
Spring 2024, Principles of Mathematical Analysis, Part II: Homework problems

Homework 1.

Problem 1.

(a) Explain why the set {0, 1, 2, 3, 4, 5, 6, 7, 8}, with addition and multiplication mod 9, is NOT
a field.

(b) For a positive integer p, explain why the set {0, 1, . . . , p−1}, with addition and multiplication
mod p, is a field if and only if p is a prime number.

(c) Is there a field with exactly nine elements? [Yes: check out “finite fields” event though this
is somewhat advanced.]

Problem 2. Write a short and convincing explanation why the set of all real algebraic numbers
is countably infinite. [An outline: the set is infinite because each 21/n, n = 1, 2, . . . is an element,
being a root of xn = 2; the set of all algebraic numbers is countable because there are countably
many polynomials with rational coefficients, and each such polynomials has finitely many roots.]

Problem 3. For real numbers x, y, define

ϱ(x, y) =
|x− y|

1 + |x− y|
.

(a) Confirm that ϱ is a metric on the real line.
(b) Confirm that limn→∞ xn = x if and only if limn→∞ ϱ(xn, x) = 0.
(1) Let X be the real line with metric ϱ. Is X (a) complete? (b) separable? (c) bounded? (d)

compact? In each case, briefly explain your conclusion.

Problem 4. Here, i =
√
−1 is the imaginary unit.

(a) Write the number 2−i
3i−4 in the form x+ iy.

(b) Write −1− i in the polar form.
(c) Solve the following equation: z4 − 2z2 + 2 = 0. Write the answer in the polar form. [Start

by noticing that the equation is (z2 − 1)2 = −1.]
(d) Compute the anti-derivative

∫
e−2x sin(3x)dx without integrating by parts. An outline: in-

tegrate e(3i−2)x “the Calc-I way” and then take the imaginary part of the result.
(e) Compute all the values of 6

√
−i. An outline: start with −i = exp(−πi/2 + 2πki), k ∈ Z, and

then take the usual root on the right to recover all six distinct values.

(f) Compute all the values of
√

1 + i
√
3 +

√
1− i

√
3 [the main point: some of those values are

real; the polar form/Euler formula can help].
(g) Write cos(5x) and cos(6x) as polynomials in cosx. [See also: Chebyshev polynomials.] The

general approach using complex numbers: start with (cosx+ i sinx)n = cos(nx) + i sin(nx),
n = 1, 2, 3, . . ., for a suitable n, expand the left-hand side using binomial formula, take the
real part, and then get rid of sines using sin2 x = 1− cos2 x. Chebyshev polynomials lead to
an alternative procedure using a recursion. You are encouraged to learn and explore both
approaches.

(h) Let α = e2iπ/5. (i) Let u = α + α4. Verify that u2 + u − 1 = 0 and u = α + ᾱ. (ii) Find
an algebraic expression for cos(2π/5), the real part of α [which is also u/2]. (iii) As the final
prize, use the results to construct a regular pentagon using compass and straight edge.

Homework 2.

Problem 1. Explain why a compact metric space is separable. [For example, you can construct
a countable dense set by looking at the finite sub-covers coming from an open cover with balls of
radius 1/n].

Problem 2. Define the function

(1) S(x) =

{
sin(1/x), x 6= 0;

0, x = 0.
1
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(a) Confirm that the function f(x) = x + 2x2S(x) is not monotone on any open interval con-
taining x = 0 event though f ′(0) = 1. Use the idea to construct a similar function for which
the second derivative at a point is positive, but the function is not “convex” there: the graph
is on both sides of the tangent line at that point. [Something like x2 +4x4S(x) could work.]

(b) Confirm that the derivative of the function g(x) = e−3xx2S(x) does not achieve its minimal
value on the interval [0, 1/3].

Problem 3. Let f be a differentiable function on [−1, 1] and |f ′(x)| ≤ 1. Explain why the
function f ′ has a fixed point, that it, the equation f ′(x) = x has at least one solution on [−1, 1]. [For
example, you can apply the intermediate value theorem to the function g(x) = f ′(x)− x.]

Problem 4. Confirm that differential equation y′(x) =
√

y(x), y(0) = 0, has uncountably many
solutions: together with y(x) ≡ 0, each of the following functions

y(x) =


0,−a < x < b

(x− b)2/4, x > b

(x+ a)2/4, x < −a

a, b > 0, is a solution.

Problem 5. For x ∈ [0, 1] define the following functions

(2) D(x) =

{
0, x /∈ Q,

1, x ∈ Q,
D1(x) =

{
0, x /∈ Q,

1/q, x = p/q ∈ Q,
D2(x) =

{
0, x /∈ Q,

q, x = p/q ∈ Q,

and let fr,x0(x) = (x− x0)
r for some r > 0 and x0 ∈ (0, 1). Identify the points of continuity for each

of the following functions:

(a) D, D1, D2;
(b) fr,x0D, fr,x0D1, fr,x0D2. Does it make any difference whether x0 is rational or not? Do any

of the answers depend on r?

Homework 3.

Problem 1. A norm on Rn is a non-negative function f = f(x) such that f(x) = 0 if and only
if x = 0, f(ax) = |a|f(x) for every real number a, and f(x + y) ≤ f(x) + f(y). Denote by ‖x‖
the usual Euclidean norm of x. Identify two positive numbers cf and Cf so that the inequalities
cf‖x‖ ≤ f(x) ≤ Cf‖x‖ hold for all x ∈ Rn. In other words, all norms on Rn are equivalent. [For
example, you can argue that the set {x ∈ Rn : f(x) = 1} is compact and does not contain zero;
therefore the function x 7→ ‖x‖, being continuous, achieves minimal and maximal values there;
keeping in mind that every nonzero x ∈ Rn can be written as ‖x‖(x/‖x‖), these values then lead to
the numbers cf and Cf . Alternatively, you can argue that f is continuous and look at its minimal
and maximal values on the unit sphere in Rn.]

Problem 2. Confirm that, for a real-valued function f defined on an open interval (a, b), the
following three properties are equivalent (and each can be used to define convexity):

(a) For every x, y ∈ (a, b) and λ ∈ (0, 1), f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) [that is, the
graph of f is always below a secant line].

(b) For every x0 ∈ (a, b), the function x 7→ (f(x0 + x) − f(x0))/x is non-decreasing, as long
as x0 + x ∈ (a, b) [if f is twice differentiable, then this is equivalent to having the second
derivative of f non-negative].

(c) For every x0 ∈ (a, b), there exists a real number C0 such that, for all x ∈ (a, b) we have
f(x) ≥ f(x0) + C0(x − x0) [if f is differentiable, then C0 = f ′(x0) so that the graph of f is
above the tangent line at (x0, f(x0)).

(d) For every real number r, the set {x : f(x) < r} is connected (with empty set and a single
point assumed to be connected).

One approach is to derive (b) from (a) directly; then use (b) to argue existence of one-sided deriva-
tives f ′

± of f everywhere in (a, b) so that (c) follows with C0 any number in the closed interval
[f ′

−(x0), f
′
+(x0)].
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Problem 3. Confirm that if f is continuous on an open interval (a, b) and f((x + y)/2) ≤
(f(x) + f(y))/2, then f is convex. [Continuity condition can be relaxed, but some assumption is
necessary: there exist really wild functions satisfying f(x+ y) = f(x) + f(y).]

Problem 4. Let f = f(x), x > a, be a twice-differentiable function such that

sup
x>a

|f(x)| = M0, sup
x>a

|f ′(x)| = M1, sup
x>a

|f ′′(x)| = M2

for some positive numbers M0,M1,M2.
(a) Show that M2

1 ≤ 4M0M2 [for example, starting with Taylor formula f(x + 2h) = f(x) +
2hf ′(x)+2h2f ′′(y), h > 0, y ∈ [x, x+2h], deduce f ′(x) = (2h)−1(f(x+2h)− f(x))−hf ′′(y) so that
M1 ≤ M0/h+ hM2; then minimize with respect to h].

(b) Use the result from (a) to explain why limx→∞ |f(x)| = 0 and |f ′′(x)| ≤ C imply limx→∞ |f ′(x)| =
0.

(c) Construct an infinitely differentiable function f = f(x) such that limx→+∞ |f(x)| = 0 but

lim supx→∞ |f ′(x)| = +∞ and confirm that there are no contradictions with part (b). [f(x) = sin(h(x))
1+x2

with a suitable function h might work; of course, f ′′(x) will be unbounded.]

Problem 5. [Basic calculus exercises]
(a) Compute the following limits as x → 0:

(tanx)(lnx); x lnx;
sin 5x

tan 3x
;
ex − 1− x

x2
; (sinx)x;

(
sinx

x

)1/x2

tan2 x+ 2x

x2 + x
;
ex + 1

x2
;
cos(2x)− 1

sinh(x2)
; (cosx)1/x

2
;

ex − 1− x

cos(2x)− cos(3x)
;

sin(3x)

5x+ 7x2
;

sinx− x√
1 + x2 − 1

; (1 + 3x+ 5x2)1/x;
(
1 + tan(2x)

)3/ sinx
;
(
1 + sin(3x)

)2/x
.

(b) Compute the following limits as x → +∞:

xe1/x − x;

(
x+ 3

x

)x+1

; (3 + x)1/x; x(e5/x − 1);(
2x+ 3

2x+ 5

)3x

; x ln(x+ 2)− x lnx; x2 ln

(
1 +

1

x

)
.

(c) Explain why the following inequalities are true [you can follow the suggestions]:

x

1 + x2
< arctan(x) < x, x > 0, [arctanx =

x

1 + ξ2(x)
, 0 ≤ ξ(x) ≤ x by MVT]

1 + x < ex < 2xex + e−x, x 6= 0,

[for upper bound, use f(x) = 2xex + e−x − ex : f ′(x) > 0, x > 0; f ′(x) < 0, x < 0]

ex > xe, x 6= e [f(x) = x− e lnx is convex; horizontal tangent at (e, 0)].

Homework 4.

Problem 1. Write
∑∞

k=1(−1)k+1/k as a Riemann-Stieltjes integral
∫ b
a f(x)dα(x) [you need to

identify limits a, b, and the function f, α.]
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Problem 2. Compute the limits by recognizing a suitable Riemann sum:

lim
n→∞

1

n
ln

((
1 +

1

n

)3(
1 +

2

n

)3

· · ·
(
1 +

n

n

)3)
,

lim
n→∞

(
1!2! · · ·n!

)1/(n(n+1))

√
n

,

lim
n→∞

1

n4

2n∏
k=1

(n2 + k2)1/n,

lim
n→∞

(
(n+ 1) · · · (n+ n)

)1/n
n

,

lim
n→∞

n

(n!)1/n
.

The answers and the corresponding integrals are as follows: 3
∫ 1
0 ln(1 + x) dx = 3(2 ln 2 − 1);

e−3/4, (1/n)
∑

n(1 − ((k/(n + 1))) ln(k/n) →
∫ 1
0 (1 − x) lnx = −3/4, equality 1 + 2 + ... + n =

n(n+1)/2 can also help; exp(
∫ 2
0 ln(1+x2)dx)) = 25 exp(2 arctan(2)−4); exp(

∫ 1
0 ln(1+x) dx) = 4/e;

exp(−
∫ 1
0 lnx) dx = e, can use Stirling to confirm the answer.

Problem 3. For r > 0, define the function fr(x) = xrS(x), where S is from (1). Determine,
with an explanation, the values of r for which the function f is Riemann integrable on (a) [0, 1] (b)
[1,∞) (c) [0,∞). Then answer the same questions for the derivative f ′ of f . As usual, the improper
Riemann integral is defined as the corresponding limit of proper integrals (over bounded intervals for
unbounded interval, and over intervals where the function is bounded for unbounded integrands).

Problem 4. Let f : [a, b] → R be a continuously differentiable function such that f(a) = f(b) = 0
and ∫ b

a
f2(x) dx = 1.

Confirm that
∫ b
a xf ′(x)f(x) dx = −1/2 [integrate by parts using 2ff ′ dx = d(f2)], and then use the

Cauchy-Schwarz inequality to show that(∫ b

a
|f ′(x)|2 dx

)(∫ b

a
x2f2(x) dx

)
>

1

4
.

Then comment on the following: (a) Is equality possible? [this would require f ′ = cxf ] (b) Can the
interval (a, b) be infinite? [most probably, as long as integration by parts is still possible] (c) Is there
a connection with the Heisenberg uncertainly principle from quantum mechanics? [most probably,
yes...]

Problem 5. Let f : [0, 1] → R be a differentiable function such that |f ′|p is integrable for some
p > 1. Use the FTC and Hölder’s inequality to show that

|f(x)− f(y)| ≤ |x− y|1/q
(∫ 1

0
|f ′(x)|p

)1/p

,
1

p
+

1

q
= 1.

[This is a gateway to the Sobolev embedding theorems...]

Homework 5.

Problem 1. Determine the range of values of the parameter p for which the following series (a)
converge (b) converge absolutely. In each case, provide a convincing reason why your conclusion is
correct.

(a)
∑
n≥1

(−1)n

np
.
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(b)
∑
n≥1

(−1)n
2

np
.

(c)
∑
n≥1

(−1)n

n1+n−p [this does not converge absolutely for any p > 0 by the Cauchy condensation

test].

Problem 2. Determine the radius of convergence of the following power series:

(a)
∑

n≥0
n

(
3− i

3 + 3i

)n

z2n; i =
√
−1.

(b)
∑

n≥0
(5 + i+ (−1)n)nz2n; i =

√
−1.

(c)
∑

n≥0

(n!)2

(2n)!
z3n+1.

(d)
∑

n≥0

n!

nn
z2n+1.

(e)
∑

n≥1

z2n+1(4n)!

(3n)4n(17 + (−1)n)n
.

Problem 3. Write the Taylor series of the given function f = f(z) at the given point z0 and
determine the radius of convergence of the series.

(a) f(z) =
1

2z + 3
, z0 = 0.

(b) f(z) =
z2 + 1

z + 1
, z0 = 1.

(c) f(z) =
1

(2z − 1)2
, z0 = 0.

(d) f(z) =
1

z2 + 2z + 2
, z0 = 0.

Problem 4. (I) For each differential equation below, (a) write the general solution as a power
series; (b) determine if the equation has a solution that is a polynomial. Everywhere, y = y(x). The
name of the equation is indicated for easier on-line search.

(a) y′′ = xy [Airy]
(b) xy′′ + (5− x)y′ + 2y = 0 [Laguerre]
(c) y′′ − 2xy′ + 10y = 0 [Hermite]
(d) (1− x2)y′′ − 2xy′ + n(n+ 1)y = 0, n = 0, 1, 2, 3, . . . [Legendre]

(II) Given real numbers σ0, σ1, σ2, τ0, τ1, and λ, confirm that the ordinary differential equation

(σ0 + σ1x+ σ2x
2)y′′(x) + (τ0 + τ1x)y

′(x) = λy(x)

has a polynomial solution if [and only if?]

λ = nτ1 + n(n− 1)σ2

for some non-negative integer n, and then n is the degree of this polynomial.

Problem 5. Compute the power series expansion of the solutions of the following equations:

(a) w′′(z)− zw(z) = 0, w(0) = 0, w′(0) = 1.
(b) z2w′′(z) + zw′(z) + z2w(z) = 0, w(0) = 1, w′(0) = 0.
(c) w′′(z)− zw′(z) + 2w(z) = 0, w(0) = −1, w′(0) = 0.

Problem 6. Determine the values of the parameter λ for which the following equations have
polynomial solutions:

(a) w′′(z)− 2zw′(z) + λw(z) = 0.
(b) (1− z2)w′′(z)− zw′(z) + λw(z) = 0.
(c) (1− z2)w′′(z)− 2zw′(z) + λw(z) = 0.
(d) zw′′(z) + (1− z)w′(z) + λw(z) = 0.
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Homework 6.

Problem 1. For each sequence of functions below, identify the limit and determine, with an
explanation, whether the convergence is uniform:

(a) xn, x ∈ (0, 1)
(b) sin(x/n), x ∈ (−π, π)
(c) nx/(1 + nx), x ∈ (0, 1)
(d) nx2/(n+ x), x ∈ (0, 1)

Problem 2. Determine whether each of the following series converges (a) absolutely for each x
in the indicated interval (b) uniformly over the indicated interval.

(a)
∑

n≥0 nx
n, |x| < 1.

(b)
∑

n≥1
cos(nx)

n2 ,−∞ < x < +∞.

(c)
∑

n≥1
xn

n3/2 , |x| < 1.

(d)
∑

n≥1
xn

n! ,−∞ < x < +∞.

Problem 3. We say that F = F (x), x ∈ R, is a cumulative distribution function if F has
the following properties:

• for every x, F is right-continuous and has a limit from the left (F (x) = F (x+), F (x−) exists);
• F is non-decreasing (for every x < y, F (x) ≤ F (y));
• limx→−∞ F (x) = 0, limx→+∞ F (x) = 1.

Let fn = fn(x), x ∈ R, n ≥ 1, and f = f(x) be cumulative distribution functions such that
limn→∞ fn(x) = f(x) for every x ∈ R, and assume that the limit function f is continuous. Explain
why the convergence of fn to f is uniform on R. [Make an effort to provide all the details how, given
ε > 0, there exists an Nε such that |fn(x) − f(x)| < ε for all n > Nε and all x ∈ R. You can start
by noticing that common limits at infinity effectively reduce the problem to a compact interval, and
then uniform continuity of f and monotonicity of everything will finish the job. The main challenge
is to keep track of all the epsilons while ensuring that the inequalities are in the right direction].

Problem 4. Let f = f(x), x ∈ [−1, 1], be a three times continuous differentiable function. For
n = 1, 2, . . ., define

an = n
(
f(1/n)− f(−1/n)

)
− 2f ′(0).

Explain why the series
∑

n an converges absolutely.

Problem 5. Given a sequence of numbers an with |an| < 1, we say that the infinite product∏
n(1+an) converges if limN→∞

∏N
n=1(1+an) = (1+a1) · . . . · (1+aN ) exists and is strictly positive;

we say that
∏

n(1 + an) converges absolutely if
∏

n(1 + |an|) converges. Using the Taylor expansion
of the function f(x) = ln(1 + x), confirm that

(i) If
∏

n(1 + an) converges, then limn→∞ an = 0 (consider
∑

n ln(1 + an));
(ii)

∏
n(1 + an) converges absolutely if and only if

∑
n |an| converges;

(iii) If an > 0 or if
∑

n |an|2 converges, then
∏

n(1 + an) and
∑

n an either both converge or both
diverge (consider

∑
n ln(1 + an));

(iv) If 0 < an < 1 and
∑

n an diverges, then limN→∞
∏N

n=1(1− an) = 0.
(v) Without assuming that an > 0, it is possible to have

∑
n an converging but

∏
n(1 + an)

diverging [try an = (−1)n/
√
n+ 1; the partial products will converge to zero] and it is possible to

have
∑

n an diverging but
∏

n(1 + an) converging [try a2n = −n−1/2, a2n+1 = n−1 + n−1/2].
(vi) As concrete examples, confirm that

∞∏
n=2

n3 − 1

n3 + 1
=

2

3
,

[use (n3 ± 1 = (n± 1)(n(n∓ 1) + 1) and the idea of telescoping], and that the infinite product

∞∏
k=1

(
1 +

x

k

)
e−x/k
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converges uniformly in x on compact sub-sets of R [use Taylor expansion].

Homework 7.

Problem 1. By considering the Taylor expansion of the function f(t) =
∫ 1
0

dx
xtx at the point t = 1,

confirm the identity ∫ 1

0

dx

xx
=
∑
k≥1

1

kk
.

Here is an outline of the solution: writing f(1) =
∑

n≥0 f
(n)(0)/k!, you need to confirm that

(−1)n
∫ 1

0

(
x lnx)ndx =

n!

(n+ 1)n+1
,

which you do by substitutions x = e−y, t = (n+1)y, and then noticing that
∫∞
0 tne−tdt = Γ(n+1) =

n!.

Problem 2. Consider the sequences

an =
(n/e)n

n!
, bn =

√
nan, n ≥ 1.

Confirm that the sequence {an} is monotonically decreasing and the sequence {bn} is monotoni-
cally increasing. Verify that |bn| ≤ 2 for all n. Conclude that limn→∞ bn exists and is finite, that
limn→∞ an = 0, and then that the series

∑
n≥1(−1)nan converges conditionally.

In fact, limn→∞ bn = 1/
√
2π, which is another way to state the Stirling formula. Moreover,

1/
√
2π = 0.39894228 . . ., whereas b1 = 1/e = 0.367879441 . . . , b2 = 2

√
2b21 = 0.382785986 . . . , and

b3 = 4.5
√
3 b31 = 0.388051794 . . . .

Problem 3. [A little taste of Bessel functions]
(a) Determine the values of the parameter q so that Bessel’s equation x2y′′+xy′+(x2−q)y = 0

has a real analytic solution.
(b) Use the power series representation of the Bessel functions

JN (z) =

∞∑
k=0

(−1)k

k!(k +N)!

(z
2

)2k+N
, N = 0, 1, 2, 3, . . . ,

to confirm that

(1) JN (−z) = (−1)NJN (z),
(2) (zNJN (z))′ = zNJN−1(z),
(3) (z−NJN (z))′ = −z−NJN+1(z),
(4) zJ ′

N (z) = NJN (z)− zJN+1(z) = −NJN (z) + zJN−1(z),

(5)
∫ x
0 yNJN−1(y)dy = xNJN (x).

Problem 4. Confirm that

lim
n→∞

n1/2

∫ 1

−1
(1− x2)n dx =

√
π.

A possible outline: by symmetry,
∫ 1
−1(1− x2)n dx = 2

∫ 1
0 (1− x2)n dx, then change variables u = x2

to get a Beta integral, evaluate it using Gamma functions, and then apply Stirling.

Problem 5. Use the properties of the Gamma and Beta functions to confirm the following
equalities: ∫ 1

0
(1− x3)1/7 dx =

∫ 1

0
(1− x7)1/3 dx, then suggest a more general identity;∫ 1

0
x1/3(1− x)2/3 dx =

2π
√
3

27
.
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Homework 8.

Problem 1. For functions f, g below, find a, b, c, d so that g(x) = a+ bf(cx+ d).

(a) f(x) = x, 0 ≤ x ≤ π, f is even and 2π-periodic; g(x) = 2x, 0 ≤ x ≤ 1/2; g(x) = 2− 2x, 1/2 ≤
x ≤ 1, g is odd and is periodic with period 2.

(b) f(x) = 1, 0 ≤ x < π; f(x) = 0, π ≤ x < 2π, f is 2π-periodic; g(x) = 1, 0 ≤ x < 1/2; g(x) =
−1, 1/2 ≤ x < 1, g is periodic with period 1.

(c) f(x) = x,−π ≤ x < π, f is 2π-periodic; g(x) = x, 0 ≤ x < 1, g has period 1.

Problem 2. Let f(x) = 2x, |x| < 1. Denote by Sf (x) the sum of the Fourier series of f . Draw
the graph of Sf and evaluate (a) Sf (3) (b) Sf (5/2).

Problem 3. Compute the Fourier series expansion of each of the six functions in problem 4. (You
will have to compute some integrals, but not for all six functions). Use the results to evaluate the
following infinite sums:

(a)
∑

k≥0
(−1)k

2k+1

(b)
∑

k≥0
1

(2k+1)4

(c)
∑

k≥0
1

(2k+1)2

(d)
∑

k≥1
1
k2

(e)
∑

k≥1
(−1)k+1

k2

Problem 4. The function f(x) = x2, 0 < x < 1, is to be expanded in a Fourier series. You have
three options:
(a) take the periodic extension of the function with period 1.
(b) take the periodic extension of the even extension of the function with period 2.
(c) take the periodic extension of the odd extension of the function with period 2.
Draw the pictures of the sum of the resulting Fourier series in each case. Which option would
you choose and why? (Note: to answer these questions you do not need to compute the Fourier
coefficients of the function.)

Problem 5. Solve the following initial-boundary value problems:
Heat equation

ut = uxx, u = u(x, t), x ∈ (0, 1), t > 0,

u(x, 0) =
∑
n≥0

sin(2π(2n+ 1)x)

(2n+ 1)2
,

u(0, t) = 0,
u(1, t) = 0;

Wave equation

utt = 4uxx, u = u(t, x), t > 0, x ∈ (0, π),
u(0, x) = 0,
ut(0, x) = sin(2x) + 3 sin(5x),
u(t, 0) = 0,
u(t, π) = 0.

Homework 9.

Problem 1. Let the function x = x(r) be defined in some neighborhood of r = 0 by
(x− 1)(x2 + 1) = r. Determine the numbers c0, c1, c2, c3 so that

lim
r→0

x(r)− c0 − c1r − c2r
2 − c3r

3

r3
= 0.

Problem 2. In what follows, W0 is the principal branch of the Lambert W function.
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(a) Confirm that the unique solution of xx
a
= b, a > 0, b > 1, is

x = eW0(a ln b)/a =

(
a ln b

W0(a ln b)

)1/a

and that the result is consistent with the special case a = b, when the solution is (obviously)

x = a1/a. Then investigate the cases 0 < b < 1 and/or a < 0.
(b) Confirm that, for 0 < a < 1 and b ∈ R, the unique solution of ax = x+ b is

x = −b+W0(−a−b ln a)

ln a
.

[A comment: the equation is equivalent to e(x+b) ln a = ab(x+ b)]. Then investigate the case
a > 1, followed by the complex-valued case.

(c) Confirm that the solution of the initial value problem y′ = y2(1−y), t > 0, y(0) = a ∈ (0, 1),
is

y(t) =
1

1 +W0(rer−t)
, r =

1− a

a
.

Then investigate the case a /∈ (0, 1). [A comment: 1
y2(1−y)

= 1
y + 1

y2
+ 1

1−y . ]

Problem 3. [Examples of the Feynman trick]
(a) Confirm that ∫ 1

0

x− 1

lnx
dx = ln 2.

[Set F (t) =
∫ 1
0 (x

t−1)/ lnx dx, argue that F (0+) = 0, F (1) is what you need, and F ′(a) = 1/(1+a);

also explain how the argument breaks down if, instead of xt − 1 you consider xt − 2].
(b) Confirm that ∫ +∞

0
lnx e−x2

dx = −
√
π(γ + 2 ln 2)

2
,

where γ is the Euler-Mascheroni constant [set F (t) =
∫∞
0 xte−x2

dx, argue that F (t) = (1/2)Γ((t +
1)/2) and the integral you want is F ′(0) = (1/4)Γ′(1/2); then use the duplication formula for the
Gamma function, together with Γ(1) = 1,Γ′(1) = −γ,Γ(1/2) =

√
π.]

Problem 4. [This is about contractions and related ideas]
(a) Construct a mapping f of a closed bounded interval into itself so that |f(x)− f(y)| < |x− y|

for all x, y but there is no c ∈ (0, 1) with the property |f(x)− f(y)| < c|x− y| for all x, y. Does the
mapping have a fixed point? If so, how fast is it reached? Are there any other fixed points in your
example?

(b) Assume that X is a compact metric space with metric d and the mapping f : X → X satisfies
d(f(x), f(y)) < d(x, y). Prove that f has a unique fixed point x∗ and the point is the limit of the
sequence yn = f(yn−1), n → ∞, for every starting point y0 ∈ X.

(c) Explain why a contracting mapping (satisfying d(f(x), f(y)) ≤ cd(x, y) for some c ∈ (0, 1)) of
a compact metric space cannot be invertible.

(d) Construct a metric spaceX, with metric d, and a mapping f : X → X such that d(f(x), f(y)) <
d(x, y) for all x, y ∈ X, but f has no fixed points.

Problem 5. Recall that a sequence of continuous functions {fn = fn(x)}n≥1 on [0, 1] is equicon-
tinuous on [0, 1] if for every ε > 0 there is δ > 0 so that for all x, y from the interval [0, 1] satisfying
|x− y| < δ and for all n ≥ 1 it holds that |fn(x)− fn(y)| < ε.

Let {hn = hn(x)}n≥1 be a sequence of (Riemann) integrable functions defined on [0, 1] and
|hn(x)| ≤ 1 for all x ∈ [0, 1] and all n ≥ 1. Let K = K(x, t) be a continuous function on [0, 1]× [0, 1].

Define fn(x) =
∫ 1
0 K(x, t)hn(t)dt. Prove that the sequence {fn} is equicontinuous on [0, 1]. Can the

same conclusion hold without assuming joint continuity of K in x and t?

Homework 10.

Problem 1. What can you say about wedge product of (a) two closed forms (b) two exact forms
(c) an exact form and a closed form (d) an arbitrary form with itself (that is, ω ∧ ω)? [There is
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no guarantee that ω ∧ ω = 0: consider ω = dx ∧ dy + dz ∧ dw in R4. Can you construct a similar
example in R3 or R5? How about R6? Can you state and prove some general statements based on
these observations?]

Problem 2. Verify the following identities:

∇(fg) = g∇f + f∇g, ∇ · (f F⃗ ) = F⃗ · ∇f + f∇ · F⃗ ,

∇× (f F⃗ ) = (∇f)× F⃗ + f∇× F⃗ ,

∇× (∇f) = 0⃗, ∇ · (∇× F⃗ ) = 0,

∇ · (F⃗ × G⃗) = G⃗ · (∇× F⃗ )− F⃗ · (∇× G⃗), ∇ · (∇f ×∇g) = 0.

When possible, use the language of differential forms.

Problem 3. Confirm that the two forms below are closed but not exact:

ω = − y

x2 + y2
dx+

x

x2 + y2
dy in R2 with (0, 0) removed;

ω =
x

(x2 + y2 + z2)3/2
dy ∧ dz +

y

(x2 + y2 + z2)3/2
dz ∧ dx

+
z

(x2 + y2 + z2)3/2
dx ∧ dy in R3 with (0, 0, 0) removed.

Problem 4. Evaluate the following integrals:

(a)

∫
C
(2y2 + 2xz)dx+ 4xydy + x2dz, where C is the path

x(t) = cos t, y(t) = sin t, z(t) = t, 0 ≤ t ≤ 2π.

(b)

∮
C
y2dx + x2dy, where C is the boundary of the rectangle with vertices (1, 0), (3, 0), (3, 2),

(1, 2), oriented counterclockwise.

(c)

∮
C
ydx − zdy + ydz, where C is the ellipse x2 + y2 = 1; 3x + 4y + z = 12 oriented

counterclockwise as seen from the point (0, 0, 1000).

Problem 5. Compute the following quantities using a suitable integral:

(a) The mass of the curve shaped as a helix r(t) = 〈cos t, sin t, t〉, t ∈ [0, 2π], if the density at
every point is the square of the distance of the point to the origin.

(b) The area between x-axis and the curve r(t) = 〈t− sin t, 1− cos t〉, t ∈ [0, 2π].

(c) The average distance to the (x, y) plane of the points on the hemisphere z =
√

1− x2 − y2.
(d) The flux of the vector field F = 〈x, y, z〉 through the lateral surface of the cylinder x2 + y2 =

1, z ∈ [0, 2].

Homework 11.

Problem 1. Explain why all three functions from (2) are Lebesgue-integrable on [0, 1] and all
three integrals are equal to zero.

Problem 2. Let f = f(x), x ∈ R, be a Lebesgue-integrable function.

(a) Given β ∈ (0, 1), explain why the integral
∫ +∞
0

|f(x)|
|x−y|β dx is finite for almost all y ∈ R. [One

way: integrate with respect to y].
(b) Assuming 0 < f(x) < 1, explain why, for every C > 0, there exists a y ∈ [0, 1] such that∫ 1

0
dx

|f(x)−y| > C. [One possibility: assume otherwise, integrate with respect to y, see if there is a

contradiction].

Problem 3. Explain why

lim
n→∞

∫ n

0

(
1 +

x2

n

)−(n+1)

dx =

∫ +∞

0
e−x2

dx =

√
π

2
.
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Note that the sequence (1 + (1/n))n+1 is monotonically decreasing to e; you can try and use it
without a proof, but eventually make sure you can prove it too.

How will the result and/or argument change if we replace the power −(n+ 1) with −n?

Problem 4. Let f be a Lebesque-integrable function on (0,+∞) and define the function

g(x) =

∫ +∞

0

f(y)

x+ y
, dy, x > 0.

(a) Explain why the function g is differentiable for all x > 0. [Justify differentiation under the
integral sign.]

(b) Does limx→0+ g(x) always exist? Explain your conclusion. [Probably not: take f(y) = 1, 0 ≤
y ≤ 1 and f(y) = 0, y > 1].

(c) Is it possible to have g(0+) finite but no limx→0+ g′(x)? [Probably not: take f(y) = y, 0 ≤
y ≤ 1 and f(y) = 0, y > 1].

Problem 5. [This is a look into infinite dimensions]
(a) Explain why the closed unit ball in L2((0, 1)) is not compact.
(b) Explain why there is no analog of the Lebesgue measure on L2((0, 1)) (that it, there is no

countably additive measure that is positive on open balls and is translation-invariant
[In both cases, a possible argument relies on an infinite orthonormal collection, which does not

contain a converging subsequence and can be separated by non-overlapping open balls.]

Homework 12.

Problem 1. Compute the Fourier transform of the function f in each of the following cases:

(a) f(x) = e−2x, x > 0, f(x) = 0 otherwise.
(b) f(x) = x, a < x < b, f(x) = 0 otherwise.
(c) f ′′(x)− f(x) = u(x), where u(x) = 1, |x| < 1, u(x) = 0 otherwise.
(d) f ′′(x) = xf(x).

Problem 2. Compute the Fourier transform of the function f(x) = e−|x| and use the result to

evaluate the integrals

∫ ∞

0

cos(wx)

1 + w2
dw and

∫ ∞

0

dw

(1 + w2)2
.

Problem 3. (a) The Fourier transform of the function f(x) = e−x2/2 is f̂(ω) = e−ω2/2. Compute

the Fourier transform of the function g(x) = e−ax2
, a > 0.

(b) In the previous problem you learned that the Fourier transform of the function f(t) = e−|t| is

f̂(ω) =

√
2

π

1

1 + ω2
. Use the result to compute the Fourier transform of the following functions (i)

f(t) = 1/(1 + t2); (ii) f(t) = a/(b+ ct2), a, b, c > 0.

Problem 4. Confirm that if

h(x) =

∫ +∞

−∞
f(x− y)g(y)dy,

then ĥ(w) =
√
2πf̂(w)ĝ(w).

Problem 5. Let f = f(x) be a bounded continuous function such that
∫ +∞
−∞ |f(x)|dx < ∞ and∫ +∞

−∞ f2(x)dx = 1. For t > 0 define

u(t, x) =
1√
4πit

∫ ∞

−∞
ei(x−y)2/(4t)f(y)dy, i =

√
−1.

Verify that, for all t > 0, ∫ ∞

−∞
|u(t, x)|2dx = 1.

Problem 6. Is it possible that f is a bounded function and
∫ +∞
−∞ |f(x)|dx < ∞, but

∫ +∞
−∞ f2(x)dx =

∞? Is it possible that f is bounded function and
∫ +∞
−∞ f2(x)dx < ∞, but

∫ +∞
−∞ |f(x)|dx = ∞? What
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if we drop the assumption that f is bounded? In each case, either construct an example (if your
answer is positive) or outline an argument supporting your negative answer.

Problem 7. Define the function

(3) B(t) =

∫ +∞

0

x3 sin(tx)

x4 + 4
dx, t > 0.

Confirm that B(t) = π
2 e

−t cos t by filling in the details below:

(i) If C(t) =
∫ +∞
0

cos(tx)
x4+4

dx, then C(0) = π/8 and C ′′′(t) = B(t).

(ii) The function C = C(t) is the bounded solution of the ODE C ′′′′(t) + 4C(t) = 0 satisfying
C(0) = π/8 and C ′(0) = 0.

Explain why limt→0+B(t) = π/2 and we cannot simply pass to the limit on the right-hand side of
(3). Here, the following observation can be helpful:

x3

x4 + 4
=

1

x

(
1− 4

x4 + 4

)
,

∫ +∞

0

sin(tx)

x
dx =

π

2
,

so that

B(t) =
π

2
− 4

∫ +∞

0

sin(tx)

x(x4 + 4)
dx.

Problem 8. Confirm that, for s > 1,∫ ∞

0

xs−1

ex − 1
dx = ζ(s)Γ(s),

where ζ is the Riemann zeta function and Γ is the (Euler) Gamma function.
One way is to write 1/(ex − 1) = e−x/(1 − e−x) = e−x

∑∞
k=0 e

−kx, integrate term-by-term, and
re-arrange the result; the main challenge is to justify the steps related to swapping integration and
summation.


