Math 126

Some pure math applications.

If N is large, then the probability that two randomly selected numbers from $1, \ldots, N$ are relatively prime, that is, do not have any prime divisors in common, is approximately

$$
\frac{6}{\pi^{2}}=\frac{1}{\sum_{k \geq 1} k^{-2}} \approx 0.6079 \cdots
$$

This also turns out to be the (approximate) probability that a randomly selected number from $1, \ldots, N$ is square-free, that is, not divisible by a square of any prime number.

The probability that $m \geq 2$ numbers out of $1, \ldots, N$ are relatively prime is approximately

$$
\frac{1}{\sum_{k \geq 1} k^{-m}}
$$

In what follows, p denotes a prime number, i.e. one of $2,3,5,7,11,13, \ldots$.
The prime number theorem: the number $\pi(n)$ of primes that are less than or equal to n is

$$
\pi(n)=\sum_{p \leq n} 1 \sim \frac{n}{\ln n} \sim \int_{2}^{n} \frac{d x}{\ln x}, n \rightarrow+\infty
$$

Equivalently, n-th prime number p_{n} satisfies

$$
p_{n} \sim n \ln n .
$$

Three theorems of Merten:

$$
\begin{gathered}
\sum_{p \leq n} \frac{\ln p}{p}=\ln n+O(1), n \rightarrow+\infty \\
\sum_{p \leq n} \frac{1}{p}=\ln (\ln n)+O(1), n \rightarrow+\infty \\
\lim _{n \rightarrow+\infty} \ln n \prod_{p \leq n}\left(1-\frac{1}{p}\right)=e^{-\gamma} .
\end{gathered}
$$

Euler: for every $r>1$,

$$
\prod_{p}\left(1-\frac{1}{p^{r}}\right)=\frac{1}{\sum_{k=1}^{\infty} k^{-r}}
$$

Hardy-Ramanujan: for large n, the number of distinct prime divisors of n is "typically around" $\ln (\ln n)$.

