Math 126

Limits.

Time-saving notations for limit comparison. With f and g representing either functions or sequences,

- $f \sim g$ if $f \geq 0, g \geq 0, \lim (f / g)=1$;
- $f \simeq g$ if $f \geq 0, g \geq 0, \lim (f / g)=c \in(0,+\infty)$;
- $f=o(g)$ if $f \geq 0, g \geq 0, \lim (f / g)=0$;
- $f=\omega(g)$ if $f \geq 0, g \geq 0$, and $g=o(f)$;
- $f=O(g)$ if $f \geq 0, g \geq 0$, and $f \leq C g, C \in(0,+\infty)$;
- $f=\Omega(g)$ if $f \geq 0, g \geq 0$, and $g=O(f)$;
- $f=\Theta(g)$ if $f \geq 0, g \geq 0$, and $f=O(g)$ and $g=O(f)$.

Squeeze (sandwich, pinch) theorem for limits: if $g \leq f \leq h$ and $\lim g=\lim h=L$, then $\lim f=L$. A typical application is when $g=0$ and $L=0$.

Limit comparison: if $f \simeq g$ then either both converge or both diverge. Only works for absolute convergence.

To establish absolute convergence of an integral or a series using simple comparison, look for a $|\cdot| \leq \odot$-type inequality, so that the the thing on the right is positive and converges.

To establish absolute divergence of an integral or a series using simple comparison, look for a $|\cdot| \geq \odot$-type inequality, so that the thing on the right is positive and diverges.

Using the notations:

- If $f=\Theta(g)$, then either both converge or both diverge;
- If $f=o(g)$ or $f=O(g)$, then " f is not bigger than g " and convergence of g implies convergence of f;
- If $f=\omega(g)$ or $f=\Omega(g)$, then " f is not smaller than g " and divergence of g implies divergence of f.
To keep in mind:
- as $x \rightarrow 0+$,

$$
\begin{aligned}
& |\ln x|^{a}=o\left(x^{-r}\right) \text { for all } a>0, r>0, \text { e.g. } \lim _{x \rightarrow 0+} x^{0.001}|\ln x|^{1000}=0 ; \\
& x^{r}=o\left(x^{q}\right), r>q: \text { at } 0, \text { smaller power means bigger function; }
\end{aligned}
$$

- as $x \rightarrow+\infty$ or $n \rightarrow+\infty$, " $\ln n<n<a^{n}<n$!" if $a>1$ [for x, replace n ! with $\Gamma(x)$]:

$$
\begin{aligned}
(\ln x)^{a} & =o\left(x^{r}\right) \text { for all } a>0, r>0, \text { e.g. } \lim _{x \rightarrow+\infty} x^{-0.001}(\ln x)^{1000}=0 \\
x^{a} & =o\left(e^{c x}\right) \text { for all } a>0, c>0 \text {, e.g. } \lim _{x \rightarrow+\infty} x^{10000} e^{-0.00001 x}=0 \\
e^{c n} & =o\left((n!)^{r}\right) \text { for all } c>0, r>0, \text { e.g. } \lim _{n \rightarrow+\infty} \frac{e^{10000 n}}{(n!)^{0.00001}}=0
\end{aligned}
$$

Also remember that

$$
q^{n}=e^{n \ln q}
$$

and

$$
\begin{array}{r}
\ln x<0 \Leftrightarrow 0<x<1 \\
\ln x>0 \Leftrightarrow x>1 .
\end{array}
$$

