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 MATHEMATICAL NOTES

 EDITED BY F. A. FICKEN, University of Tennessee

 Material for this department should be sent to F. A. Ficken, University of Tennessee,
 Knoxville 16, Tenn.

 A REMARK ON STIRLING'S FORMULA

 HERBERT ROBBINS, Columbia University

 We shall prove Stirling's formula by showing that for n= 1, 2, *

 (1) n! = V/2irnn+'I2e-n- er

 where rn satisfies the double inequality

 1 1

 (2) 12n + 1 12n

 The usual textbook proofs replace the first inequality in (2) by the weaker in-
 equality

 0 < rn

 or

 1

 12n + 6

 Proof. Let

 n-1

 S= log (n!) = log (p + 1)
 ii=1

 and write

 (3) log (p + 1) = Ap + bp -p

 where

 Ap log x dx, bp '[log (p + 1) - log p]

 1+

 Xp = logxdx- [log (p + 1) + logp].

 The partition (3) of log (p+1), regarded as the area of a rectangle with base
 (p, p+1) and height log (p+1), into a curvilinear area, a triangle, and a small
 sliver* is suggested by the geometry of the curve y =log x. Then

 * Taken from G. Darmois, Statistique Math6matique, Paris, 1928, pp. 315-317. The only nov-
 elty of the present note is the inequality (7) which permits the first part of the estimate (2).
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 1955] MATHEMATICAL NOTES 27

 n-1 Pn n-1
 Sn= E (A p + bp-ep) =f log x dx + log n- ep.

 Since f log x dx = x log x-x we can write
 n-1

 (4) S. = (n +) logn - n + 1-r sP,
 p=l

 where

 2p+1 (P+1
 p 2 log + 1)

 Using the well known series

 /1 + X\ / X3 Xs \
 log 1S)2x+ + 5 )

 valid for |xl <1,and settingx=(2p+1)-',sothat(1+x)/(l-x)=(p+1)/p,we
 find that

 1 1 1
 ( 5) IEx= _

 3(2p + 1)2 5(2p + 1)4 7(2p + 1)6

 We can therefore bound ep above and below:

 1(1 1
 (6) ep < 3(2p + 1)21 +(2p + 1)2 (2p + 1)4 +

 1 1

 3(2p + 12 1- 1 12 p p l
 (2p +1)2

 (7 > ep1> 1 + 1+..
 3(2p+ 1)2 { 3(2p + 1)2 [3(2p + 1)2]2 +}

 1 1 _1 1

 3(2p + 1)2 1 12 p+1+j
 3(2p -+ 1)21

 Now define

 00 00

 (8) B= 2: e, rn= E ep I
 p=l p=n

 where from (6) and (7) we have

 1 1
 (9) <B< -.

 13 12
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 28 MATHEMATICAL NOTES [January

 Then we can write (4) in the form

 Sn = (n + I) log n - n + 1 - B + rn,

 or, setting C=el-B, as

 n! = c nn+1/16-n.erne

 where rn is defined by (8), ep by (5), and from (6) and (7) we have

 1 1

 12n + 1 12n

 The constant C, known from (9) to lie between e"l2 and e'113, may be shown by
 one of the usual methods to have the value V/2ir. This completes the proof.

 The preceding derivation was motivated by the geometrically suggestive par-
 tition (3). The editor has pointed out that the inequalities (6) and (7) permit the
 following brief proof* of (2). Let

 XUn = n !lf(n+l/')en

 Then the series

 / 1 \n+1/2 1 1
 log 1 + ++

 \ n 3(2n + 1)2 5(2n + 1)4

 together with (6) and (7) yield the inequalities

 1 ~~~~1
 ( l \ n 1

 exp {( 1 1++i < = e=1(1 + ? n+1/2
 t12 n+- n n+ 1 + 12J Un+1 nJ

 < exp { -

 Hence

 Vn = Une l/ 12n

 increases and

 Wn = Une-1/ (12n+1)

 decreases, while

 Vn < Wn = Vne

 Since

 vi = e11/12 W, = e12/13

 * A modification of that attributed to Ceshro by A. Fisher, Mathematical theory of probabili-
 ties, New York, 1936, pp. 93-95.
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 1955] MATHEMATICAL NOTES 29

 it follows that

 Vn ->C, Wn ->C9 Vn < C < Wng ell/12 < C < e12/13.

 Thus

 Un = Cerm

 where rn satisfies (2).

 ON RESTRICTED FUNCTIONS

 BURNETT MEYER, University of Arizona

 Let f(x) be a real function of a real variable defined on a set E. Let P be a
 point property of f. The functionf is said to be peculiar with respect to the prop-
 erty P if there exists a partition of E into two subsets, E1 and E2, each every-
 where dense in E, such that the property P holds at every point of E1 and fails
 to hold at every point of E2. Functions peculiar with respect to continuity and
 differentiability are well known.

 In a recent paper [2], H. P. Thielman investigated two generalizations of
 continuity-neighborliness, a concept defined by Bledsoe [1], and cliquish-
 ness. He showed that, although there are functions peculiar with respect to con-
 tinuity, neighborliness, and differentiability, there exists no function which is
 peculiar with respect to cliquishness. It is the purpose of this note to define an-
 other point property which is similar to cliquishness in this respect.

 Let f(x) be defined on a set E, and let a be a limit point of E. The function
 f(x) is said to be restricted at the point a if lim supx,af(x) and lim infxa.f(x) are
 both finite. Otherwise, f(x) is said to be unrestricted at a.

 If a function is restricted (unrestricted) at each point of a set E, it is said to
 be restricted (unrestricted) on E.

 A function may be restricted on a set but not bounded on that set; the func-
 tionf(x) = 1/x, defined on the open interval (0, 1), is such a function.

 THEOREM 1. If irn suP.b f(x) = + 0 for all b E E and if a is a limit point of
 E, then lim sup.-. f(x) = + oo.

 Proof: Let M and a be arbitrary positive numbers. Let bCE E be such that
 0 < Job-a | < 8/2. Choose &i so that 0 < < I b-a - . Then, since lim SUPX-b f(x)
 =+ co, there exists c EE such that f(c) > M and fc-b I < Si. But

 I c - al I | c - bI +I b - al < S.
 Since M and a are arbitrary, lim sup.-a f(x) = + oo.

 COROLLARY. If f(x) is unrestricted on E and if a is a limit point of E, then f(x)
 is unrestricted at a.
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