A general introduction

One unit of credit

1 unit is (at least) 45 hours of work per semester
"Traditional accounting" for one unit:

- 1 hour of lectures per week
- 2 hours of discussion sections per week
- 3 hours of lab work per week

Ramifications for USC's 15 -week semester:

- 1 unit is 3 hours of work per week
- 16 units $=48$ hours of work per week
- a 4-unit math class $=7$ hours of independent work per week And this is the bare minimum!

Good news: one week is 168 hours; $168=48+60+60$.

An absolute grading scheme

A	$100-95$
A-	$94-90$
B+	$89-87$
B	$86-83$
B-	$82-80$
C+	$79-77$
C	$76-73$
C-	$72-70$
D+	$69-67$
D	$66-63$
D-	$62-60$
F	59 and below

Quotation number 1, A variation on Bertrand Russell (1872-1970):

Most people would rather die than think; in fact, many do so.
A follow-up by Yu. I. Manin (1937-2023), from an interview in 2015:

Think! Otherwise no Google will help you.
Quotation number 2, at the entrance to main auditorium at Uppsula University:

Tänka fritt är stort men tänka rätt är store.
A follow-up by Georg Cantor (1845-1918), as presented by Yu. I. Manin at ICM Berlin in 1998:

The essence of mathematics lies in its Freedom.

A quotation:

Education is what you get when you read the fine print. Experience is what you get when you do not.

Unknown, on investing.

A generalization:

Education is what you get when you $\langle\mathrm{DO}\rangle$. Experience is what you get when you \langle DO NOT \rangle.
Three other suggestions:

1. Ask questions [try two serious ones per week].

- At the lecture (right on the spot, before/after).
- During office hours.
- By e-mail

2. Keep your notes.
3. Have fun while learning the material.

Communication:

- Verbal (words): 7\%
- Vocal (tone of voice): 38%
- Visual (body language): 55\%

Source: Albert Mehrabian (Professor of Psychology at UCLA, b. 1939) studies on communication in 1960's.

The fine print: This only applies to messages pertaining to feelings and attitudes.

Conclusion: For a (math) lecture, make it 100% verbal (lecture words) and visual (blackboard and/or video).

Probability and Statistics

Subject Word
Motivation
Probability Probus (Latin) $=$ honest
Gambling
Probabilis (Latin) $=$ provable

Statistics \quad Stare (Latin) $=$ stand
Agriculture
Statistik (German) = political arithmetic

First department of statistics in the USA: 1933, lowa State University World: 1911, University College London

As a math problem

In the background is a model with uncertain outcomes.

Probability is mathematical study of uncertainty: Given a model, describe the outcomes - a forward problem.

Statistics is collecting, organizing, analyzing, interpreting, and presenting data.
Applied Statistics: understanding whether the observed difference is due to chance or is caused by something else - all about facts (data). Theorem-free.

Mathematical Statistics: Given the outcomes (data), determine the underlying model - an inverse problem. Provides the tools to interpret the facts (process the data) and safeguards against wrong interpretations and conclusions. Proves theorems.

Numbers

$X_{1}, X_{2}, \ldots, X_{n}$
Sample mean

$$
\bar{X}_{n}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}
$$

Sample median M_{n}

$$
\begin{aligned}
11,25,38,478,5000 & \mapsto M_{5}=38 ; \\
16,27,324,450,598,61111 & \mapsto M_{6}=\frac{324+450}{2}=387
\end{aligned}
$$

Sample standard deviation

$$
s_{n}=\sqrt{\frac{1}{n-1} \sum_{k=1}^{n}\left(X_{k}-\bar{X}_{n}\right)^{2}}
$$

Random models

Tossing a coin, with outcomes H (EADS), T (AILS)
Rolling a Die, with outcomes $\{1,2,3,4,5,6\}$
Drawing Cards

- 52 cards;
- 2 colors: black, red;
- 4 suits: hearts (red), clubs (black), diamonds (red), spades (black);
- 13 ranks per suit: $A(c e), 2,3,4,5,6,7,8,9,10, J($ ack $), ~ Q(u e e n), ~ K(i n g) . ~$

Go steady but not too slow

A worm at one end of a rubber band. Worm: moves at the speed of 1 centimeter per minute. Band: one meter to start, stretches by one meter every minute. When will the worm get to the other end, if ever?

The meaning of slow

It will, eventually, in about 10^{37} years.

