
Math 126
Applications of ODEs.
Population models.
The basic model: n′(t) = rn(t), n is current population (not necessarily humans!), r is the

growth rate; the particular form of r determines the particular model:

(1) Elementary: r = B −M , B is birth rate, M is mortality rate, both are constant; first
suggested by a British economist Thomas Malthus (1766–1834) around 1800.

(2) Logistic: r = B
(
1− n

λ

)
(birth rate is constant but mortality rate is proportional

to the current population); first suggested by Belgian mathematician P. F. Verhulst
(1804–1849) around 1840 and allowed him to predict the US population 100 years later
to within 1% error.

(3) Logistic with threshold: r = −r0

(
1− n

λ

)(
1− n

µ

)
.

(4) Gompertz: r = r0(lnλ − lnn), first suggested by a British mathematician/actuary
Benjamin Gompertz (1779–1865) around 1825.

(5) Doomsday: r = r0n
γ, 0 < γ < 1. Proposed by H. von Foerster, P. M. Mora, and

L. W. Amiot in the paper Doomsday: Friday, 13 November, A.D. 2026, Science 132
(November 1960): 1291–1295.

(6) Nurgaliev: r = bn−M (now, mortality is constant but the birth rate is proportional
to the current population).

Capstan equation (Euler 1769, Eytelwein 1808; Johann Albert Eytelwein (1764–1849)
was a German civil engineer.)

A rope is winding around a capstan (a pole). Then

TL = THe
µφ,

where TL is the load, TH is the force needed to balance the load at the other end, µ is the
(dimensionless) coefficient of static friction between the rope and the surface [typically between
0.2 and 0.8], and φ is the winding angle (in radians). With five complete turns (φ = 10π)
and µ = 0.6, two pounds will balance an aircraft carrier.

The reason: infinitesimal balance of forces, T (tension), N (normal reaction) and µN
(friction) at the point of rope-pole contact. In the normal direction to the surface of the pole,
△N ≈ T△φ; in the tangential direction (along the rope), µ△N ≈ △T . After eliminating N ,
get △T ≈ µT △φ or, as a differential equation for T = T (φ),

T ′(φ) = µT (φ).

Newton’s Law of cooling. If T (t), t ≥ 0, is the temperature of the object at time t
and To < T (0) is the temperature of the environment, then

T ′(t) = −κ
(
T (t)− To

)
for some κ > 0.

General problem on the rate of change: “rate of change” = “rate in” − “rate
out”. Two standard examples: mixing and loan payment.

Mixing. Assume that IN a container comes something (call it “pollutant”) as a perfect mix-
ture at a (constant) rate a [volume/time] and with (constant) concentration ρ [mass/volume],
and OUT of the container comes a perfect mixture at a (constant) rate b [volume/time]. Then
the mass m = m(t) of the “pollutant” at time t satisfies

m′(t) = ρa− m(t)

V0 + (a− b)t
b,



where V0 is the initial volume of the mixture in the container: the concentration of the
pollutant in the container at time t is m(t)/V (t), where V (t) = V0 + (a − b)t is the current
volume of the mixture in the container. If a ̸= b, then the process will continue until either
V0 = (b − a)t (if b > a and the container becomes empty) or V0 + (a − b)t = Vmax (if a > b
and the container is filled to capacity Vmax). If a = b, then

m′(t) = ρa− m(t)

V0

a

and the process can continues for ever.

Loan payment. If m is the amount you owe, r is interest rate (continuously compounded),
T is the duration of the loan, and p is the payment rate (dollars per unit time), then, with
“rate in”= rm(t), “rate out”= p,

m′(t) = rm(t)− p;

here the terminal condition m(T ) = 0, together with the initial amount borrowed m(0),
determines the payment p.

A separable ODE

f(y)y′(x) = g(x) ⇒ f(y)dy = g(x)dx ⇒
∫ y

y0

f(u)du =

∫ x

x0

g(v)dv;

integrate, and solve for y (if possible).

All of the above application examples lead to separable equations. In particular, for some of
the population models with t0 = 0, n(0) = n0,

n′ = (B −M)n, n(t) = n0e
(B−M)t (simple);

n′ = B
(
1− n

λ

)
n, n(t) =

λn0

n0 + (λ− n0)e−Bt
(logistic);

n′ = r0(lnλ− lnn)n, n(t) = λ exp
(
ln

n0

λ
e−r0t

)
(Gompertz);

n′ = r0n
1+γ, n(t) =

κκ

(κnγ
0 − r0t)κ

, κ =
1

γ
(Doomsday), tD =

κnγ
0

r0
.


