Math 126

Applications of ODEs.

POPULATION MODELS.

The basic model: n'(t) = rn(t), n is current population (not necessarily humans!), r is the
growth rate; the particular form of r determines the particular model:

(1) Elementary: » = B — M, B is birth rate, M is mortality rate, both are constant; first
suggested by a British economist Thomas Malthus (1766-1834) around 1800.

n
(2) Logistic: » = B (1 — X) (birth rate is constant but mortality rate is proportional

to the current population); first suggested by Belgian mathematician P. F. Verhulst
(1804-1849) around 1840 and allowed him to predict the US population 100 years later
to within 1% error.
(3) Logistic with threshold: r = —rg <1 - ;) (1 - E).
I
(4) Gompertz: r = ro(In A — Inn), first suggested by a British mathematician/actuary

Benjamin Gompertz (1779-1865) around 1825.

(5) Doomsday: r = ron”, 0 < v < 1. Proposed by H. von Foerster, P. M. Mora, and
L. W. Amiot in the paper Doomsday: Friday, 13 November, A.D. 2026, Science 132
(November 1960): 1291-1295.

(6) Nurgaliev: r = bn — M (now, mortality is constant but the birth rate is proportional
to the current population).

CAPSTAN EQUATION (Euler 1769, Eytelwein 1808; Johann Albert Eytelwein (1764-1849)
was a German civil engineer.)
A rope is winding around a capstan (a pole). Then
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where 77, is the load, Ty is the force needed to balance the load at the other end, p is the
(dimensionless) coefficient of static friction between the rope and the surface [typically between
0.2 and 0.8], and ¢ is the winding angle (in radians). With five complete turns (¢ = 107)
and p = 0.6, two pounds will balance an aircraft carrier.

The reason: infinitesimal balance of forces, T' (tension), N (normal reaction) and pN
(friction) at the point of rope-pole contact. In the normal direction to the surface of the pole,
AN =~ T Ayp; in the tangential direction (along the rope), uAN ~ AT. After eliminating N,
get AT =~ uT A or, as a differential equation for T'= T'(p),

T'(p) = nT(p).

NEWTON’S LAW OF COOLING. If T'(t), t > 0, is the temperature of the object at time ¢
and T, < T(0) is the temperature of the environment, then

T'(t) = —r(T(t) - T,)
for some k > 0.

GENERAL PROBLEM ON THE RATE OF CHANGE: “rate of change” = “rate in” — “rate
out”. Two standard examples: mixing and loan payment.

MIXING. Assume that IN a container comes something (call it “pollutant”) as a perfect mix-
ture at a (constant) rate a [volume/time] and with (constant) concentration p [mass/volume],
and OUT of the container comes a perfect mixture at a (constant) rate b [volume/time|. Then
the mass m = m(t) of the “pollutant” at time ¢ satisfies

m(t)



where Vj is the initial volume of the mixture in the container: the concentration of the
pollutant in the container at time ¢ is m(t)/V(t), where V(t) = Vi + (a — b)t is the current
volume of the mixture in the container. If a # b, then the process will continue until either
Vo = (b —a)t (if b > a and the container becomes empty) or Vy + (a — b)t = Vyper (if a > b
and the container is filled to capacity Vi,a.). If @ = b, then
m(t)

Vo

m/(t) = pa — a

and the process can continues for ever.

LOAN PAYMENT. If m is the amount you owe, r is interest rate (continuously compounded),
T is the duration of the loan, and p is the payment rate (dollars per unit time), then, with
“rate in”= rm(t), “rate out”= p,

m/(t) = rm(t) — p;

here the terminal condition m(7T) = 0, together with the initial amount borrowed m(0),
determines the payment p.
A separable ODE
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integrate, and solve for y (if possible). : 0

All of the above application examples lead to separable equations. In particular, for some of
the population models with ¢y = 0, n(0) = ny,
n' = (B — M)n, n(t) =neeB=t (simple);
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n' =ro(ln X —Inn)n, n(t) = exp <1n % e_mt) (Gompertz);
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