Linear algebra: intermediate-advanced topics ${ }^{1}$

Notations.

(1) \mathfrak{i} - the imaginary unit: $\mathfrak{i}^{2}=-1$.
(2) A^{\top} - the transpose of the matrix A.
(3) A^{*} - the transpose of the matrix A and complex conjugation of the entries. Hermitian matrix $A=A^{*}$.
(4) I_{n} - the identity matrix of size n.
(5) S_{n} - the symmetric group: the collection of all permutations (bijections) of the set $(1,2, \ldots, n)$;
The determinant of a square n-by- n matrix $A=\left(a_{i j}\right)$, with real or complex entries, is the number

$$
\operatorname{det}(A)=|A|=\sum_{\sigma \in S_{n}}(-1)^{|\sigma|} a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots a_{n, \sigma(n)},
$$

where, for $\sigma \in S_{n},|\sigma|$ is the number of times a bigger number comes in front of the smaller number in the sequence $(\sigma(1), \sigma(2), \ldots, \sigma(n))$.

The permanent of a square n-by- n matrix $A=\left(a_{i j}\right)$, with real or complex entries, is the number

$$
\operatorname{perm}(A)=|A|=\sum_{\sigma \in S_{n}} a_{1, \sigma(1)} a_{2, \sigma(2)} \cdots a_{n, \sigma(n)}
$$

Some applications for real matrices: sum of weights of all cycle-covers of the weighted digraph with adjacency matrix A; sum of the weights of all perfect matchings of the weighted bipartite graph with adjacency matrix A.

The Pfaffian of a $2 n$-by- $2 n$ skew-symmetric matrix $A\left[A^{\top}=-A\right]$, with real or complex entries, is the number

$$
\operatorname{pf}(A)=\frac{1}{2^{n} n!} \sum_{\sigma \in S_{2 n}}(-1)^{|\sigma|} a_{\sigma(1), \sigma(2)} a_{\sigma(3), \sigma(4)} \cdots a_{\sigma(2 n-1), \sigma(2 n)}
$$

for odd-dimensional skew-symmetric matrices, we set $\operatorname{pf}(A)=0$.
Theorem. If A is a $2 n$-by- $2 n$ skew-symmetric matrix, then $\operatorname{pf}\left(A^{\top}\right)=(-1)^{n} \operatorname{pf}(A)$ and $\operatorname{det}(A)=(\operatorname{pf}(A))^{2}$. If B is a square matrix of the same size as A, then $\operatorname{pf}\left(B^{\top} A B\right)=\operatorname{det}(B) \operatorname{pf}(A)$. In particular, with $B=A^{m}, \operatorname{pf}\left(A^{2 m+1}\right)=(-1)^{m n}(\operatorname{pf}(A))^{2 m+1}$.

Properties of the trace

$\operatorname{Tr}(A B)=\operatorname{Tr}(B A), \operatorname{Tr}(A B C)=\operatorname{Tr}(C A B)=\operatorname{Tr}(B C A), \operatorname{Tr}(p(A))=\sum_{k} p\left(\lambda_{k}\right), \operatorname{det}\left(e^{A}\right)=e^{\operatorname{Tr}(A)}$, where $p=p(x)$ is a polynomial. In general, $\operatorname{Tr}(A B C) \neq \operatorname{Tr}(B A C)$ For Hermitian matrices A, B, $|\operatorname{Tr}(A B)| \leq\|A\|_{p}^{(s)}\|B\|_{q}^{(s)}$, where $\|\cdot\|_{p}^{(s)}$ is the Schatten p-norm and $(1 / p)+(1 / q)=1$.

Cayley-Hamilton Theorem. If $p_{A}(x)=\operatorname{det}\left(A-x I_{n}\right)$ is the characteristic polynomial of the square matrix A, then $p_{A}(A)=0$, the zero matrix. The main consequence is that, when it comes to powers of an n-by- n matrix, only the first n power matter, at most ${ }^{2}$, and all powers higher than n can be expressed in terms of the lower powers.

Vectorization operation vec : $\mathbb{K}^{m \times n} \mapsto \mathbb{K}^{m n \times 1}, \mathbb{K}$ is either \mathbb{R} or \mathbb{C}. A matrix is turned into a vector by stacking the columns of the matrix, going from left to right, into one column vector.

The Kronecker product $A \otimes B$ of m-by- n matrix A and p-by- q matrix B is a matrix of size $m p$-by-nq. The matrix has a block structure, with $a_{i j} B$ being the block in position i, j. Similar to the usual matrix product, this operation is bi-linear, associative, and non-commutative. By direct computation, the matrix equation $A X B^{\top}=C$ can be written in the matrix-vector form for the unknown vector $\vec{X}=\operatorname{vec}(X)$ as $(B \otimes A) \vec{X}=\operatorname{vec}(C)$.

[^0]Matrix norm is a norm $\|\cdot\|$ on the linear space of square matrices, with additional requirement $\|A B\| \leq\|A\|\|B\|$. Main examples:

- Schatten p-norm, $1 \leq p \leq+\infty$ is the L_{p} norm of the sequence of the singular values.
- Frobenius or Hilbert-Schmidt norm $\left(\operatorname{Tr}\left(A^{*} A\right)\right)^{1 / 2}$ is the same as the Euclidean norm of $\operatorname{vec}(A)$ and is the same as the Schatten 2-norm.
- Spectral norm or the default operator norm is largest singular value of A and also the operator norm of A as the map between the corresponding Euclidean spaces.
- Trace (class) norm or nuclear norm is the sum of singular values, that is, Schatten 1-norm.

Matrix decompositions/factorizations:

- Cholesky $A=L L^{*}$ for a Hermitian matrix A.
- Jordan $A=B J B^{-1}$ for any square matrix; J is the Jordan canonical form of A.
- LU $A=L U$ for some square matrices.
- Polar $A=Q\left(A^{*} A\right)^{1 / 2}$ for any square matrix A.
- QR $A=Q R$ for any square matrix A, with Q unitary and R upper triangular.
- Schur $A=Q U Q^{*}$ for any square matrix A.
- Spectral $A=Q D Q^{*}$ for normal matrix $\left(A A^{*}=A^{*} A\right)$.
- SVD (singular value) $A=U D V^{*}$ for any matrix A.

Some advanced notions, informally summarized. A Lie algebra is an algebra [linear space with a bi-linear form] in which the bi-linear form, known as the Lie bracket, is anti-commutative and satisfies the Jacobi identity [think cross product in \mathbb{R}^{3} or commutator for matrices]. A (topological n-dimensional) manifold is a Hausdorff space [different points have disjoint neighborhoods - the most common of at least 10 possible "separation conditions"] where the neighborhood of every point is homeomorphic [bijection, continuous in both directions] to an open subset of \mathbb{R}^{n}; for a smooth manifold, those local homeomorphisms are, in a sense, infinitely differentiable [extra constructions are necessary to ensure that we deal with functions from \mathbb{R}^{n} to itself]. A Lie group is a set that is both a group and a smooth manifold, and the group operations are consistent with the smooth structure of the manifold [the shortest formal definition uses language of category theory]. A Lie algebra of a Lie group is the tangent space at the identity element with the corresponding Lie bracket as the bi-linear form. For matrix Lie groups, the corresponding Lie bracket is the commutator $[A, B]=A B-B A$.

Special collections of matrices

- $G L_{n}(\mathbb{K})$ - general linear group (change of basis): invertible n-by- n matrices with real $(\mathbb{K}=\mathbb{R})$ or complex $(\mathbb{K}=\mathbb{C})$ entries.
- $S L_{n}(\mathbb{K})$ - special linear group (change of basis that preserves orientation and volume): matrices from $G L_{n}(\mathbb{K})$ with determinant equal to 1 .
- $O(n)$ - orthogonal group (isometries of \mathbb{R}^{n}): $\left\{A \in G L_{n}(\mathbb{R}): A^{\top} A=I_{n}\right\}$.
- $S O(n)$ - special orthogonal group (rotations of $\left.\mathbb{R}^{n}\right): O(n) \bigcap S L_{n}(\mathbb{R})$.
- $U(n)$ - unitary group (isometries of $\left.\mathbb{C}^{n}\right):\left\{A \in G L_{n}(\mathbb{C}): A^{*} A=I_{n}\right\}$.
- $S U(n)$ - special unitary group: $U(n) \bigcap S L_{n}(\mathbb{C})$
- $\mathfrak{s l}_{n}(\mathbb{K})$ - the Lie algebra of $S L_{n}(\mathbb{K})$: matrices with zero trace.
- $\mathfrak{o}(n)$ - the Lie algebra of $O(n)$: skew-symmetric matrices $A=-A^{\top}$.
- $\mathfrak{s o}(n)$ - the Lie algebra $S O(n): \mathfrak{s l}_{n}(\mathbb{R}) \cap \mathfrak{o}(n)$.
- $\mathfrak{u}(n)=\left\{A: A^{*}=-A\right\}, \mathfrak{s u}(n)=\mathfrak{u}(n) \bigcap \mathfrak{s l}_{n}(\mathbb{C})$.

The deep underlying relation: if $A \in \mathfrak{g l}_{n}(\mathbb{K})$ (that is, an arbitrary matrix), then $e^{A} \in G L_{n}(\mathbb{K})$.

[^0]: ${ }^{1}$ Sergey Lototsky, USC, version of May 18, 2023
 ${ }^{2}$ the minimal polynomial of a matrix might have degree lower than n

