A Summary of the Lambert W Function ${ }^{1}$

(Modern) Starting Point/Basic Summary: solving the equation $W e^{W}=x, x>-1 / e$; the solution $W=W(x)>-1$ is the Lambert W function, with the following Taylor expansion at zero:

$$
\begin{equation*}
W(x)=\sum_{n=1}^{+\infty}(-1)^{n-1} \frac{n^{n-1}}{n!} x^{n},|x|<\frac{1}{e} . \tag{1}
\end{equation*}
$$

A More Nuanced Approach: The function $x \mapsto x e^{x},-\infty<x<+\infty$ has a global minimal value $-1 / e$ at $x=-1$ and is 2 -to- 1 for $x<0$. Accordingly, the second branch [red in the graph below] $W_{-1}(x)$ of the inverse function is defined for $-1 / e \leq x<0$; the original branch satisfying (1) [blue in the graph below] is then denoted by $W_{0}(x)$. In particular, $W_{0}\left(x e^{x}\right)=x$ for $x \geq-1$ and $W_{-1}\left(x e^{x}\right)=x$ for $x \leq-1$.

Some (Immediate) Consequences.

$W_{0}(x)+\ln W_{0}(x)=\ln x, x>0 ; \quad W_{0}(x \ln x)=\ln x, x \geq \frac{1}{e} ; \quad W_{0}\left(-\frac{\ln x}{x}\right)=-\ln x, 0<x \leq e ;$

$$
W_{0}(e)=1 ; \ln x-\ln \ln x<W_{0}(x)<\ln x, x>e ; \lim _{x \rightarrow+\infty} \frac{W_{0}(x)}{\ln x}=1 ; \quad \lim _{x \rightarrow+\infty} \frac{W_{0}(x)-\ln x}{\ln \ln x}=-1
$$

Some Immediate Applications.

(1) Consider the equation $x \ln x=a$. Setting $x=e^{t}$ gives $t e^{t}=a$ or $t=W(a)$, that is, $x=e^{W(a)}=W(a) e^{W(a)} / W(a)=a / W(a), a \geq-1 / e$. If $-1 / e<a \leq 0$, then there are two solutions: $a / W_{k}(a), k=0,-1$.
(2) Consider the sequence of functions $h_{n}=h_{n}(x), x>0, n=1,2, \ldots$ defined by $h_{1}(x)=x$, $h_{n+1}(x)=x^{h_{n}(x)}$. The limit $h(x)=\lim _{n \rightarrow \infty} h_{n}(x)$, if exists, corresponds to the infinite power tower $h(x)=x^{x^{x^{x}}}$. Writing $h(x)=x^{h(x)}=e^{h(x) \ln x}$ or $-(h(x) \ln x) e^{-h(x) \ln x}=-\ln x$, we conclude that, provided it exists, the function h satisfies $h(x)=-W_{0}(-\ln x) / \ln x$. It can be shown that $h(x)$ exists if and only if $e^{-e} \leq x \leq e^{1 / e}$.

[^0](3) The infinite power tower $g(x)=x^{(1 / x)^{(1 / x)}}$ exists if and only if $x \geq e^{-1 / e}$; for $e^{-1 / e} \leq x \leq e^{e}$ we have $g(x)=\ln (x) / W_{0}(\ln x)$.
The Complex Variable Approach: The function $z \mapsto z e^{z}$ is analytic in the whole complex plane and has an essential singularity at $z=\infty$. By a theorem of Picard, this function takes every complex value infinitely many times, meaning that the inverse function W has infinitely many singlevalued branches $W_{k}(z)$, with alternative notation $W(k, z), k=0, \pm 1, \pm 2, \ldots$; the principal branch is W_{0}, and, when there is no danger of confusion, W can mean W_{0}. As a result, $W_{k}(z) e^{W_{k}(z)}=z$ for all integer k and all complex z, whereas $W_{k}\left(z e^{z}\right)=z$ for z in a suitable region of the complex plain, as shown below in the picture lifted from Wikipedia ${ }^{2}$.

The paper
Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J. and Knuth, D. E. (1996). "On the Lambert W function". Adv. Computational Maths. 5, 329-359
is the standard reference on the subject of the Lambert W function; in particular, it includes some ideas about the origins of the above picture.

Further comments.

- Equality (1) is an illustration of the Lagrange (or Bürman-Lagrange) formula for inverting a power series.
- The Lambert W function can go under alternative names, such as product logarithm or omega function. In particular, $W_{0}(1)=0.567143 \ldots$ is called the omega constant.
- The first software implementation and the name Lambert W go back to 1980 -s MAPLE ${ }^{\circledR}$. Currently, we have lambertw (k, z) in MATLAB ${ }^{\circledR}$ and ProductLog $[k, z]$ in MATHEMATICA ${ }^{\circledR}$.
- The term Lambert's series refers to something very different; a particular case is $f(z)=$ $\sum_{n=1}^{\infty} \frac{z^{n}}{1-z^{n}}$.

[^1]
[^0]: ${ }^{1}$ Sergey Lototsky, USC, updated on December 18, 2023

[^1]: ${ }^{2}$ https://en.wikipedia.org/wiki/Lambert_ W_{-}function

