.

If a function is restricted (unrestricted) at each point of a set E, it is said to
be restricted (unrestricted) on E.

A function may be restricted on a set but not bounded on that set; the func-
tion f(x) =1/x, defined on the open interval (0, 1), is such a function.

THEOREM 1. If lim sup,.s f(x) =+« for all bEE and if a is a limit point of
E, then lim supy.q f(x) =+ .

Proof: Let M and 6 be arbitrary positive numbers. Let 5&E be such that
0<|b—a| <8/2. Choose 8, so that 0<61<|b—al. Then, since lim sup;.s» f(x)
= 4 =, there exists ¢€E such that f(c) > M and lc—b| <. But

|c—a| =|lc—8] +|b—4q <.
Since M and § are arbitrary, lim sup,., f(x) =+ .

CoroLLARY. If f(x) is unrestricted on E and if a is a limit point of E, then f(x)
s unrestricted at a.
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