
Principles of Mathematical Analysis: Highlights of the book by W. Rudin, in-
cluding exercises, together with some other random thoughts1

Chapter 1: Sets from algebraic point of view.

Main topics: ordered sets, field (an algebraic object), ordered field, Rn, complex numbers,
construction of real numbers using Dedekind cuts.

Some facts to keep in mind: extended real line [−∞,+∞] is not a field, but still can be useful
sometimes; Archimedean property of real line (there is always a rational number between any to
real numbers).

More important than it looks: the (Cauchy-Bunyakovky-)Schwarz inequality and parallelo-
gram identity both extend to an inner product space.

Chapter 2: Sets from topological point of view.

Main topics: cardinality (finite, countable, uncountable); diagonalization argument; metric,
metric space and related topological concepts.
The key concepts: (a) neighborhood of a point (an open set containing the point); (b) compact

set (by definition, finite cover from every possible open cover; this implies sequential compactness,
that is, every sequence has a converging subsequence).

Important notations: for a set A in a metric (topological) space, Ac is the complement, A
is the closure, A′ is the collection of limit points, A◦ is the interior. These notations can be very
different in other books/papers.

Some other important concepts: convergence; limit point of a set (every neighborhood
contains at least one more point); a perfect set (closed and every point is a limit point); compact
set (finite cover from every possible open cover); sequentially compact set (every sequence has a
converging sub-sequence); “the” Cantor set (constructed on [0, 1] by removing open middle thirds);
condensation point (every neighborhood contains uncountably many points); algebraic numbers;
separable space; base (of topology).

Some facts to keep in mind: A = A
∪
A′, but in general A is not a sub-set of A′ because of

possible isolated points; Heine-Borel Theorem (in Rn, compact sets are exactly those that are
closed and bounded); non-empty intersections of compact sets.

Related topics for independent study: axiom of choice; cardinal numbers (hierarchy of
infinity) and the continuum hypothesis; topological space; infinite-dimensional spaces with the
Heine-Borel property; other Cantor-type sets; transcendental numbers.

Chapter 3: Sequences and series of numbers.

Main topics: convergence in a metric space; subsequence; Cauchy sequence; Cauchy criterion
for series; root and ratio tests; power series and the radius of convergence.

Also of interest: diameter of a set; conditional convergence, rearrangement, and the theorem
of Riemann on the topic; summation by parts; Cauchy’s condensation test for convergence; product
of two series; a proof that e ≈ 2.718 is irrational.

More important than it looks: Stirling’s approximation, with upper and lower bounds; com-
pletion of a metric space; Bair’s category theorem.

Related topic for independent study: p-adic numbers as a different completion of the ratio-
nals.
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Chapter 4: Continuity.

Main topics: topological continuity (pre-image of an open set is open); uniform continuity;
continuous extension (from a closed set); restriction.

Also of interest: coordinate function; continuity on a compact set implies uniform continuity on
that set; continuity of the inverse map on compacts; continuous image of compact is compact; (an
abstract) graph of a function; a function discontinuous on a given countable set (

∑
n n

−2I(x > xn));
distance from a point to a set.

More important than it looks: fixed point theorem(s); convexity; intermediate value theo-
rem; discontinuities of monotone functions; Minkowki sum of two sets in a linear space.

Related topics for independent study: functions of bounded variation (difference of two
non-decreasing functions); possible sets of discontinuities of a function2 (for example, a function
f : [0, 1] → R cannot be continuous only at rational points); other types of extension (for example,
analytic extension/continuation and natural boundary); how different a restriction can be from the
original (for example, every continuous function on the real line can be restricted to a perfect set
to become differentiable and, for a typical continuous function, such a restriction can be taken as a
constant function, and there are uncountably many of them.3)

Chapter 5: Derivatives for one real variable.

Main topics: (counter)examples based on the function sin(1/x); Theorems of Rolle, Lagrange,
and Cauchy; Darboux theorem (MVT for derivatives); (basic) l’Hospital; (basic) Taylor.

More important than it looks: Newton’s method; uniqueness for ODEs.

Related topics for independent study: functions with strange properties (for example, a
function f : [0, 1] → R can be unbounded in every neighborhood of every point; can be strictly
increasing and still have zero derivative almost everywhere; can have a dense graph but pass the ver-
tical line test at every point; have the intermediate value property and be discontinuous everywhere
[Conway’s base 13 function]).

Chapter 6: Riemann-Stieltjes integral.

Main topic: construction of
∫ b

a
f(x)dα(x) for non-decreasing α using upper and lower integrals.

Also of interest: arc length.
(Much) More important than it looks: Hölder inequality; Riemann zeta function; Fresnel

integrals
∫∞
0

e
√
−1x2

dx.

Related topics for independent study: criteria for Riemann-Stieltjes integrability; other
types of integrals (with Lebesgue coming up at the end of the book, and Henstock–Kurzweil com-
pleting the story on the interval), the case when both f and α are discontinuous at the same
point.

Chapter 7: Sequences and series of functions.

The main point: in general, the order the limits are taken makes a difference, but sometimes
it does not.

2It is necessarily a countable union of closed sets.
3See Remark 3.1 in K. Ciesielski, Juan B. Seoane Sepúlveda, Differentiability versus continuity: Restriction and

extension theorems and monstrous examples, Bulletin of the American Mathematical Society, Volume 56, Number
2, Pages 211–260.
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Main topic: uniform convergence.
Also of interest: The Dirichlet function as a double limit; a series can converge uniformly

but not absolutely; Weierstrass M test; a construction of a continuous non-differentiable function;
equicontinuity and the Arzela-Ascolli theorem; the Weierstrass approximation theorem and its
proof; Stone’s extension of Weierstrass and numerous related ideas that can potentially lead all the
way to von Neumann algebras; Helly’s selection theorem; space-filling curves and a surjection from
Cantor set to the unit square.

(Much) More important than it looks: polynomials are dense in L2((0, 1)); existence and
uniqueness for systems of ODEs.

Chapter 8: Special functions AND Fourier series.

The bottom line: A LOT of VERY IMPORTANT material.
Basic results: (real) analytic functions, Abel’s theorem on power series; (a particular case of)

Fubini-Tonelli; uniqueness of power series; elementary transcedental functions via power series;
Fundamental Theorem of Algebra; orthogonal expansions and Bessel’s inequality; point-wise con-
vergence of Fourier series; Parseval’s identity; Gamma function as the unique natural interpolation
of factorials, and the resulting Stirling asymptotic; Beta function in terms of Gamma function;
Euler’s product formula for the Riemann zeta function and divergence of the series

∑
p prime 1/p;

Euler–Mascheroni constant.

Related topics for independent study: various identities for the Gamma and Beta functions;
the derivatives of the log of the Gamma function; power series method for ODEs, including the
Fuchs-Frobenius theory, and the resulting special functions, especially the four types of the Bessel
functions; different types of convergence for the Fourier series; Gibbs phenomenon; Fourier transform
and the Plancherel identity; applications to PDEs.

Chapter 9: Multivariable4 differential calculus.

Main topic: the intrinsic definition of the (Frechet) derivative as a linear operator.
Basic results: (normed) linear spaces and mappings between them; projections; contraction

mapping theorem; theorems on inverse and implicit functions; a non-linear extension of the rank-
nullity theorem; determinants and Jacobians; integrals with a parameter and the Feynman trick
(method); multi-dimensional Taylor formula.

Related topics for independent study: intrinsic definitions of higher-order derivatives; multi-
linear mappings; covariant tensor (a suitable interpretation of the gradient of a scalar function of
several arguments) and contravariant tensor (the usual vector).

Chapter 10: Differential forms (multivariable integral calculus, with a more detailed summary).

Basic objects in Rn

• n-cell In is the (hyper) box

In = {x = (x1, . . . , xn) : a1 ≤ x1 ≤ b1, . . . , an ≤ xn ≤ bn} =
n∏

m=1

[am, bm].

The volume of In is, by definition,
∏n

m=1(bm − am). When all bm − am are the same, In is
called the hyper-cube.

4or multivariate
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• n-simplex Qn is the (hyper) tetrahedron

Qn = {x = (x1, . . . , xn) : x1 ≥ 0, . . . , xn ≥ 0, x1 + · · ·+ xn ≤ 1}
The volume of Qn is 1/n! (for example, by induction).

• The closed ball Bn
a (r) of radium r, with center at the point a, is {x : |x − a| ≤ r}. The

volume of Bn
a (r) is

|Bn
a (r)| = rn

πn/2

(n/2)Γ(n/2)
,

where Γ(·) is the Gamma function. There are numerous proofs of this result.
• The sphere Sn

a (r) of radius r, with center at the point a, is the boundary of Ba(r), that is,
{x : |x− a| = r}. The surface area of Sa(r) is

|Sn
a (r)| = rn−1 2πn/2

Γ(n/2)
,

which is the derivative of |Bn
a (r)| with respect to r.

• The k-surface can mean either a (“k-dimensional”) subset of Rn or a nice mapping from a
nice sub-set of Rk to Rn.

Basic technical tools:

• Primitive maps, flips, and a decomposition of a general invertible map as a composition of
flips and primitive maps.

• Partition of unity (localization) on a compact set: the main point is that the size of the
elements of the open cover can be arbitrarily small.

• Change of variables via Jacobian.
• Wedge (exterior) product: dx ∧ dx = 0 and dy ∧ dx = −dx ∧ dy.
• Exterior derivative.
• Affine k-chain.
• Oriented affine k-simplex.
• Boundary of an oriented affine k-simplex.

The main point: a differential form of order k is what you integrate over a k-surface.
The ultimate prize: The theorem of Stokes in the form∫

∂M

ω =

∫
M

dω

that covers all the integral theorems of multivariable calculus, including Green’s identities

(multi-dimensional integration by parts).
Examples:

(1) d(Pdy ∧ dz +Qdz ∧ dx+Rdx∧ dy) = Pxdx∧ dy ∧ dz +Qydy ∧ dz ∧ dx+Rzdz ∧ dx∧ dy =
(Px+(−1)2Qy+(−1)2Rz)dx∧dy∧dz, corresponding to the Gauss-Ostrogradskii (divergence)
theorem.

(2) d(Pdx+Qdy+Rdz) = Pydy∧dx+Pzdz∧dx+Qxdx∧dy+Qzdz∧dy+Rxdx∧dy+Rydy∧dz =
(Ry −Qz)dy ∧ dz− (Rx −Pz)dz ∧ dx+(Qx −Py)dx∧ dy, corresponding to the Stokes (curl)
theorem.

More on differential forms:

(1) The volume element, one and only dx1 ∧ dx2 ∧ · · · ∧ dxn in Rn for every n.
(2) The surface element, only in R3, and kind of corresponds to dy ∧ dz + dz ∧ dx+ dx ∧ dy.
(3) An exact form ω = dα vs a closed form dω = 0; existence of forms that are closed but not

exact can measure various types of holes in the region. In particular, open convex sets do
not have any holes, and all closed forms there are exact.



5

An alternative reference on the subject of this chapter: Ib H. Madsen, Jxrgen Torne-
have. From calculus to cohomology: De Rham cohomology and characteristic classes, Cambridge
University Press, 1997 (about 200 pages of text).

Related topics for independent study: physical meaning of divergence and curl, leading to
Maxwell’s equations; (convex) polytopes; push forward and pull back; tensors and tensor fields;
(smooth) manifolds; Lie derivative; Riemannian manifolds; connections; the de Rham cohomology

groups [formalizing the idea how closed but not exact forms correspond to holes in the region];
Hairy ball/“you cannot comb a sphere” theorem [a continuous vector field on R3 that is tangent to
the sphere at every point of the sphere must be zero at some point on the sphere].

Chapter 11: Lebesgue-Stieltjes integral.

Main point: Partitioning the range rather then the domain.
Building blocks: sigma-algebra/ring/field of sets; countably additive regular set function; mea-

surable functions; simple functions.
Main results: Fatou’s lemmas (theorem), theorems on monotone and dominated convergence;

a criterion for Riemann integrability.
Main new piece of terminology: almost everywhere.
Further results: spaces Lp, p ≥ 1, especially for p = 1 and p = 2; the Riesz-Fischer theorem;

non-compactness of the closed ball in L2.
Potential source of confusion: characteristic function vs indicator function.

Related topics for independent study: the set theory and the Russell paradox; non-measurable
sets and the Banach-Tarski paradox; theorems of Fubini and Tonelli.

Food for thought. Consider the following properties a real-valued measurable function f =
f(x), x ∈ [0, 1], can have:

(A) f has bounded variation, that is, sup{xk}
∑N

k=1 |f(xk+1)− f(xk)| < ∞;

(B) f is absolutely continuous, that is, f(x) = f(0) +
∫ x

0
h(t) dt for some Lebsgue-integrable

function h;
(C) f is differentiable almost everywhere;
(D) There exists a differentiable function g = g(x) such that f(x) = g(x) for almost all x.

Determine, with an explanation, the pair-wise relationships between these properties. That is, for
each of the six pairs ((I), (J)), determine whether (I) implies (J) and/or (J) implies (I).


