Math 126

Some pure math applications.

If N is large, then the probability that two randomly selected numbers from 1,..., N are
relatively prime, that is, do not have any prime divisors in common, is approximately
6 _ ! ~ 0.6079
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This also turns out to be the (approximate) probability that a randomly selected number from
1,..., N is square-free, that is, not divisible by a square of any prime number.
The probability that m > 2 numbers out of 1,..., N are relatively prime is approximately
1
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THE PRIME NUMBER THEOREM: the number 7(n) of primes that are less than or equal to

n is
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In what follows, p denotes a prime number, i.e. one of 2,3,5,7,11,13,....

—, N — +00.
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Equivalently, n-th prime number p,, satisfies
Pn ~nlnn.
THREE THEOREMS OF MERTEN:
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EULER: for every r > 1,
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HARDY-RAMANUJAN: for large n, the number of distinct prime divisors of n is “typically
around” In(Inn).



