Math 126

Functions.

FTC: $\frac{d}{d x} \int_{0}^{x} f(t) d t=f(x)$ or $\int_{0}^{x} f^{\prime}(t) d t=f(t)-f(0)$.
Inverse function. If $y=f(x)$ is monotone for $x \in[a, b]$ and takes values in $[A, B]$, then $x=f^{-1}(y)$ is monotone for $y \in[A, B]$ and takes values in $[a, b] ; f^{-1}(f(x))=x$ for $x \in(a, b)$ and $f\left(f^{-1}(y)\right)=y$ for $y \in[A, B]$. By the chain rule,

$$
f^{\prime}\left(f^{-1}(y)\right)\left(f^{-1}\right)^{\prime}(y)=1 \Rightarrow\left(f^{-1}\right)^{\prime}(y)=\frac{1}{f^{\prime}\left(f^{-1}(y)\right)}
$$

Elementary functions.

Polynomial of degree $n: ~ P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}, a_{n} \neq 0$.
Rational function: $R(x)=\frac{P(x)}{Q(x)}, P$ and Q are polynomials.
Exponential function e^{x} or $\exp (x)$.
Hyperbolic functions: hyperbolic sine $\sinh x=\left(e^{x}-e^{-x}\right) / 2$, hyperbolic $\operatorname{cosine} \cosh x=$ $\left(e^{x}+e^{-x}\right) / 2$, hyperbolic tangent $\tanh x=\sinh x / \cosh x$, hyperbolic cotangent $\operatorname{coth} x=$ $\cosh x / \sinh x$.
(Natural) \log function $\ln x$
Trigonometric functions: sine $\sin x$, $\operatorname{cosine} \cos x$, $\operatorname{tangent} \tan x=\sin x / \cos x$, cotangent $\cot x=\cos x / \sin x, \sec$ ant $\sec x=1 / \cos x, \operatorname{cosecant} \csc x=1 / \sin x$.
(The main) Inverse trigonometric functions

- $\sin ^{-1}(y)=\arcsin (y) \in[-\pi / 2, \pi / 2], y \in[-1,1]$.
- $\cos ^{-1}(y)=\arccos (y) \in[0, \pi], y \in[-1,1]$.
- $\tan ^{-1}(y)=\arctan (y) \in(-\pi / 2, \pi / 2),-\infty<y<+\infty$.

For the purposes of integration:

$$
\begin{array}{r}
\sin ^{2} x+\cos ^{2} x=1, \tan ^{2} x+1=\sec ^{2} x ; \\
(\cos x)^{\prime}=-\sin x,(\sin x)^{\prime}=\cos x,(\tan x)^{\prime}=\sec ^{2} x,(\sec x)^{\prime}=\sec x \tan x ; \\
(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}},(\arctan x)^{\prime}=\frac{1}{1+x^{2}} .
\end{array}
$$

Partial fractions for a rational function $P(x) / Q(x)$ with degree of Q bigger than degree of P :

- Represent $Q(x)$ as a product of terms $(x-a)^{k}$ and $\left((x+b)^{2}+c^{2}\right)^{m}$;
- Each $(x-a)^{k}$ produces

$$
\frac{A_{1}}{x-a}+\frac{A_{2}}{(x-a)^{2}}+\ldots+\frac{A_{k}}{(x-a)^{k}} .
$$

- Each $\left((x+b)^{2}+c^{2}\right)^{m}$ produces

$$
\frac{B_{1} x+C_{1}}{(x+b)^{2}+c^{2}}+\frac{B_{2} x+C_{2}}{\left((x+b)^{2}+c^{2}\right)^{2}}+\ldots+\frac{B_{m} x+C_{m}}{\left((x+b)^{2}+c^{2}\right)^{m}} .
$$

In general, to get the undetermined coefficients, proceed in this order: (a) guess, (b) use "cover-up method," (c) plug in other "convenient" values of x, (d) only as a last resort, put to the common denominator and solve the system [typically, after going through (a)-(c), you get some of the coefficients, so that, if it comes to (d), there will be fewer unknowns in the system].

For example [keeping in mind that $x^{2}+2 x+3=(x+1)^{2}+2$],

$$
\begin{aligned}
\frac{x^{5}+4 x^{3}+1}{(x-1)(x+1)^{3}\left(x^{2}+2\right)\left(x^{2}+2 x+3\right)^{2}} & \\
& =\frac{A}{x-1} \\
& +\frac{A_{1}}{x+1}+\frac{A_{2}}{(x+1)^{2}}+\frac{A_{3}}{(x+1)^{3}} \\
& +\frac{B x+C}{x^{2}+2} \\
& +\frac{B_{1} x+C_{1}}{(x+1)^{2}+2}+\frac{B_{2} x+C_{2}}{\left((x+1)^{2}+2\right)^{2}} .
\end{aligned}
$$

Not especially pleasant, but the "cover-up method" immediately gives

$$
\begin{array}{r}
A=\frac{1+4+1}{2^{3} \cdot(1+2) \cdot(1+2+3)^{2}}=\frac{6}{24 \cdot 6^{2}}=\frac{1}{144}, \\
A_{3}=\frac{(-1)+(-4)+1}{(-2) \cdot 3 \cdot 2^{2}}=\frac{1}{6} .
\end{array}
$$

[To get A, multiply both side by $(x-1)$ and then put $x=1$; to get A_{3}, multiply both sides by $(x+1)^{3}$ and then put $x=-1$.]

