Principles of Mathematical Analysis: Highlights of the book by W. Rudin, inCLUDING EXERCISES, TOGETHER WITH SOME OTHER RANDOM THOUGHTS ${ }^{1}$

Chapter 1: Sets from algebraic point of view.
Main topics: ordered sets, field (an algebraic object), ordered field, \mathbb{R}^{n}, complex numbers, construction of real numbers using Dedekind cuts.

Some facts to keep in mind: extended real line $[-\infty,+\infty]$ is not a field, but still can be useful sometimes; Archimedean property of real line (there is always a rational number between any to real numbers).

More important than it looks: the (Cauchy-Bunyakovky-)Schwarz inequality and parallelogram identity both extend to an inner product space.

Chapter 2: Sets from topological point of view.
Main topics: cardinality (finite, countable, uncountable); diagonalization argument; metric, metric space and related topological concepts.

The key concepts: (a) neighborhood of a point (an open set containing the point); (b) compact set (by definition, finite cover from every possible open cover; this implies sequential compactness, that is, every sequence has a converging subsequence).

Important notations: for a set A in a metric (topological) space, A^{c} is the complement, \bar{A} is the closure, A^{\prime} is the collection of limit points, A° is the interior. These notations can be very different in other books/papers.

Some other important concepts: convergence; limit point of a set (every neighborhood contains at least one more point); a perfect set (closed and every point is a limit point); compact set (finite cover from every possible open cover); sequentially compact set (every sequence has a converging sub-sequence); "the" Cantor set (constructed on [0, 1] by removing open middle thirds); condensation point (every neighborhood contains uncountably many points); algebraic numbers; separable space; base (of topology).

Some facts to keep in mind: $\bar{A}=A \bigcup A^{\prime}$, but in general A is not a sub-set of A^{\prime} because of possible isolated points; Heine-Borel Theorem (in \mathbb{R}^{n}, compact sets are exactly those that are closed and bounded); non-empty intersections of compact sets.

Related topics for independent study: axiom of choice; cardinal numbers (hierarchy of infinity) and the continuum hypothesis; topological space; infinite-dimensional spaces with the Heine-Borel property; other Cantor-type sets; transcendental numbers.

Chapter 3: Sequences and series of numbers.
Main topics: convergence in a metric space; subsequence; Cauchy sequence; Cauchy criterion for series; root and ratio tests; power series and the radius of convergence.

Also of interest: diameter of a set; conditional convergence, rearrangement, and the theorem of Riemann on the topic; summation by parts; Cauchy's condensation test for convergence; product of two series; a proof that $e \approx 2.718$ is irrational.

More important than it looks: Stirling's approximation, with upper and lower bounds; completion of a metric space; Bair's category theorem.

Related topic for independent study: p-adic numbers as a different completion of the rationals.

[^0]Chapter 4: Continuity.
Main topics: topological continuity (pre-image of an open set is open); uniform continuity; continuous extension (from a closed set); restriction.

Also of interest: coordinate function; continuity on a compact set implies uniform continuity on that set; continuity of the inverse map on compacts; continuous image of compact is compact; (an abstract) graph of a function; a function discontinuous on a given countable set $\left(\sum_{n} n^{-2} I\left(x>x_{n}\right)\right)$; distance from a point to a set.

More important than it looks: fixed point theorem(s); convexity; intermediate value theorem; discontinuities of monotone functions; Minkowki sum of two sets in a linear space.

Related topics for independent study: functions of bounded variation (difference of two non-decreasing functions); possible sets of discontinuities of a function ${ }^{2}$ (for example, a function $f:[0,1] \rightarrow \mathbb{R}$ cannot be continuous only at rational points); other types of extension (for example, analytic extension/continuation and natural boundary); how different a restriction can be from the original (for example, every continuous function on the real line can be restricted to a perfect set to become differentiable and, for a typical continuous function, such a restriction can be taken as a constant function, and there are uncountably many of them. ${ }^{3}$)

Chapter 5: Derivatives for one real variable.
Main topics: (counter)examples based on the function $\sin (1 / x)$; Theorems of Rolle, Lagrange, and Cauchy; Darboux theorem (MVT for derivatives); (basic) l'Hospital; (basic) Taylor.

More important than it looks: Newton's method; uniqueness for ODEs.
Related topics for independent study: functions with strange properties (for example, a function $f:[0,1] \rightarrow \mathbb{R}$ can be unbounded in every neighborhood of every point; can be strictly increasing and still have zero derivative almost everywhere; can have a dense graph but pass the vertical line test at every point; have the intermediate value property and be discontinuous everywhere [Conway's base 13 function]).

Chapter 6: Riemann-Stieltjes integral.
Main topic: construction of $\int_{a}^{b} f(x) d \alpha(x)$ for non-decreasing α using upper and lower integrals. Also of interest: arc length.
(Much) More important than it looks: Hölder inequality; Riemann zeta function; Fresnel integrals $\int_{0}^{\infty} e^{\sqrt{-1} x^{2}} d x$.

Related topics for independent study: criteria for Riemann-Stieltjes integrability; other types of integrals (with Lebesgue coming up at the end of the book, and Henstock-Kurzweil completing the story on the interval), the case when both f and α are discontinuous at the same point.

Chapter 7: Sequences and series of functions.
The main point: in general, the order the limits are taken makes a difference, but sometimes it does not.

[^1]Main topic: uniform convergence.
Also of interest: The Dirichlet function as a double limit; a series can converge uniformly but not absolutely; Weierstrass M test; a construction of a continuous non-differentiable function; equicontinuity and the Arzela-Ascolli theorem; the Weierstrass approximation theorem and its proof; Stone's extension of Weierstrass and numerous related ideas that can potentially lead all the way to von Neumann algebras; Helly's selection theorem; space-filling curves and a surjection from Cantor set to the unit square.
(Much) More important than it looks: polynomials are dense in $L_{2}((0,1))$; existence and uniqueness for systems of ODEs.

Chapter 8: Special functions AND Fourier series.

The bottom line: A LOT of VERY IMPORTANT material.

Basic results: (real) analytic functions, Abel's theorem on power series; (a particular case of) Fubini-Tonelli; uniqueness of power series; elementary transcedental functions via power series; Fundamental Theorem of Algebra; orthogonal expansions and Bessel's inequality; point-wise convergence of Fourier series; Parseval's identity; Gamma function as the unique natural interpolation of factorials, and the resulting Stirling asymptotic; Beta function in terms of Gamma function; Euler's product formula for the Riemann zeta function and divergence of the series $\sum_{p \text { prime }} 1 / p$; Euler-Mascheroni constant.

Related topics for independent study: various identities for the Gamma and Beta functions; the derivatives of the log of the Gamma function; power series method for ODEs, including the Fuchs-Frobenius theory, and the resulting special functions, especially the four types of the Bessel functions; different types of convergence for the Fourier series; Gibbs phenomenon; Fourier transform and the Plancherel identity; applications to PDEs.

Chapter 9: Multivariable ${ }^{4}$ differential calculus.
Main topic: the intrinsic definition of the (Frechet) derivative as a linear operator.
Basic results: (normed) linear spaces and mappings between them; projections; contraction mapping theorem; theorems on inverse and implicit functions; a non-linear extension of the ranknullity theorem; determinants and Jacobians; integrals with a parameter and the Feynman trick (method); multi-dimensional Taylor formula.

Related topics for independent study: intrinsic definitions of higher-order derivatives; multilinear mappings; covariant tensor (a suitable interpretation of the gradient of a scalar function of several arguments) and contravariant tensor (the usual vector).

Chapter 10: Differential forms (multivariable integral calculus, with a more detailed summary).

Basic objects in \mathbb{R}^{n}

- n-cell I^{n} is the (hyper) box

$$
I^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right): a_{1} \leq x_{1} \leq b_{1}, \ldots, a_{n} \leq x_{n} \leq b_{n}\right\}=\prod_{m=1}^{n}\left[a_{m}, b_{m}\right]
$$

The volume of I_{n} is, by definition, $\prod_{m=1}^{n}\left(b_{m}-a_{m}\right)$. When all $b_{m}-a_{m}$ are the same, I^{n} is called the hyper-cube.

[^2]- n-simplex Q^{n} is the (hyper) tetrahedron

$$
Q^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right): x_{1} \geq 0, \ldots, x_{n} \geq 0, x_{1}+\cdots+x_{n} \leq 1\right\}
$$

The volume of Q^{n} is $1 / n$! (for example, by induction).

- The closed ball $B_{a}^{n}(r)$ of radium r, with center at the point a, is $\{x:|x-a| \leq r\}$. The volume of $B_{a}^{n}(r)$ is

$$
\left|B_{a}^{n}(r)\right|=r^{n} \frac{\pi^{n / 2}}{(n / 2) \Gamma(n / 2)},
$$

where $\Gamma(\cdot)$ is the Gamma function. There are numerous proofs of this result.

- The sphere $S_{a}^{n}(r)$ of radius r, with center at the point a, is the boundary of $B_{a}(r)$, that is, $\{x:|x-a|=r\}$. The surface area of $S_{a}(r)$ is

$$
\left|S_{a}^{n}(r)\right|=r^{n-1} \frac{2 \pi^{n / 2}}{\Gamma(n / 2)}
$$

which is the derivative of $\left|B_{a}^{n}(r)\right|$ with respect to r.

- The k-surface can mean either a (" k-dimensional") subset of \mathbb{R}^{n} or a nice mapping from a nice sub-set of \mathbb{R}^{k} to \mathbb{R}^{n}.

Basic technical tools:

- Primitive maps, flips, and a decomposition of a general invertible map as a composition of flips and primitive maps.
- Partition of unity (localization) on a compact set: the main point is that the size of the elements of the open cover can be arbitrarily small.
- Change of variables via Jacobian.
- Wedge (exterior) product: $d x \wedge d x=0$ and $d y \wedge d x=-d x \wedge d y$.
- Exterior derivative.
- Affine k-chain.
- Oriented affine k-simplex.
- Boundary of an oriented affine k-simplex.

The main point: a differential form of order k is what you integrate over a k-surface.
The ultimate prize: The theorem of Stokes in the form

$$
\int_{\partial M} \omega=\int_{M} d \omega
$$

that covers all the integral theorems of multivariable calculus, including Green's identities (multi-dimensional integration by parts).

Examples:

(1) $d(P d y \wedge d z+Q d z \wedge d x+R d x \wedge d y)=P_{x} d x \wedge d y \wedge d z+Q_{y} d y \wedge d z \wedge d x+R_{z} d z \wedge d x \wedge d y=$ $\left(P_{x}+(-1)^{2} Q_{y}+(-1)^{2} R_{z}\right) d x \wedge d y \wedge d z$, corresponding to the Gauss-Ostrogradskii (divergence) theorem.
(2) $d(P d x+Q d y+R d z)=P_{y} d y \wedge d x+P_{z} d z \wedge d x+Q_{x} d x \wedge d y+Q_{z} d z \wedge d y+R_{x} d x \wedge d y+R_{y} d y \wedge d z=$ $\left(R_{y}-Q_{z}\right) d y \wedge d z-\left(R_{x}-P_{z}\right) d z \wedge d x+\left(Q_{x}-P_{y}\right) d x \wedge d y$, corresponding to the Stokes (curl) theorem.

More on differential forms:

(1) The volume element, one and only $d x_{1} \wedge d x_{2} \wedge \cdots \wedge d x_{n}$ in \mathbb{R}^{n} for every n.
(2) The surface element, only in \mathbb{R}^{3}, and kind of corresponds to $d y \wedge d z+d z \wedge d x+d x \wedge d y$.
(3) An exact form $\omega=d \alpha$ vs a closed form $d \omega=0$; existence of forms that are closed but not exact can measure various types of holes in the region. In particular, open convex sets do not have any holes, and all closed forms there are exact.

An alternative reference on the subject of this chapter: Ib H. Madsen, Jxrgen Tornehave. From calculus to cohomology: De Rham cohomology and characteristic classes, Cambridge University Press, 1997 (about 200 pages of text).

Related topics for independent study: physical meaning of divergence and curl, leading to Maxwell's equations; (convex) polytopes; push forward and pull back; tensors and tensor fields; (smooth) manifolds; Lie derivative; Riemannian manifolds; connections; the de Rham cohomology groups [formalizing the idea how closed but not exact forms correspond to holes in the region]; Hairy ball/"you cannot comb a sphere" theorem [a continuous vector field on \mathbb{R}^{3} that is tangent to the sphere at every point of the sphere must be zero at some point on the sphere].

Chapter 11: Lebesgue-Stieltjes integral.
Main point: Partitioning the range rather then the domain.
Building blocks: sigma-algebra/ring/field of sets; countably additive regular set function; measurable functions; simple functions.

Main results: Fatou's lemmas (theorem), theorems on monotone and dominated convergence; a criterion for Riemann integrability.

Main new piece of terminology: almost everywhere.
Further results: spaces $L^{p}, p \geq 1$, especially for $p=1$ and $p=2$; the Riesz-Fischer theorem; non-compactness of the closed ball in L^{2}.

Potential source of confusion: characteristic function vs indicator function.
Related topics for independent study: the set theory and the Russell paradox; non-measurable sets and the Banach-Tarski paradox; theorems of Fubini and Tonelli.

Food for thought. Consider the following properties a real-valued measurable function $f=$ $f(x), x \in[0,1]$, can have:
(A) f has bounded variation, that is, $\sup _{\left\{x_{k}\right\}} \sum_{k=1}^{N}\left|f\left(x_{k+1}\right)-f\left(x_{k}\right)\right|<\infty$;
(B) f is absolutely continuous, that is, $f(x)=f(0)+\int_{0}^{x} h(t) d t$ for some Lebsgue-integrable function h;
(C) f is differentiable almost everywhere;
(D) There exists a differentiable function $g=g(x)$ such that $f(x)=g(x)$ for almost all x.

Determine, with an explanation, the pair-wise relationships between these properties. That is, for each of the six pairs ((I), (J)), determine whether (I) implies (J) and/or (J) implies (I).

[^0]: ${ }^{1}$ Sergey Lototsky, USC; version of January 3, 2024

[^1]: ${ }^{2}$ It is necessarily a countable union of closed sets.
 ${ }^{3}$ See Remark 3.1 in K. Ciesielski, Juan B. Seoane Sepúlveda, Differentiability versus continuity: Restriction and extension theorems and monstrous examples, Bulletin of the American Mathematical Society, Volume 56, Number 2, Pages 211-260.

[^2]: ${ }^{4}$ or multivariate

