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Abstract

The nonlinear filtering problem is considered for the time homogeneous dif-
fusion model. An algorithm is proposed for computing a recursive approxima-
tion of the unnormalized filtering density, and the error of the approximation
is estimated. The algorithm can have high resolution in time and, unlike most
existing algorithms for nonlinear filtering, can be implemented in real time
for large dimensions of the sate process. The on-line part of the algorithm is
simplified by performing the most time consuming operations off line.

1 Introduction

In many problems of stochastic analysis it is necessary to find the best mean square
estimate of moments or other similar functionals of a partially observed diffusion
process. Assume that X = X(t), t ≥ 0, is the unobservable component and the
observable component Y = Y (t), t ≥ 0, is given by

Y (t) =
∫ t

0
h(X(s))ds + W (t),

where W = W (t), t ≥ 0, is a Wiener process independent of the process X. If
f = f(x) is a measurable function satisfying E|f(X(t))|2 < ∞, t ≥ 0, then it is
known [11, 13, 20] that under certain regularity assumptions the best mean square
estimate f̂t of f(X(t)) given the trajectory Y (s), s ≤ t, can be written as

f̂t =

∫
f(x)u(t, x)dx∫

u(t, x)dx
,
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where u = u(t, x) is a random field called the unnormalized filtering density (UFD).
The problem of estimating f(X(t)) is thus reduced to the problem of computing the
UFD u. It is also known that u = u(t, x) is the solution of a certain stochastic partial
differential equation, called the Zakai equation, driven by the observation process.
The exact solution of the Zakai equation can be found only in a few special cases, and
as a result the central part of the general nonlinear filtering problem is the numerical
solution of the equation. In some applications, e.g. target tracking, the solution must
be computed in real time, which puts additional restriction on the corresponding
numerical scheme.

Most of the existing numerical schemes for the Zakai equation use various gen-
eralizations of the corresponding algorithms for the deterministic partial differential
equations and therefore cannot be implemented in real time when the dimension of
the state process is more than three because of the large amount of computations.
Examples of the corresponding algorithms can be found in Bennaton [1], Florchinger
and LeGland [5], Ito [10], etc.

When the parameters of the model are known in advance, an alternative approach
is to separate the deterministic and stochastic components of the Zakai equation
using the Wiener chaos decomposition and to do the computations related to the
deterministic component in advance. Starting with the works of Kunita [12], Ocone
[19], and Lo and Ng [14], this approach was further developed by Mikulevicius and
Rozovskii [17, 18] and Budhiraja and Kallianpur [2]. The first algorithm to solve the
Zakai equation using this approach so that no partial differential equations are solved
on line was suggested in Lototsky et al. [15].

The objective of the current work is to develop another algorithm for solving the
Zakai equation in such a way that no differential equations are solved on line and the
on-line computations are performed recursively in time. The goal is achieved in two
steps. First, the partial differential equation satisfied by the UFD u(t, x) is approxi-
mated by a finite system of ordinary differential equations (Galerkin approximation).
After that, the solution of the system is approximated using the Cameron-Martin
version of the Wiener chaos decomposition. The error of each approximation and the
overall error are estimated in terms of the asymptotic parameters of the algorithm.
The approach was first suggested in [6] for a slightly different model, but no explicit
error bound was given.

2 Filtering Problem

Let w̃ = {w̃(t)}t≥0 and w = {w(t)}t≥0 be a d1- and an r-dimensional Wiener processes
on a complete probability space (Ω,F ,P). Consider the d-dimensional state (or
signal) process X = X(t) of the form

dXi(t) = bi(X(t))dt +
d1∑

j=1

σij(X(t))dw̃j(t), 0 < t ≤ T ;

X(0) = X0,

(2.1)
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where b = (bi(x))1≤i≤d is a d-dimensional vector function on IRd and
σ = (σij(x))1≤i≤d, 1≤j≤d1 is a d × d1 dimensional matrix function on IRd. The infor-
mation about the state process is available only from the r-dimensional observation
process Y = Y (t) given by

Y (t) =
∫ t

0
h(X(s))ds + w(t), 0 ≤ t ≤ T, (2.2)

where h = (hl(x))1≤l≤r is an r-dimensional vector function on IRd. The filtering

problem studied in this paper is to compute the best mean square estimate f̂t of
f(X(t)) given the observation trajectory Y (s), s ≤ t, where f = f(x) is a function
on IRd such that E|f(X(t))|2 < ∞ for all 0 ≤ t ≤ T .

The following is assumed about the model (2.1), (2.2):

(A1) the functions b, σ, and h are infinitely differentiable and bounded with all the
derivatives;

(A2) the processes w and w̃ are independent;

(A3) the random vector X0 is independent of both w and w̃ and has a density
p = p(x), x ∈ IRd, so that the function p is infinitely differentiable and decays
at infinity with all the derivatives faster than every power of |x|.

Let Fy
t be the σ-algebra generated by Y (s), s ≤ t. Define

ρ(t) = exp
{
−

r∑
l=1

∫ t

0
hl(X(s))dwl(s)−

1

2

r∑
l=1

∫ t

0
|hl(X(s))|2ds

}
.

It is well known [11, 13] that the measure P̃ given by dP̃ = ρ(T )dP is a probability
measure on (Ω,F) with the properties:

(i) On the reference probability space (Ω,F , P̃), Y (·) is a Brownian motion inde-
pendent of X(·);

(ii) The optimal filter f̂t = E[f(X(t))|Fy
t ] is given by

f̂t =
Ẽ[f(X(t))ρ(t)−1|Fy

t ]

Ẽ[ρ(t)−1|Fy
t ]

, (2.3)

where Ẽ is the expectation with respect to measure P̃. If assumptions (A1 – A3)
hold, then by Theorems 6.2.1 and 6.2.2 in [20] the unnormalized filtering measure
Φt(dx) = Ẽ[1{X(t)∈dx}ρ(t)−1|Fy

t ] admits the density u(t, x) = Φt(dx)/dx, called un-
normalized filtering density (UFD), which is a solution of the Zakai equation

du(t, x) = L∗u(t, x)dt +
r∑

l=1

hl(x)u(t, x)dYl(t), (2.4)

where

L∗u :=
1

2

d∑
i,j=1

∂2

∂xi∂xj

((σσ∗)iju)−
d∑

i=1

∂

∂xi

(biu).
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By Theorem 4.3.2 in [20], there is a unique solution u(t, x) of (2.4) and for every
positive integer n and a multi-index γ = (γ1, . . . , γd),

sup
0≤t≤T

Ẽ
∫
IRd

(1 + |x|2)n|Dγu(t, x)|2dx < ∞, (2.5)

where D|γ| =
∂γ

∂xγ1
1 . . . ∂xγd

d

and |γ| = γ1 + . . . + γd.

Throughout the paper, C will denote a constant depending on the parameters of
the model, namely the length T of the time interval, dimensions d and r of the state
and observation processes, and various bounds on the coefficients b, σ, h and the
initial density p and their derivatives. The value of C can be different at different
places. The norm and inner product in L2(IR

d) are denoted by ‖ · ‖0 and (·, ·)0,
respectively.

3 Galerkin approximation

In this section, a Galerkin approximation of equation (2.4) will be studied using the
Hermite basis in L2(IR

d).
The Hermite basis in L2(IR

d) is constructed as follows. Let γ = (γ1, . . . , γd) be
a multi-index with γi nonnegative integers. The set of all such multi-indices will be
denoted by Γ. For every γ ∈ Γ define

eγ(x1, . . . , xd) =
d∏

i=1

eγi
(xi), (3.1)

where

eγi
(t) :=

1√
2nπ1/2n!

e−t2/2Hγi
(t)

and

Hn(t) = (−1)net2 dn

dtn
e−t2 , n ≥ 0, (3.2)

is the n-th Hermite polynomial. Then the set {eγ}γ∈Γ is an orthonormal basis in
L2(IR

d) [7, 8] and will be referred to as the Hermite basis.
For γ ∈ Γ denote |γ| :=

∑d
i=1 γi. Given a positive integer κ, define the set

Γκ := {γ ∈ Γ : |γ| ≤ κ}. Direct computations show that the number of elements |Γκ|
in the set Γκ is equal to (κ + d)!/(κ!d!).

The Galerkin approximation uκ of the solution of (2.4) is given by
uκ(t, x) =

∑
γ∈Γκ

uκ
γ(t)eγ(x), where the coefficients {uκ

γ}γ∈Γκ satisfy the system of
stochastic ordinary differential equations

duκ
γ(t) =

∑
τ∈Γκ

(L∗eτ , eγ)0u
κ
τ (t)dt+

r∑
l=1

∑
τ∈Γκ

(hleτ , eγ)0u
κ
τ (t)dYl(t), 0 < t ≤ T,

uκ
γ(0) = (p, eγ)0, γ ∈ Γ.

(3.3)
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This is a linear system with constant coefficients, so the solution {uκ
γ(t)}γ∈Γκ exists

and is unique [13, Theorem 4.6]. Even though the Galerkin approximation has been
used in various numerical schemes for the Zakai equation (e.g. Bennaton [1], Ito [10]),
no estimates of the approximation error have been given.

In what follows, it is proved that under assumptions (A1 –A3) the approximation
uκ converges to u in L2(Ω, P̃), i.e.

lim
κ→∞

sup
0≤t≤T

Ẽ‖u(t, ·)− uκ(t, ·)‖2
0 = 0,

and the rate of convergence is established.

Theorem 3.1 If assumptions (A1 – A3) hold, then for every positive integer ν there
is a constant C(ν) depending only on ν and the parameters of the model so that

sup
0≤t≤T

Ẽ‖u(t, ·)− uκ(t, ·)‖2
0 ≤

C(ν)

κν
. (3.4)

Proof. If uγ(t) := (u(t, ·), eγ)0, then

Ẽ‖u(t, ·)− uκ(t, ·)‖2
0 =

∑
γ∈Γκ

Ẽ|uγ(t)− uκ
γ(t)|2 +

∑
γ /∈Γκ

Ẽ|uγ(t)|2. (3.5)

By Lemma A.1 in Appendix

sup
0≤t≤T

∑
γ /∈Γκ

Ẽ|uγ(t)|2 ≤
C(ν)

κν
. (3.6)

For γ ∈ Γκ define δγ(t) := uγ(t) − uκ
γ(t), so that

∑
γ∈Γκ

Ẽ|uγ(t) − uκ
γ(t)|2 =∑

γ∈Γκ
Ẽ|δγ|2, and also

δ1,γ(t) :=
∑

τ /∈Γκ

(L∗eτ , eγ)0uτ (t), δl
2,γ(t) :=

∑
τ /∈Γκ

(hleτ , eγ)0uτ (t).

Both δ1,γ and δl
2,γ are well defined, because, according to Lemmas A.1 and A.3,

∑
γ∈Γκ

∫ T

0
Ẽ(δ1,γ(s))

2ds +
r∑

l=1

∑
γ∈Γκ

∫ T

0
Ẽ(δl

2,γ(s))
2ds ≤ C(ν)

κν
. (3.7)

As a result,

dδγ(t) =
∑

τ∈Γκ

(L∗eτ , eγ)0δγ(t)dt +
r∑

l=1

∑
τ∈Γκ

(hleτ , eγ)0δγ(t)dYl(t)+

δ1,γds +
r∑

l=1

δl
2,γdYl(t), 0 < t ≤ T ;

δγ(0) = 0, γ ∈ Γκ,

(3.8)
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and by the Ito formula,∑
γ∈Γκ

Ẽ|δγ(t)|2 = 2
∫ t

0

∑
γ,τ∈Γκ

(L∗eτ , eγ)0Ẽδγ(s)δτ (s)ds+

r∑
l=1

∑
γ∈Γκ

∫ t

0
Ẽ
( ∑

τ∈Γκ

(hleτ , eγ)0δτ (s)
)2

ds + 2
∑

γ∈Γκ

∫ t

0
Ẽδ1,γ(s)δγ(s)ds+

2
r∑

l=1

∑
γ,τ∈Γκ

∫ t

0
(hleτ , eγ)0Ẽδl

2,γ(s)δτ (s)ds +
r∑

l=1

∑
γ∈Γκ

∫ t

0
Ẽ(δl

2,γ(s))
2ds.

(3.9)

It follows from Lemma A.2 that

2
∫ t

0

∑
γ,τ∈Γκ

(L∗eτ , eγ)0Ẽδγ(s)δτ (s)ds+

r∑
l=1

∑
γ∈Γκ

∫ t

0
Ẽ
( ∑

τ∈Γκ

(hleτ , eγ)0δτ (s)
)2

ds ≤ C
∑

γ∈Γκ

∫ t

0
Ẽ(δγ(s))

2ds.
(3.10)

Then (3.7), (3.9), (3.10), and the obvious inequality 2|ab| ≤ a2 + b2 imply∑
γ∈Γκ

Ẽ|δγ(t)|2 ≤
C(ν)

κν
+ C

∑
γ∈Γκ

∫ t

0
Ẽ|δγ(s)|2ds,

so that by the Gronwall inequality

sup
0≤t≤T

∑
γ∈Γκ

Ẽ|δγ(t)|2 ≤
C(ν)

κν
.

Together with (3.5) and (3.6), the last inequality implies (3.4).
2

4 Approximate solution of the ODE

By Theorem 3.1, to find an approximate solution of the partial differential equation
(2.4) it is sufficient to solve the finite system of ordinary differential equations (3.3).
In this section, the system (3.3) is solved using the Cameron-Martin version of the
Wiener chaos decomposition. An approximate solution is then constructed and the
error of the approximation is estimated.

Using the matrix-vector notation, system (3.3) can be written as

duκ(t) = Aκuκ(t)dt +
r∑

l=1

Bκ
l uκ(t)dYl(t), 0 < t ≤ T ;

uκ(0) = p̄κ,

(4.1)

where uκ(t) is the column vector {uκ
γ(t)}γ∈Γκ , p̄κ is the column vector {(p, eγ)0}γ∈Γκ ,

and for every vector ζ ∈ IR|Γκ|,

(Aκζ)γ :=
∑

τ∈Γκ

(L∗eτ , eγ)0ζτ ,

(Bκ
l ζ)γ :=

r∑
l=1

∑
τ∈Γκ

(hleτ , eγ)0ζτ .
(4.2)
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It follows from the definition that the matrices Aκ and Bκ
l do not, in general, commute

with each other and therefore there is no computable explicit solution of (4.1).
Below, an approximate solution is constructed using the Cameron-Martin version

of the Wiener chaos decomposition, i.e. an expansion of uκ(t) with respect to a
certain orthonormal basis in L2(Ω,Fy

t , P̃). The basis is constructed as follows. Let
α be an r-dimensional multi-index, i.e. a collection α = (αl

k)1≤l≤r, k≥1 of nonnegative
integers such that only finitely many of αl

k are different from zero. The set of all such
multi-indices will be denoted by J . For α ∈ J define:

|α| := ∑
l,k αk

l (length of α);

d(α) := max{k ≥ 1 : αl
k > 0 for some 1 ≤ l ≤ r} (order of α);

α! :=
∏

k,l(α
l
k!).

Fix 0 < t ≤ T , choose a complete orthonormal system {mk} = {mk(s)}k≥1 in
L2([0, t]), and define

ξk,l =
∫ t

0
mk(s)dYl(s).

Due to property (i) of the measure P̃, ξk,l are independent Gaussian random variables
with zero mean and unit variance.

Theorem 4.1 (Cameron and Martin [3])
If

H̄(t) := 2−n/2Hn(t/
√

2), (4.3)

where Hn is the n-th Hermite polynomial (3.2), then the collectionξα :=
∏
k,l

H̄αl
k
(ξk,l)√
αl

k!

 , α ∈ J


is a complete orthonormal system in L2(Ω,Fy

t , P̃).

Theorem 4.2 For every 0 ≤ s ≤ t the solution of (4.1) can be written as

uκ(s) =
∑
α∈J

1√
α!

ϕκ
α(s, p̄κ)ξα (P- a.s.) (4.4)

The coefficients of the expansion satisfy the recursive system of deterministic or-
dinary differential equations

dϕκ
α(s, p̄κ)

ds
= Aκϕκ

α(s, p̄κ) +
∑
k,l

αl
kmk(s)B

κ
l ϕκ

α(k,l)(s, p̄
κ), 0 < s ≤ t;

ϕκ
α(0, p̄κ) = p̄κ1{|α|=0},

(4.5)

where α = (αl
k)1≤l≤r, k≥1 ∈ J and α(i, j) stands for the multi-index α̃ = (α̃l

k)1≤l≤r, k≥1

with

α̃l
k =

{
αl

k if k 6= i or l 6= j or both
max(0, αj

i − 1) if k = i and l = j.
(4.6)
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The series in (4.4) converges in L2(Ω, P̃) and L1(Ω,P) and the following Parse-
val’s equality holds:

Ẽ|uκ(s)|2 =
∑
α∈J

1

α!
|ϕκ

α(s, p̄κ)|2. (4.7)

Proof. Since the initial condition uκ(0) and the matrices Aκ and Bκ
l are deter-

ministic, the vector uκ(s) belongs to L2(Ω,Fy
t , P̃) for every 0 ≤ s ≤ t by Theorem

4.6 in [13], and therefore by Theorem 4.1

uκ(s) =
∑
α∈J

Ẽ[uκ(s)ξα]ξα, Ẽ|uκ(s)|2 =
∑
α∈J

|Ẽ[uκ(s)ξα]|2 < ∞.

Denote
ϕκ

α(s) :=
√

α!Ẽ[uκ(s)ξα]

(to simplify the notations, p̄κ in the argument of ϕκ
α will be omitted). Direct compu-

tations show that

ξα =
1√
α!

∂α

∂zα
Pt(z)

∣∣∣
z=0

,

where

Pt(z) = exp

{∫ t

0

r∑
l=1

ml
z(s)dYl(s)−

1

2

∫ t

0

r∑
l=1

|ml
z(s)|2ds

}
;

ml
z =

∑
k≥1 mk(s)z

l
k; {zl

k}, l = 1, . . . , r; k = 1, 2, . . . , is a sequence of real numbers
such that

∑
k,l |zl

k|2 < ∞, and

∂α

∂zα
:=
∏
k,l

∂αl
k

(∂zl
k)

αl
k

.

Consequently,

ϕκ
α(s) =

∂α

∂zα
Ẽ[uκ(s)Pt(z)]

∣∣∣
z=0

=
∂α

∂zα
Ẽ[uκ(s)Ps(z)]

∣∣∣
z=0

,

where the second equality follows from the martingale property of Ps(z) on (Ω, P̃). It
also follows from the definition of Ps(z) that

dPs(z) =
r∑

l=1

ml
z(s)Ps(z)dYl(s), s ≤ t; P0(z) = 1.

Then (4.1) and the Ito formula imply

uκ(t)Pt(z) = p̄κ +
∫ t

0

(
Aκuκ(s) +

r∑
l=1

Bκ
l uκ(s)

)
ml

z(s)Ps(z)ds+∫ t

0

r∑
l=1

(
Bκ

l uκ(s) + uκ(s)ml
z(s)

)
Ps(z)dYl(s).
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Taking expectation Ẽ on both sides of the last equality and setting ϕκ(s, z) :=
Ẽuκ(s)Ps(z) results in

∂ϕκ(s, z)

∂s
= Aκϕκ

α(s) +
∑r

l=1 ml
z(s)B

κ
l ϕκ(s, z), 0 < s ≤ t

ϕκ(0, z) = p̄κ.

Applying the operator
1√
α!

∂α

∂zα
and setting z = 0 yields (4.5).

Convergence of (4.4) in L1(Ω,P) follows from its convergence in
L2(Ω, P̃) and the inequality

E|η| = Ẽ|ηρ(T )| ≤
√

Ẽ|η|2
√

Ẽρ2(T ) ≤ C
√

Ẽ|η|2,

valid for every η ∈ L2(Ω,Fy
t , P̃) due to the boundedness of hl.

2

System (4.5) is recursive in |α|: once the functions ϕκ
α are known for all α of length

|α| = k, it is possible to compute all ϕκ
α for |α| = k + 1. The computations can be

performed off line because (4.5) does not involve the observation process Y . It seems
natural to use these features of expansion (4.4) in a numerical algorithm for solving
(4.1). Since in all such algorithms the infinite summation in (4.4) must be truncated
and the error due to the truncation can be expected to grow with t, it is desirable to
have a recursive version of Theorem 4.2.

Let 0 = t0 < t1 < . . . < tM = T be a uniform partition of the interval [0, T ] with
step ∆ (so that ti = i∆, i = 0, . . . ,M) and let {mk} = {mk(t)}k≥1 be an orthonormal
basis in L2([0, ∆]). Define random variablesξi

α :=
∏
k,l

H̄αl
k
(ξi

k,l)√
αl

k!

 , α ∈ J

 ,

where

ξi
k,l =

∫ ti

ti−1

mk(s− ti−1)dYl(s) (4.8)

and H̄n is defined in (4.3).

Theorem 4.3 If uκ(t0) := p̄κ and ti−1 ≤ s ≤ ti, then

uκ(s) =
∑
α∈J

1√
α!

ϕκ
α(s− ti, u

κ(ti−1))ξ
i
α, i = 1, . . . ,M (P- a.s.) (4.9)

and the coefficients ϕκ
α satisfy (4.5) with the corresponding initial condition.

This series converges in L2(Ω, P̃) and L1(Ω,P) and the following Parseval’s equal-
ity holds:

Ẽ|uκ(s)|2 =
∑
α∈J

1

α!
Ẽ|ϕκ

α(s− ti, u
κ(ti−1))|2, i = 1, . . . ,M.
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Proof. Since the coefficients of (4.1) do not depend on time, for every ti−1 ≤ s ≤ ti
the vector uκ(s) satisfies

uκ(s) = uκ(ti−1) +
∫ s−ti−1

0
Aκuκ(t + ti−1)dt+

r∑
l=1

∫ s−ti−1

0
Bκ

l uκ(t + ti−1)d(Yl(t + ti−1)− Yl(ti−1)).
(4.10)

Then both statements of the theorem follow from the corresponding statements of
Theorem 4.2, because, under the measure P̃, Yl(t + ti−1)− Yl(ti−1) is independent of
Fy

ti−1
.

2

To study the truncation of (4.4) or (4.9), it is necessary to note that the summation∑
α∈J is double infinite:

∑
α∈J =

∑∞
k=0

∑
|α|=k and there are infinitely many multi-

indices α with |α| = k > 0. A possible way to truncate the summation is to restrict α
to the finite set Jn

N := {α ∈ J : |α| ≤ N, d(α) ≤ n}. The error due to this truncation
is given in the following theorem.

Theorem 4.4 Given the positive integers n and N and the uniform partition
{ti}, i = 0, . . . ,M of [0, T ] with step ∆, define the sequence of vectors {uκ(i, n, N)} ⊂
IR|Γκ|, i = 0, . . . ,M, by

uκ(0, n, N) := p̄κ, uκ(i, n, N) :=
∑

α∈Jn
N

1√
α!

ϕκ
α(∆, uκ(i− 1, n, N))ξi

α. (4.11)

If {mk} is the Fourier cosine basis

m1(s) =
1√
∆

; mk(s) =

√
2

∆
cos

(
π(k − 1)s

∆

)
, k > 1; 0 ≤ s ≤ ∆, (4.12)

then

max
0≤i≤M

Ẽ|uκ(ti)− uκ(i, n, N)|2 ≤ (C∆)N

(N + 1)!
+ C

∆ + κ2∆2

n
. (4.13)

The proof of this theorem is rather long and is given in Section 6.
For fixed ∆ the error (4.13) grows with κ due to the stiffness of matrix Aκ. For

fixed κ, the error tends to zero with ∆. In fact, since N ≥ 1 and n ≥ 1, (4.13) shows
that the approximation uκ(i, n, N) has order of strong convergence in time equal to
0.5. If n = 1, then the approximation uses only the increments Yl(ti+1) − Yl(ti) of
the observation process, and it is know [4] that 0.5 is the highest possible rate of
convergence under the circumstances. On the other hand, if r = 1 or the matrices
Bκ

l commute (which, in general, can happen only if the functions hl are multiples of
each other), then, as the proof of the theorem shows, the term C∆/n on the right
hand side of (4.13) disappears and the order of convergence may be equal to 1.0.

If n > 1 and the observations Yl(t) are available continuously in time, then the ran-
dom variables ξi

α can be computed with prescribed accuracy by reducing the Wiener
integrals (4.8) to Riemann integrals using integration by parts; the details can be
found in [16, Section 4.5.1].
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5 The Algorithm

The approximation uκ(i, n, N) from Theorem 4.4 still does not meet the criteria stated
in the Introduction because, starting with i = 1, the initial condition of (4.5) is
random and therefore the system of differential equations must be solved on line.
The following construction makes it possible to circumvent the difficulty.

If {ζγ}, γ ∈ Γκ, is the standard unit basis in IR|Γκ|, meaning that ζγ
τ = 1 if γ = τ

and ζγ
τ = 0 if γ 6= τ , then uκ(i, n, N) =

∑
γ∈Γκ

uκ
γ(i, n, N)ζγ. Recursive definition of

uκ(i, n, N) and the linearity of system (4.5) imply that

uκ
γ(0, n, N) = p̄κ

γ , uκ
γ(i, n, N) =

∑
τ∈Γκ

∑
α∈Jn

N

Qκ
α,γτu

κ
τ (i− 1, n, N)ξi

α, (5.1)

where
Qκ

α,γτ = ϕκ
α,γ(∆, ζτ ). (5.2)

Using the matrix-vector notations, (5.1) can be written as

uκ(i, n, N) =
∑

α∈Jn
N

Qκ
αuκ(i− 1, n, N)ξi

α. (5.3)

Since the matrices Qκ
α can be computed off line, the on-line part of the algorithm is

reduced to computing random variables ξi
α (which, in principle, can be implemented

on the hardware level) and evaluating the sum in (5.3).
If u(t, x) is the exact solution of the Zakai equation (2.4) and

uκ
n,N(i, x) :=

∑
γ∈Γκ

uκ
γ(i, n, N)eγ(x), then, by Theorems 3.1 and 4.4, the overall error

of approximation is given by

sup
0≤i≤M

Ẽ‖u(i∆, ·)− uκ
n,N(i, ·)‖2

0 ≤
C(ν)

κν
+

(C∆)N

(N + 1)!
+ C

∆ + κ2∆2

n
. (5.4)

The following is the complete description of the algorithm.
1. Off line (before the observations are available) compute

the matrices Aκ and Bκ
l according to (4.2);

the matrices Qκ
α, α ∈ Jn

N , according to (5.2).

the coefficients uκ
γ(0, n, N) =

∫
IRd

p0(x)eγ(x)dx, γ ∈ Γκ;

set uκ
n,N(0, x) =

∑
γ∈Γκ

uκ
γ(0, n, N)eγ(x).

2. On line, i− th step (as the observations become available): compute

uκ
γ(i, n, N) =

∑
αinJn

N

Qκ
αuκ

γ(i− 1, n, N)ξi
α, (5.5)

then, if necessary, compute

uκ
n,N(i, x) =

∑
γ∈Γκ

uκ
γ(i, n, N)eγ(x). (5.6)

11



The main advantage of this algorithm as compared to the traditional schemes for
solving the Zakai equation is that the time consuming computations of solving partial
differential equations are performed off line, while the on-line part is relatively simple
even when the dimension d of the state process is large. Here are some other features
of the algorithm:

(1) The overall amount of the off-line computations does not depend on the number
of the on-line time steps;

(2) Only the coefficients uκ
γ(i, n, N) must be computed at every time step while the

approximate filter f̃ti,κ and/or UFD uκ
n,N(i, x) can be computed as needed, e.g.

at the final time moment.

(3) The on-line part of the algorithm can be easily parallelized.

In the proposed algorithm, the Wiener chaos decomposition was used to solve the
finite dimensional system obtained by projecting the original Zakai equation (2.4)
on the subspace generated by {eγ}γ∈Γκ . The error estimate (5.4) shows that this
approach should be used with sufficiently small time step ∆ and moderate values
of κ, e.g. when good resolution in time is required and the spatial resolution is not
important. In [15], an alternative approach was suggested, in which the Wiener chaos
decomposition was applied directly to the Zakai equation with subsequent projection
of the result on the span of {eγ}γ∈Γκ . The error of the corresponding approximation
is given by

C(ν)

κν∆
+

C∆2

n
+

(C∆)N

(N + 1)!
,

which means that this alternative approach should be efficient for moderate values of
∆ and sufficiently large κ, e.g. when good resolution in space is required and the time
resolution is not important. The choice between the two approaches will therefore
depend on the specific features of the problem.

6 Proof of Theorem 4.4

Introduce the following notations:

Φκ
t := etAκ

;

sk, the ordered set (s1, . . . , sk); dsk := ds1 . . . dsk;

lk, the ordered set (l1, . . . , lk);

F κ(t; sk; lk) := Φκ
t−sk

Bκ
lk
Φκ

sk−sk−1
. . . Bκ

l1
Φκ

s1
p̄κ, k ≥ 1;

∫ (k,t)

(· · ·)dsk :=
∫ t

0

∫ sk

0
. . .
∫ s2

0
(· · ·)ds1 . . . dsk;

12



∑
lk

:=
r∑

l1,...,lk=1

.

To simplify the notations, the superscript κ will be omitted throughout the rest of
the proof.

Every multi-index α with |α| = k can be identified with the set
Kα = {(iα1 , qα

1 ), . . . , (iαk , qα
k )} so that iα1 ≤ iα2 ≤ . . . ≤ iαk and if iαj = iαj+1, then

qα
j ≤ qα

j+1. The first pair (iα1 , qα
1 ) in Kα is the position numbers (k, l) of the first

nonzero element αl
k of α. The second pair is the same as the first if the first nonzero

element of α is greater than one; otherwise, the second pair is the position numbers of
the second nonzero entry of α and so on. As a result, if αq

j > 0, then exactly αq
j pairs

in Kα are (j, q). The set Kα will be referred to as the characteristic set of multi-index
α. For example, if r = 2 and

α =

(
0 1 0 2 3 0 0 . . .
1 2 0 0 0 1 0 . . .

)
,

then the nonzero elements are α2
1 = α1

2 = α6
2 = 1, α2

2 = α1
4 = 2, α1

5 = 3, and the
characteristic set is
Kα = {(1, 2), (2, 1), (2, 2), (2, 2), (4, 1), (4, 1), (5, 1), (5, 1), (5, 1), (6, 2)}. In the fu-
ture, when there is no danger of confusion, the superscript α in i and q will be omitted
(i.e. (ij, qj) will be used instead of (iαj , qα

j )).
Let Pk be the permutation group of the set {1, . . . , k}. For a given α ∈ J with

|α| = k and the characteristic set {(i1, q1), . . . , (ik, qk)} define

Eα(sk; lk) :=
∑

σ∈Pk

mi1(sσ(1))1{lσ(1)=q1} · · ·mik(sσ(k))1{lσ(k)=qk}. (6.1)

To prove (4.13) it suffices to show that

Ẽ|u(ti)− u(i, n, N)|2 ≤ (C∆)N+1

(N + 1)!
+ C

∆2 + κ2∆3

n
. (6.2)

After that, (4.13) will follow directly from Gronwall’s inequality. Moreover, (6.2) will
follow from

Ẽ|u(t1)− u(1, n, N)|2 ≤
(

(C∆)N+1

(N + 1)!
+ C

∆2 + κ2∆3

n

)
|p̄|2, (6.3)

because similar arguments can then be used to show that

Ẽ|u(ti)− u(i, n, N)|2 ≤
(

(C∆)N+1

(N + 1)!
+ C

∆2 + κ2∆3

n

)
Ẽ|u(ti)|2,

and by Lemma A.4, max0≤i≤M Ẽ|u(ti)|2 ≤ C. As a result, it suffices to prove (6.3).
For the sake of simplicity, the argument p̄ in ϕα will be omitted.

Define

u(∆, N) :=
∑
|α|≤N

ϕα(∆)ξ1
α√

α!
.
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If it is known that

Ẽ|u(∆)− u(∆, N)|2 ≤ (C∆)N+1

(N + 1)!
|p̄|2 (6.4)

and

Ẽ|u(∆, N)− u(1, n, N)|2 ≤ C
(∆2 + κ2∆3

n

)
|p̄|2, (6.5)

then (6.3) will follow immediately from the inequality (a + b)2 ≤ 2(a2 + b2).
Proof of (6.4). By Lemma A.5,

∑
|α|=k

|ϕα(∆)|2

α!
=
∑
lk

∫ (k,∆)

|F (∆; sk; lk)|2dsk, (6.6)

where ϕα is the solution of (4.5) with an arbitrary CONS {mk} in L2([0, ∆]).
Since ξ1

α are uncorrelated under P̃,

Ẽ|u(∆)− u(∆, N)|2 =
∑
|α|=k

|ϕα(∆)|2

α!
=
∑
k>N

∑
lk

∫ (k,∆)

|F (∆; sk; lk)|2dsk.

It follows from the definition of F and Lemma A.5 that

|F (∆; sk; lk)| ≤ eC(∆−sk)|Φsk−sk−1
Blk . . . Bl1Φs1 p̄| ≤

. . . ≤ CkeC(∆−sk+sk−...+s2−s1+s1)|p̄|2 ≤ Ck|p̄|2.

Finally,
∫ (k,∆)

dsk = ∆k/k! implies

Ẽ|u(∆)− u(∆, N)|2 ≤
∑
k>N

(Cr∆)k

k!
≤ (C∆)N+1

(N + 1)!
eC∆,

and (6.4) follows. Note that it holds for every CONS {mk}.
Proof of (6.5). If α is a multi-index with |α| = k and the characteristic set

{(iα1 , qα
1 ), . . . , (iαk , qα

k )} then iαk = d(α), the order of α, and so the set Jn
N can be

described as {α ∈ J : |α| ≤ N ; iα|α| ≤ n}. Thus

Ẽ|u(1, n, N)− u(∆, N)|2 =
∞∑

b=n+1

N∑
k=1

∑
|α|=k;iα

k
=b

|ϕα(∆)|2

α!
.

The problem is thus to estimate
∑∞

b=n+1

∑N
k=1

∑
|α|=k;iα

k
=b |ϕα(∆)|2/α!.

By Lemma A.5 the corresponding solution ϕα of (4.5) can be written as

ϕα(∆) =
∑
lk

∫ (k,∆)

F (∆; sk; lk)Eα(sk, lk)dsk, (6.7)

where Eα is given by (6.1). Since by definition (4.6) the characteristic set of α(ik, qk)
is
{(i1, q1), . . . , (ik−1, qk−1)}, it is possible to write

Eα(sk) =
k∑

j=1

mik(sj)1{lj=qk}Eα(ik,qk)(s
k
j ; l

k
j ),
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where sk
j (resp. lkj ) denotes the same set (s1, . . . , sk) (resp. (l1, . . . , lk)) with omitted

sj (resp. lj); for example, sk
1 = (s2, . . . , sk).

Then (6.7) can be rewritten as

ϕα(∆)=
k∑

j=1

∑
lkj

(k−1,∆)∫ ( ∫ sj+1

sj−1

F (∆; sk; lk)mik(sj)1{lj=qk}dsj

)
Eα(ik,qk)(s

k
j ; l

k
j )dsk

j , (6.8)

where s0 := 0; sk+1 := ∆. (Change the order of integration in the multiple integral.)
Denote

Mk(s) :=

√
2∆

π(k − 1)
sin

(π(k − 1)

∆
s
)
; k > 1, 0 ≤ s ≤ ∆,

and also Fj := ∂F (∆; sk; lk)/∂sj. Then, as long as ik = b > 1, integration by parts in
the inner integral on the right of (6.8) yields:∫ sj+1

sj−1

F (∆; sk; lk)mb(sj)dsj =

F (∆; sk; lk)Mb(sj)
∣∣∣sj=sj+1

sj=sj−1

−
∫ sj+1

sj−1

Fj(∆; sk; lk)Mb(sj)dsj.

For each j, the remaining variables sk
j in (6.8) are renamed as follows: ti := si, i ≤

j−1; ti := si+1, i > j−1, or, symbolically, tk−1 := sk
j . Set t0 := 0, tk := ∆ and denote

by tk−1,j, j = 1, . . . , k − 1, the set tk−1 in which tj is repeated twice (e.g. tk−1,1 =
(t1, t1, . . . , tk−1), etc.); also tk−1,0 := (t0, t1, t2, . . . , tk−1), tk−1,k := (t1, . . . , tk−1, tk).

The similar changes will also be made with the set lk: for fixed j, there are
k − 1 free indices l1, . . . , lj−1, lj+1, . . . , lk and they are renamed just like sk to form
the set lk−1 (in this case, the same letters are used); symbol lk−1,j denotes the
set (l1, . . . , lj−1, qj, lj, . . . , lk−1). After these transformations, Eα(ik,qk)(s

k
j ; l

k
j ) becomes

Eα(ik,qk)(t
k−1; lk−1) - independent of j, and

F (∆; sk; lk)1{lj=qk}Mb(sj)
∣∣∣sj=sj+1

sj=sj−1

=

F (∆; tk−1,j; lk−1,j)Mb(tj)− F (∆; tk−1,j−1; lk−1,j)Mb(tj−1), j = 1, . . . , k.

Therefore, if d(α) = b > 1 and |α| = k > 0, then

ϕα(∆) =
∑
lk−1

(k−1,∆)∫ (
f

(1)
b (∆; tk−1; lk−1)+

f
(2)
b (∆; tk−1; lk−1)

)
Eα(ik,qk)(t

k−1; lk−1)dtk−1,

where
f

(1)
b (∆; tk−1; lk−1) =

∑k
j=1

(
F (∆; tk−1,j; lk−1,j)Mb(tj)−

F (∆; tk−1,j−1; lk−1,j)Mb(tj−1)
)
, if k > 1,
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f
(1)
b = 0 if k = 1 – because Mb(t0) = Mb(tk) = 0 (this is the only place where the

choice of {mk} really makes the difference), and

f
(2)
b (∆; tk−1; lk−1) = −

∫ t1

0
F1(∆; s, tk−1; qk, l

k−1)Mb∆(s)ds−
k−1∑
j=2

∫ tj

tj−1

Fj(∆; . . . , tj−1, s, tj, . . . ; l
k−1,j)Mb(s)ds−∫ tk

tk−1

Fk(∆; tk−1, s; lk−1, qk)Mb(s)ds.

Then, since |α(i|α|, q|α|)| = |α| − 1 and α! ≥ α(i|α|, q|α|)!,

∑
|α|=k;iα

k
=b

|ϕα(∆)|2

α!
=

r∑
qk=1

∑
|α|=k;iα

k
=b

∣∣∣∣∣∣∣
1√
α!

∑
lk−1

(k−1,∆)∫
(f

(1)
b + f

(2)
b )Eα(b,qk)dtk−1

∣∣∣∣∣∣∣
2

≤

r∑
qk=1

∑
|β|=k−1

∣∣∣∣∣∣ 1√
β!

∑
lk−1

∫ (k−1,∆)

(f
(1)
b + f

(2)
b )Eβdtk−1

∣∣∣∣∣∣
2

,

and arguments similar to those used in the proof of Lemma A.5 show that the last
expression is equal to

r∑
qk=1

∑
lk−1

∫ (k−1,∆) ∣∣∣f (1)
b (∆; tk−1; lk−1) + f

(2)
b (∆; tk−1; lk−1)

∣∣∣2 dtk−1. (6.9)

Definition of f
(1)
b and Lemmas A.2 and A.4 imply

|f (1)
b |2 = 0, k = 1; |f (1)

b |2 ≤ kC∆

(b− 1)2
|p̄|2, k ≥ 2. (6.10)

Next, direct computations yield

Fj(∆; sk; lk) = Φ∆−sk
Blk . . . Φsj+1−sj

BljAΦsj−sj−1
. . . Φs1 p̄−

Φ∆−sk
Blk . . . AΦsj+1−sj

BljΦsj−sj−1
. . . Φs1 p̄,

and then by Lemma A.4,

|Fj(∆; sk; lk)|2 ≤ κ2Ck|p̄|2.

After that the definition of f
(2)
b and obvious inequalities

(a1 + . . . + ak)
2 ≤ k(a2

1 + . . . + a2
k)

and ( ∫ x

0
f(y)dy

)2
≤ x

∫ x

0
(f(y))2dy
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imply:

|f (2)
b |2 ≤ κ2kCkeC∆|p̄|2∆

∫ ∆

0
(Mb(s))

2ds ≤

κ2 kCk∆3

(b− 1)2
|p̄|2;

so, since
∫ (k−1,∆) dtk−1 = ∆k−1/(k − 1)!, (6.9), (6.10), and the last inequality yield

Ẽ|u(∆, N)− u(1, n, N)|2 =
∑

b≥n+1

N∑
k=1

∑
|α|=k;iα

k
=b

|ϕα(∆)|2

α!
≤

C|p̄|2
∆2

∑
k≥0

k + 2

k + 1

(C∆)k

k!
+ κ2∆3

∑
k≥0

(k + 1)(C∆)k

k!

∑
b≥n

1

b2
≤

C
∆2 + κ2∆3

n
|p̄|2.

This completes the proof of (6.5) and the theorem as a whole.
2

Acknowledgment. The authors would like to thank Professor B. L. Rozovskii
who supervised the work. The second author is also thankful to the NSF for the
financial support awarded through the Institute for Mathematics and its Applications.

References

[1] J. F. Bennaton. Discrete Time Galerkin Approximation to the Nonlinear Filtering
Solution. Journal of Mathematical Analysis and Applications, 110(2):364–383, 1985.

[2] A. Budhiraja and G. Kallianpur. Approximations to the Solution of the Zakai Equa-
tions Using Multiple Wiener and Stratonovich Integral Expansions. Stochastics and
Stochastics Reports, 56:271–315, 1996.

[3] R. H. Cameron and W. T. Martin. The Orthogonal Development of Nonlinear Func-
tionals in a Series of Fourier-Hermite Functions. Annals of Mathematics, 48(2):385–392,
1947.

[4] J. M. C. Clark and R. J. Cameron. The Maximum Rate of Convergence of Discrete
Approximation for Stochastic Differential Equations. Springer Lecture Notes in Control
and Inform. Sc., 25:162–171, 1980.

[5] P. Florchinger and F. LeGland. Time Discretization of the Zakai Equation for Dif-
fusion Processes Observed in Correlated Noise. Stochastics and Stochastics Reports,
35(4):233–256, 1991.

[6] C. P. Fung. New Numerical Algorithms for Nonlinear Filtering. PhD thesis, University
of Southern California, Los Angeles, CA, 90089, Nov. 1995.

[7] D. Gottlieb and S. A. Orszag. Numerical Analysis of Spectral Methods: Theory and
Applications. CBMS-NSF Regional Conference, Series in Applied Mathematics, Vol.26,
1977.

17



[8] E. Hille and R. S. Phillips. Functional Analysis and Semigroups. Amer. Math. Soc.
Colloq. Publ., Vol. XXXI, 1957.

[9] K. Ito. Multiple Wiener integral. Journal of the Mathematical Society of Japan,
3:157–169, 1951.

[10] K. Ito. Approximation of the Zakai Equation for Nonlinear Filtering. SIAM Journal
on Control and Optimization, 34(2):620–634, 1996.

[11] G. Kallianpur. Stochastic Filtering Theory. Springer, New York, 1980.

[12] H. Kunita. Cauchy Problem for Stochastic Partial Differential Equations Arising in
Nonlinear Filtering Theory. System & Control Letters, 1(1):37–41, 1981.

[13] R. S. Liptser and A. N. Shiryayev. Statistics of Random Processes. Springer, New
York, 1992.

[14] J. T.-H. Lo and S.-K. Ng. Optimal Orthogonal Expansion For Estimation I: Signal
in White Gaussian Noise. In R. Bucy and J. Moura, editors, Nonlinear Stochastic
Problems, pages 291–309, D. Reidel Publ. Company, 1983.

[15] S. Lototsky, R. Mikulevicius, and B. L. Rozovskii. Nonlinear Filtering Revisited: A
Spectral Approach. SIAM Journal on Control and Optimization, 35(2), 1997. To
appear.

[16] S. V. Lototsky. Problems in Statistics of Stochastic Differential Equations. PhD thesis,
University of Southern California, Los Angeles, CA 90089, Aug. 1996.

[17] R. Mikulevicius and B. L. Rozovskii. Separation of Observations and Parameters in
Nonlinear Filtering. In Proceedings of the 32nd IEEE Conference on Decision and
Control, Part 2, San Antonio, 1993, pages 1564–1569. IEEE Control Systems Society,
1993.

[18] R. Mikulevicius and B. L. Rozovskii. Fourier-Hermite Expansion for Nonlinear Filter-
ing. In A. A. Novikov, editor, Festschrift in honor of A. N. Shiryayev, 1997.

[19] D. Ocone. Multiple Integral Expansions for Nonlinear Filtering. Stochastics, 10:1–30,
1983.

[20] B. L. Rozovskii. Stochastic Evolution Systems. Kluwer Academic Publishers, 1990.

Appendix

In what follows, {eγ}γ∈Γ is the Hermite basis in L2(IRd) and Γκ = {γ ∈ Γ : |γ| ≤ κ}.

Lemma A.1 If function f is infinitely differentiable and decays at infinity with all the
derivatives faster than every power of |x| then

∑
γ /∈Γκ

|(f, eγ)0|2 ≤
C(ν)
κν

. (A.1)
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In particular,

sup
0≤t≤T

∑
γ /∈Γκ

Ẽ|uγ(t)|2 ≤ C(ν)
κν

. (A.2)

Proof. Introduce the operator Λ := −∇2 + 1 + |x|2, where ∇2 is the Laplace operator.
Direct computations show that Λeγ = (2|γ| + d + 1)eγ := λγeγ . By assumption, Λνf ∈
L2(IRd) for every positive integer ν and therefore

(f, eγ)0 =
(f,Λeγ)0

λγ
=

(Λf, eγ)0
λγ

= . . . =
(Λνf, eγ)0

λν
γ

.

This implies that

|(f, eγ)0|2 ≤
‖Λνf‖2

0

λ2ν
γ

(A.3)

and (A.1) follows because |Γκ| ≤ κd. After that, (A.2) follows from (A.2) and (2.5).
2

Lemma A.2 If assumption (A1) holds, then for every ζ ∈ IR|Γκ|

∑
γ,τ∈Γκ

(L∗eτ , eγ)0ζγζτ ≤ C|ζ|2;

∑
γ∈Γκ

( ∑
τ∈Γκ

(hleτ , eγ)0ζτ

)2
≤ C|ζ|2.

(A.4)

Proof. If Πκ is the L2(IRd)-orthogonal projection on the span of
{eγ(x)}γ∈Γκ and ζ̃ :=

∑
γ∈Γκ

ζγeγ(x), then∑
γ,τ∈Γκ

(L∗eτ , eγ)0ζγζτ = (L∗ζ̃, ζ̃)0;∑
γ∈Γκ

( ∑
τ∈Γκ

(hleτ , eγ)0ζτ

)2
= ‖Πκ(hlζ̃)‖2

0.

Direct computations show that under assumption (A1)

(L∗f, f)0 ≤ C‖f‖2
0, ‖hlf‖2

0 ≤ C‖f‖2
0

for every sufficiently regular function f . Then estimates (A.4) follow, because

‖ζ̃‖2
0 =

∑
γ∈Γκ

ζ2
γ = |ζ|2.

2

Lemma A.3 Assumption (A1) implies the following estimates:

‖L∗eγ‖0 ≤ C|γ|;
‖hleγ‖0 ≤ C.
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Proof. The second inequality is obvious because ‖eγ‖0 = 1. To prove the first, consider
the operator Λ = −∇2 + 1 + |x|2. Then direct computations show that

‖L∗f‖2
0 ≤ C‖(1−∆)f‖2

0 ≤ C(‖Λf‖2
0 + ‖f‖2

0)

for every sufficiently regular function f . It follows from the proof of Lemma A.1 that
‖Λeγ‖0 ≤ C|γ|, which implies the result.

2

Lemma A.4 If assumption (A1) holds, then for every ζ ∈ IR|Γκ|

|etAκ
ζ| ≤ |ζ|eCt,

r∑
l=1

|Bκ
l ζ| ≤ C|ζ|, |Aκζ| ≤ Cκ|ζ|.

(constant C does not depend on κ).

Proof. Given ζ ∈ IR|Γκ|, the vector v(t) := etAκ
ζ is the solution of

dv(t) = Aκv(t), v(0) = ζ.

Then by the definition of matrix Aκ,

d|v(t)|2 = 2
∑

γ,τ∈Γκ

(L∗eτ , eγ)0vτ (t)vγ(t)dt

and by Lemma A.2, d|v(t)|2 ≤ C|v(t)|2dt. After that, Gronwall’s inequality implies
|v(t)|2 ≤ |ζ|2eCt and the first inequality follows. The second inequality follows directly
from Lemma A.2 and the third – from Lemma A.3.

2

Lemma A.5 If α ∈ J is a multi-index with |α| = k and the characteristic set
{(i1, q1), . . . , (ik, qk)}, then the corresponding solution ϕκ

α(t, p̄κ) of (4.5) is given by

ϕκ
α(t, p̄κ) =∑

σ∈Pk

∑
lk

(k,t)∫
F κ(t; sk; lk)miσ(k)

(sk)1{lk=qσ(k)} · · ·miσ(1)
(s1)1{l1=qσ(1)}dsk, k>1;

ϕκ
α(t, p̄κ) =

∫ t

0
Φκ

t−s1
Bκ

q1
Φs1 p̄

κmi1(s1)ds1, k = 1;

ϕκ
α(t, p̄κ) = Φκ

t p̄κ, k = 0,

(A.5)

(see beginning of Section 6 for notations).
In addition, ∑

|α|=k

|ϕκ
α(t, p̄κ)|2

α!
=
∑
lk

∫ (k,t)

|F κ(t; sk; lk|2dsk. (A.6)

Proof. For the sake of simplicity, the argument p̄ in ϕα will be omitted. Representation
(A.5) is obviously true for |α| = 0. Then the general case |α| ≥ 1 follows by induction from
the variation of parameters formula.
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To prove (A.6), first of all note that∑
σ∈Pk

miσ(k)
(sk)1{lk=qσ(k)} · · ·miσ(1)

(s1)1{l1=qσ(1)} =∑
σ∈Pk

mik(sσ(k))1{lσ(k)=qk} · · ·mi1(sσ(1)1{lσ(1)=q1}.

Indeed, every term on the left corresponding to a given σ0 ∈ Pk is equal to the term on the
right corresponding to σ−1

0 ∈ Pk.
Then (A.5) can be written as

ϕκ
α(t) =

∑
lk

∫ (k,t)

F κ(t; sk; lk)Eα(sk; lk)dsk,

where Eα is given by (6.1). Using the notation

Gκ(sk; lk) :=
∑

σ∈Pk

Φκ
t−sσ(k)

Bκ
lσ(k)

. . .Φκ
sσ(2)−sσ(1)

Bκ
lσ(1)

Φκ
sσ(1)

p̄k1sσ(1)<...<sσ(k)
,

it can be rewritten as

ϕκ
α(t) =

1
k!

∑
lk

∫
[0,t]k

Gκ(sk; lk)Eα(sk; lk)dsk. (A.7)

Since every component of the vector Gκ is a symmetric function from L2(([0, t] ×
{1, . . . , r})k) and the collection {Eα/

√
α!k!, |α| = k} is a CONS for the symmetric part

of the space,

Gκ =
∑
|α|=k

cκ
αEα√
α!k!

with some cκ
α ∈ IR|Γκ|. Then from (A.7) |ϕκ

α|2/α! = |cκ
α|2/k! and so

∑
|α|=k

|ϕκ
α(t)|2

α!
=

1
k!

∑
|α|=k

|cκ
α|2 =

1
k!

∫
[0,t]k

|Gκ(sk; lk)|2dsk =

1
k!

∑
lk

∫
[0,t]k

∣∣∣ ∑
σ∈Pk

Φκ
t−sσ(k)

Bκ
lσ(k)

. . .Φκ
sσ(2)−sσ(1)

Bκ
lσ(1)

Φκ
sσ(1)

p̄k1sσ(1)<...<sσ(k)

∣∣∣2dsk =

∑
lk

∫ (k,t)

|F κ(t; sk; lk)|2dsk,

which proves (A.6).
2

Remark. If |α| = k, then by Theorem 3.1 in [9]

ξα =
1√
α!

∑
lk

∫ t

0

∫ sk

0
. . .

∫ s2

0
Eα(sk; lk)dy(s1) . . . dy(sk).

This gives an alternative (but equivalent) form of (4.4) in terms of multiple Wiener integrals.
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