Math 126
Applications of ODEs.
Population models.
The basic model: $n^{\prime}(t)=r n(t), n$ is current population (not necessarily humans!), r is the growth rate; the particular form of r determines the particular model:
(1) Elementary: $r=B-M, B$ is birth rate, M is mortality rate, both are constant; first suggested by a British economist Thomas Malthus (1766-1834) around 1800.
(2) Logistic: $r=B\left(1-\frac{n}{\lambda}\right)$ (birth rate is constant but mortality rate is proportional to the current population); first suggested by Belgian mathematician P. F. Verhulst (1804-1849) around 1840 and allowed him to predict the US population 100 years later to within 1% error.
(3) Logistic with threshold: $r=-r_{0}\left(1-\frac{n}{\lambda}\right)\left(1-\frac{n}{\mu}\right)$.
(4) Gompertz: $r=r_{0}(\ln \lambda-\ln n)$, first suggested by a British mathematician/actuary Benjamin Gompertz (1779-1865) around 1825.
(5) Doomsday: $r=r_{0} n^{\gamma}, 0<\gamma<1$. Proposed by H. von Foerster, P. M. Mora, and L. W. Amiot in the paper Doomsday: Friday, 13 November, A.D. 2026, Science 132 (November 1960): 1291-1295.
(6) Nurgaliev: $r=b n-M$ (now, mortality is constant but the birth rate is proportional to the current population).

Capstan equation (Euler 1769, Eytelwein 1808; Johann Albert Eytelwein (1764-1849) was a German civil engineer.)

A rope is winding around a capstan (a pole). Then

$$
T_{L}=T_{H} e^{\mu \varphi}
$$

where T_{L} is the load, T_{H} is the force needed to balance the load at the other end, μ is the (dimensionless) coefficient of static friction between the rope and the surface [typically between 0.2 and 0.8], and φ is the winding angle (in radians). With five complete turns ($\varphi=10 \pi$) and $\mu=0.6$, two pounds will balance an aircraft carrier.

The reason: infinitesimal balance of forces, T (tension), N (normal reaction) and μN (friction) at the point of rope-pole contact. In the normal direction to the surface of the pole, $\Delta N \approx T \triangle \varphi$; in the tangential direction (along the rope), $\mu \Delta N \approx \triangle T$. After eliminating N, get $\Delta T \approx \mu T \Delta \varphi$ or, as a differential equation for $T=T(\varphi)$,

$$
T^{\prime}(\varphi)=\mu T(\varphi) .
$$

Newton's Law of cooling. If $T(t), t \geq 0$, is the temperature of the object at time t and $T_{o}<T(0)$ is the temperature of the environment, then

$$
T^{\prime}(t)=-\kappa\left(T(t)-T_{o}\right)
$$

for some $\kappa>0$.
General problem on the rate of change: "rate of change" = "rate in" - "rate out". Two standard examples: mixing and loan payment.

Mixing. Assume that IN a container comes something (call it "pollutant") as a perfect mixture at a (constant) rate a [volume/time] and with (constant) concentration ρ [mass/volume], and OUT of the container comes a perfect mixture at a (constant) rate b [volume/time]. Then the mass $m=m(t)$ of the "pollutant" at time t satisfies

$$
m^{\prime}(t)=\rho a-\frac{m(t)}{V_{0}+(a-b) t} b
$$

where V_{0} is the initial volume of the mixture in the container: the concentration of the pollutant in the container at time t is $m(t) / V(t)$, where $V(t)=V_{0}+(a-b) t$ is the current volume of the mixture in the container. If $a \neq b$, then the process will continue until either $V_{0}=(b-a) t$ (if $b>a$ and the container becomes empty) or $V_{0}+(a-b) t=V_{\max }$ (if $a>b$ and the container is filled to capacity $V_{\max }$). If $a=b$, then

$$
m^{\prime}(t)=\rho a-\frac{m(t)}{V_{0}} a
$$

and the process can continues for ever.
Loan payment. If m is the amount you owe, r is interest rate (continuously compounded), T is the duration of the loan, and p is the payment rate (dollars per unit time), then, with "rate in" $=r m(t), "$ rate out" $=p$,

$$
m^{\prime}(t)=r m(t)-p ;
$$

here the terminal condition $m(T)=0$, together with the initial amount borrowed $m(0)$, determines the payment p.

A separable ODE

$$
f(y) y^{\prime}(x)=g(x) \Rightarrow f(y) d y=g(x) d x \Rightarrow \int_{y_{0}}^{y} f(u) d u=\int_{x_{0}}^{x} g(v) d v ;
$$

integrate, and solve for y (if possible).
All of the above application examples lead to separable equations. In particular, for some of the population models with $t_{0}=0, n(0)=n_{0}$,

$$
\begin{array}{r}
n^{\prime}=(B-M) n, \quad n(t)=n_{0} e^{(B-M) t} \quad(\text { simple }) ; \\
n^{\prime}=B\left(1-\frac{n}{\lambda}\right) n, n(t)=\frac{\lambda n_{0}}{n_{0}+\left(\lambda-n_{0}\right) e^{-B t}} \quad \text { (logistic); } \\
n^{\prime}=r_{0}(\ln \lambda-\ln n) n, n(t)=\lambda \exp \left(\ln \frac{n_{0}}{\lambda} e^{-r_{0} t}\right) \quad(\text { Gompertz }) ; \\
n^{\prime}=r_{0} n^{1+\gamma}, n(t)=\frac{\kappa^{\kappa}}{\left(\kappa n_{0}^{\gamma}-r_{0} t\right)^{\kappa}}, \kappa=\frac{1}{\gamma} \quad \text { (Doomsday), } t_{D}=\frac{\kappa n_{0}^{\gamma}}{r_{0}} .
\end{array}
$$

