Math 126 Functions.

FTC: $\frac{d}{dx} \int_0^x f(t)dt = f(x)$ or $\int_0^x f'(t)dt = f(t) - f(0)$.

Inverse function. If y = f(x) is monotone for $x \in [a, b]$ and takes values in [A, B], then $x = f^{-1}(y)$ is monotone for $y \in [A, B]$ and takes values in [a, b]; $f^{-1}(f(x)) = x$ for $x \in (a, b)$ and $f(f^{-1}(y)) = y$ for $y \in [A, B]$. By the chain rule,

$$f'(f^{-1}(y))(f^{-1})'(y) = 1 \implies (f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.$$

Elementary functions.

Polynomial of degree n: $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, a_n \neq 0$. Rational function: $R(x) = \frac{P(x)}{Q(x)}$, P and Q are polynomials. Exponential function e^x or $\exp(x)$.

Hyperbolic functions: hyperbolic sine $\sinh x = (e^x - e^{-x})/2$, hyperbolic cosine $\cosh x =$ $(e^x + e^{-x})/2$, hyperbolic tangent $\tanh x = \sinh x / \cosh x$, hyperbolic cotangent $\coth x =$ $\cosh x / \sinh x$.

(Natural) log function $\ln x$

Trigonometric functions: sine $\sin x$, cosine $\cos x$, tangent $\tan x = \frac{\sin x}{\cos x}$, cotangent $\cot x = \cos x / \sin x$, secant $\sec x = 1 / \cos x$, cosecant $\csc x = 1 / \sin x$.

(The main) Inverse trigonometric functions

- $\sin^{-1}(y) = \arcsin(y) \in [-\pi/2, \pi/2], y \in [-1, 1].$ $\cos^{-1}(y) = \arccos(y) \in [0, \pi], y \in [-1, 1].$ $\tan^{-1}(y) = \arctan(y) \in (-\pi/2, \pi/2), -\infty < y < +\infty.$

For the purposes of integration:

$$\sin^2 x + \cos^2 x = 1, \ \tan^2 x + 1 = \sec^2 x;$$
$$(\cos x)' = -\sin x, \ (\sin x)' = \cos x, \ (\tan x)' = \sec^2 x, \ (\sec x)' = \sec x \tan x;$$
$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}, \ (\arctan x)' = \frac{1}{1 + x^2}.$$

Partial fractions for a rational function P(x)/Q(x) with degree of Q bigger than degree of P:

- Represent Q(x) as a product of terms $(x-a)^k$ and $((x+b)^2+c^2)^m$;
- Each $(x-a)^k$ produces

$$\frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \ldots + \frac{A_k}{(x-a)^k}.$$

• Each $((x+b)^2+c^2)^m$ produces

$$\frac{B_1x + C_1}{(x+b)^2 + c^2} + \frac{B_2x + C_2}{((x+b)^2 + c^2)^2} + \dots + \frac{B_mx + C_m}{((x+b)^2 + c^2)^m}$$

In general, to get the undetermined coefficients, proceed in this order: (a) guess, (b) use "cover-up method," (c) plug in other "convenient" values of x, (d) only as a last resort, put to the common denominator and solve the system [typically, after going through (a)–(c), you get some of the coefficients, so that, if it comes to (d), there will be fewer unknowns in the system].

For example [keeping in mind that $x^2 + 2x + 3 = (x + 1)^2 + 2$],

$$\frac{x^{3} + 4x^{3} + 1}{(x-1)(x+1)^{3}(x^{2}+2)(x^{2}+2x+3)^{2}} = \frac{A}{x-1} + \frac{A_{1}}{x+1} + \frac{A_{2}}{(x+1)^{2}} + \frac{A_{3}}{(x+1)^{3}} + \frac{Bx+C}{x^{2}+2} + \frac{Bx+C_{1}}{(x+1)^{2}+2} + \frac{B_{2}x+C_{2}}{((x+1)^{2}+2)^{2}}.$$

Not especially pleasant, but the "cover-up method" immediately gives

$$A = \frac{1+4+1}{2^3 \cdot (1+2) \cdot (1+2+3)^2} = \frac{6}{24 \cdot 6^2} = \frac{1}{144},$$
$$A_3 = \frac{(-1) + (-4) + 1}{(-2) \cdot 3 \cdot 2^2} = \frac{1}{6}.$$

[To get A, multiply both side by (x - 1) and then put x = 1; to get A_3 , multiply both sides by $(x + 1)^3$ and then put x = -1.]