
INTRUSIVE AND NON-INTRUSIVE CHAOS APPROXIMATION
FOR A TWO-DIMENSIONAL STEADY STATE NAVIER-STOKES

SYSTEM WITH RANDOM FORCING

S. V. LOTOTSKY, R. MIKULEVICIUS, AND B. L. ROZOVSKY

Abstract. While convergence of a chaos approximation for linear equations is
relatively well understood, a lot less is known for non-linear equations. The pa-
per investigates this convergence, by establishing the corresponding a priori error
bounds, for a particular equation with quadratic nonlinearity and for two different
approximations: stochastic Galerkin and discrete projection. Stochastic Galerkin
approximation reduces the stochastic equation to a system of deterministic equa-
tion to compute the coefficients in the chaos expansion. The approximation is called
intrusive because the resulting system of equations is highly coupled and is harder
to solve than the original system; there is also a special condition for uniqueness
of solution. An alternative approximation of the chaos coefficients, using the dis-
crete projection version of the stochastic collocation method, is non-intrusive and
requires the solution of the original equation for specially chosen realizations of the
random input. Compared to the Galerkin approximation, this non-intrusive proce-
dure is easier to analyze and implement, but the resulting approximation error and
computational costs can be higher.
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1. Introduction

There are two main ways to study an equation with random input. One way is to use
deterministic tools for each particular realization of randomness; in what follows, we
call it path-wise approach. An alternative, which we call random field approach,
is to consider the random input as an additional independent variable in the equation,
along with space and/or time.

Questions such as existence/uniqueness/regularity of the solution are often addressed
by combining the two approaches; cf. [18, 19] for ordinary differential equations and
[17, 24, 25] for equations with partial derivatives.

The difference between the two approaches becomes noticeable in numerical compu-
tations; see, for example, [13, 35]. Path-wise approach leads to repeated numerical
solutions of the underlying equation for various realizations of the random input; a
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typical example is Monte Carlo simulations. In computational terms, this approach
is non-intrusive, because no new numerical procedures are required to solve the
equation compared to the deterministic case.

Numerical procedures based on the random field approach lead to a stochastic
Galerkin approximation [35, Chapter 6]: starting with a chaos expansion of the so-
lution, using a basis in the underlying space of random variables, the problem is
reduced to a system of deterministic equations. In computational terms, such pro-
cedures are intrusive, because the resulting system is more complicated than the
original equation and requires different algorithms to obtain a solution.

The stochastic collocation method [35, Chapter 7], with sampling at specially selected
realizations of the random input, somewhat bridges the gap between pure random
sampling (Monte Carlo) and complete elimination of randomness (stochastic Galerkin
approximation). In computational terms, the method is non-intrusive [3, 31]. We will
consider the discrete projection, or pseudo-spectral version of the method, when the
sampled solution is used to approximate the coefficients in the chaos expansion via
Gauss quadrature.

For many, although apparently not all [8], equations, various empirical studies
[15, 28, 32, etc.] suggest that stochastic Galerkin approximation, with a fixed com-
putational cost, can be a much more efficient way to study statistical properties of
the solution than Monte Carlo or stochastic collocation methods. In the case of non-
linear equations, this experimental success has yet to be fully justified theoretically;
for linear equations, the picture is rather clear; see, for example, [9, 20, 21] as well as
[22, Chapter 5] and [30, Section 8.3].

The objective of this paper is to carry out a comparative theoretical analysis of
an intrusive and a non-intrusive approximations for a particular nonlinear equation.
Specifically, we consider the stationary Navier-Stokes system in a smooth bounded
planar domain with zero boundary conditions and with randomness in the external
force, and we establish a priori error bounds for both approximations.

The paper is organized as follows. Section 2 describes the model and introduces the
necessary function spaces. Sections 3 and 4 investigate stochastic Galerkin approx-
imation and a non-intrusive pseudo-spectral approximation, respectively. Section 5
puts the results in a broader context.

Throughout the paper, G is a bounded domain in R2 with area |G| and sufficiently
regular (e.g. locally Lipschtiz) boundary ∂G. We use the following convention with
the notations of various function spaces and their elements: if X denotes a space of
scalar fields f on G, then X denotes the corresponding space of vector fields f , and
X denotes the collection of X-valued random elements f .

2. The Setting

Let (Ω,F ,P) be a probability space such that the L2(Ω) is a separable Hilbert space
having a complete orthogonal basis {Pn, n ≥ 0}: with

c(n) = EP2
n,
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every ζ ∈ L2(Ω) has a chaos expansion

ζ =
∑
k≥0

E
(
ζPk)

c(k)
Pk. (2.1)

Typically, the sigma-algebra F is generated by a collection Ξ of random variables,
and each Pk is a function of a finite number of random variables from Ξ. In the
particular case, when all Pk are polynomials, equality (2.1) is called a generalized

polynomial chaos expansion of ζ.

We assume that the basis {Pn, n ≥ 0} has the following property: for everym,n ≥ 0,
there are finitely many real numbers Am,n;l, l ≥ 0, such that

PmPn =
∑
l≥0

Am,n;lPl; (2.2)

in that case

Am,n;l =
E
(
PmPnPl

)
c(l)

.

Property (2.2) holds for generalized polynomial chaos.

Denote by PN the orthogonal projection in L2(Ω) on the subspace spanned by
{Pk, k = 0, . . . , N} .

Consider a steady-state Navier-Stokes system with random forcing in a bounded do-
main G ⊂ R2 with sufficiently regular boundary ∂G:

ν∆u (x) =
(
u · ∇)u+∇p (x) + f(x), x ∈ G, (2.3)

divu (x) = 0, x ∈ G, u|∂G = 0.

In equation (2.3),

• ν > 0 is the kinematic viscosity coefficient, x = (x1, x2), ∆ = ∂2

∂x2
1
+ ∂2

∂x2
2
is the

Laplace operator, and ν is constant;
• u (x) = (u1 (x) , u2 (x)) is the (unknown) velocity and

divu = ∇ · u =
∂u1

∂x1

+
∂u2

∂x2

,
(
u · ∇)ui = u1 ∂u

i

∂x1

+ u2 ∂u
i

∂x2

, i = 1, 2;

• p = p (x) is the (unknown scalar) pressure and
(
∇p)i = ∂p

∂xi
, i = 1, 2;

• f is the random forcing.

Two standard references for the deterministic counterpart of (2.3) are [11, Chapter
IX] and [33, Chapter II].

For the sake of simplicity, the only source of randomness in (2.3) is f ; analysis of
equation (2.3) with random ν is similar and is briefly discussed in Section 5.

We will use the following function spaces:

• C∞
0 (G), the collection of infinitely differentiable real-valued functions on G

with compact support in G;
• D (G) = {φ = (φ1, φ2), φi ∈ C∞

0 (G) , i = 1, 2 : divφ = 0} ;
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• Lr (G), 1 ≤ r < +∞, the collection of measurable functions g on G such that

|g|Lr =

(∫
G

|g(x)|r dx

)1/r

< ∞;

for g, f ∈ L2 (G), we write

(f, g)0 =

∫
G

f(x)g(x) dx;

• Lr (G), the collection of vector fields g = (g1, g2) on G such that g1, g2 ∈
Lr (G), and endowed with norm

|g|Lr =
( ∣∣g1∣∣r

Lr +
∣∣g2∣∣r

Lr

)1/r
;

for g, f ∈ L2 (G), we write

(f ,g)0 =

∫
G

(
f 1(x)g1(x) + f 2(x)g2(x)

)
dx;

• L2 (G) = L2
(
Ω;L2(G)

)
, that is, the collection of L2 (G)-valued random ele-

ments
g(ω, x) =

(
g1 (ω, x) , g2 (ω, x)

)
such that

|g|L2 =
(
E |g|2L2

)1/2
< ∞;

• H1,2
0 (G), the completion of C∞

0 (G) with respect to the norm

|g|1,2 =
(∫

G

|∇g(x)|2 dx

)1/2

=

(∫
G

(∣∣∣∣∂g(x)∂x1

∣∣∣∣2 + ∣∣∣∣∂g(x)∂x2

∣∣∣∣2
)

dx

)1/2

;

note that | · |1,2 is indeed a norm on C∞
0 (G) because, by a version of the

Poincaré inequality, if g ∈ C∞
0 (G) and |G| is the Lebesgue measure (area) of

G, then (cf. [11, Exercise II.5.4])

|g|2L2 ≤
|G|
2

|g|21,2 ; (2.4)

• H1,2
0 (G), the collection of vector fields g = (g1, g2) on G such that g1, g2 ∈

H1,2
0 (G), and endowed with norm

|g|1,2 =
(∣∣g1∣∣2

1,2
+
∣∣g2∣∣2

1,2

)1/2
;

for f ,g ∈ H1,2
0 (G), we write(

∇f ,∇g
)
0
=

2∑
i,j=1

∫
G

(
∂f i(x)

∂xj

∂gi(x)

∂xj

)
dx,

so that
|g|21,2 =

(
∇g,∇g

)
0
;

• H1,2
0 (G) = L2

(
Ω;H1,2

0 (G)
)
;

• Ĥ1,2
0 (G), the completion of D(G) with respect to the norm | · |1,2;

• Ĥ1,2
0 (G) = L2

(
Ω; Ĥ1,2

0 (G)
)
;
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• H−1,2
0 (G), the completion of L2 (G) with respect to the norm

|g|−1,2 = sup

{∫
G

g(x)φ(x) dx : φ ∈ H1,2
0 (G) , |φ|1,2 ≤ 1,

}
;

• H−1,2
0 (G), the collection of vector fields g = (g1, g2) such that g1, g2 ∈

H−1,2
0 (G) , and endowed with norm

|g|−1,2 =
(∣∣g1∣∣2−1,2

+
∣∣g2∣∣2

1,2

)1/2
;

• H−1,2
0 (G) = L2

(
Ω;H−1,2

0 (G)
)
.

The (Banach space) dual of H1,2
0 (G) is isomorphic to H−1,2

0 (G): see [11, Theorem
II.3.5]. We denote the corresponding duality by 〈f, g〉1, f ∈ H−1,2

0 (g) , g ∈ H1,2
0 (G) .

Similarly, the dual of H1,2
0 (G) is isomorphic to H−1,2

0 (G) and the duality is denoted
by 〈f ,g〉1, f ∈ H−1,2

0 (G) , g ∈ H1,2
0 (G) .

For (u,v,w) ∈ H1,2
0 (G)×H1,2

0 (G)×H1,2
0 (G), we define the tri-linear form

a (u,v,w) =
(
(u · ∇)v,w

)
0
, where

(
u · ∇)vi = u1 ∂v

i

∂x1

+ u2 ∂v
i

∂x2

, i = 1, 2. (2.5)

Lemma 2.1. The trilinear form a has the following properties:

(1) If (u,v,w) ∈ H1,2
0 (G)×H1,2

0 (G)×H1,2
0 (G), then

|a (u,v,w)| ≤
√
|G|
2

|u|1,2 |v|1,2 |w|1,2 , (2.6)

|a(u,u,w)− a(v,v,w)| ≤
√

|G|
2

|u− v|1,2
(
|u|1,2 + |v|1,2

)
|w|1,2 ;

(2) If u ∈ Ĥ1,2
0 (G), then

a(u,v,v) = 0 (2.7)

and

a(u,v,w) = −a(u,w,v).

For the proofs, see [11, Lemma IX.1.1] and [11, Lemma IX.2.1], respectively. Note
that (2.6) follows from the Hölder inequality

|a(u,v,w)| ≤ |u|Lq |v|1,2 |w|Lr ,
1

q
+

1

r
=

1

2
, (2.8)

by taking q = r = 4 and using a suitable embedding theorem; for other versions of
(2.6) and (2.8), see, for example, [11, Exercise IX.2.1].

In particular, with w = u− v,

a(u,u,w)− a(v,v,w) = a(w,u,w) + a(v,w,w),

so that, if v ∈ Ĥ1,2
0 (G), then (2.6) and (2.7) imply

|a(u,u,u− v)− a(v,v,u− v)| ≤
√
|G|
2

|u− v|21,2 |u|1,2. (2.9)
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Similar to [11, Definition IX.1.1], we have

Definition 2.2. Let f ∈ H−1,2
0 (G). A random vector field u ∈ Ĥ1,2

0 (G) is called a
solution to (2.3) if, for every φ ∈ D(G),

P
(
ν
(
∇u,∇φ

)
0
+ a(u,u,φ) = −〈f ,φ〉1

)
= 1, (2.10)

where a is the tri-linear form (2.5).

By applying [11, Lemma IX.1.2] to (2.3) with a particular realization of f , we get
the following result.

Lemma 2.3. If f ∈ H−1,2
0 (G), u ∈ Ĥ1,2

0 (G), and (2.10) holds, then there exists a
p ∈ L2 (G) with P

(∫
G
p(x) dx = 0

)
= 1 such that, for every φ ∈ H1,2

0 (G),

P
(
ν
(
∇u,∇φ

)
0
+ a(u,u,φ) = (p, divφ)0 − 〈f ,φ〉1

)
= 1.

Similarly, applying [11, Theorems IX.2.1 and IX.3.2 ] to (2.3), we get the basic exis-
tence and uniqueness result.

Theorem 2.4. If f ∈ H−1,2
0 (G), then, with probability one, equation (2.3) has a

solution and
P
(
ν|u|1,2 ≤ |f |−1,2

)
= 1.

If, in addition, there exists a non-random θ ∈ (0, 1) such that

P

(
|f |−1,2 ≤

2θν2√
|G|

)
= 1, (2.11)

then the solution is unique and satisfies

P

(
|u|1,2 ≤

2νθ√
|G|

)
= 1. (2.12)

Intuitively, once we know the velocity field u, we should be able to recover pressure
p from the original equation (2.3). Lemma 2.3 confirms this intuition; see also [33,
Proposition I.1.1]. As a result, in what follows, we only consider the function u.

Sometimes it is convenient to work with alternative characterizations of the solution
of (2.3).

Proposition 2.5. Let f ∈H−1,2
0 (G), u ∈ Ĥ1,2

0 (G), and let a be the tri-linear form

(2.5). Then u is a solution to (2.3) if and only of, for every w ∈ Ĥ1,2
0 (G),

P
(
ν
(
∇u,∇w

)
0
+ a(u,u,w) = −〈f ,w〉1

)
= 1, (2.13)

or
ν E
(
∇u,∇w

)
0
+ Ea(u,u,w) = −E 〈f ,w〉1 . (2.14)

Proof. By construction,

(2.10) ⇒ (2.13) ⇒ (2.14).
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To establish (2.14) ⇒ (2.10), take w = φ ζ with φ ∈ D(G) and a bounded random
variable ζ. �

Corollary 2.6. Let f , g ∈ H−1,2
0 (G) and let u,v ∈ Ĥ1,2

0 (G) be the corresponding
solutions of (2.3). If (2.11) holds, then

P
(
|u− v|1,2 ≤

|f − g|−1,2

ν(1− θ)

)
= 1. (2.15)

Proof. By (2.13), we have, with probability one,

ν
(
∇(u− v),∇w

)
0
+ a(u,u,w)− a(v,v,w) = −〈f − g,w〉1 . (2.16)

Taking w = u− v and using (2.9), we re-write (2.16) as

ν|u− v|21,2 −
√
|G|
2

|u− v|21,2 |u|1,2 ≤ 〈f − g,u− v〉1 ≤ |f − g|−1,2 |u− v|1,2,

and then (2.15) follows from (2.12).

�

3. Stochastic Galerkin Approximation

Recall that {Pk, k ≥ 0} is an orthogonal basis in L2(Ω) and PN is the orthogonal
projection on the linear span of {Pk, 0 ≤ k ≤ N}.

For N ≥ 1, consider the equation

ν∆vN = PN
(
(vN · ∇)vN

)
+∇pN + PNf , (3.1)

div vN = 0, vN

∣∣
∂G

= 0.

Similar to Definition 2.2, we have

Definition 3.1. Given f ∈ H−1,2
0 (G), a random vector field vN ∈ PN

(
Ĥ1,2

0 (G)
)
is

called a solution of (3.1), if, for every φ ∈ D (G),

P

(
ν
(
∇vN ,∇φ

)
0
+ PNa(vN ,vN ,φ) = −

〈
PNf ,φ

〉
1

)
= 1.

We call vN a stochastic Galerkin approximation of the solution u of equation
(2.3).

Similar to (2.13) and (2.14), we will establish two alternative characterizations of the
solution of (3.1).

If u ∈ H1,2
0 (G), v ∈ H1,2

0 (G), and w ∈ PN
(
H1,2

0 (G)
)
, then PNw = w and therefore

E
(
PN(u · ∇)v,w

)
= E

(
(u · ∇)v,PNw

)
= E a(u,v,w). (3.2)

As a result, direct computations lead to the first alternative characterization of the
solution of (3.1).
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Proposition 3.2. A random vector field vN ∈ PN
(
Ĥ1,2

0 (G)
)
is a solution of (3.1)

if and only if, for every w ∈ PN
(
Ĥ1,2

0 (G)
)
,

ν E
(
∇vN ,∇w

)
+ E a(vN ,vN ,w) = −E 〈f ,w〉1 . (3.3)

In particular, if a solution vN exists, then, taking w = vN and using (2.7), we find

ν|vN |H1,2
0

≤ |f |H−1,2
0

. (3.4)

Equality (3.3) confirms that vN is indeed a stochastic Galerkin approximation of u.

To derive yet another form of (3.1), start by writing

vN =
N∑
l=0

vl
NPl, PNf =

N∑
l=0

f lPl.

Then, using the numbers Am,k;l defined in (2.2), we compute(
(vN · ∇)vN

)
=

N∑
m,k=0

(vm
N · ∇)vk

NPmPk =
N∑

m,k=0

(vm
N · ∇)vk

N

m+k∑
l=0

Am,k;lPl

=
2N∑
l=0

(
N∑

m,n=0

Am,k;l (v
m
N · ∇)vk

N

)
Pl,

(3.5)

that is,

PN
(
(vN · ∇)vN

)
=

N∑
l=0

(
N∑

m,n=0

Am,k;l (v
m
N · ∇)vk

N

)
Pl.

As a result, (3.1) is equivalent to the following system of equations for the non-random
vector functions vl

N , l = 0, . . . , N :

ν∆vl
N =

N∑
m,n=0

Am,k;l (v
k
N · ∇)vm

N +∇plN + f l. (3.6)

This system is more complicated than (2.3) and will require more sophisticated nu-
merical procedures to compute a solution, whence the term “intrusive” in connection
with stochastic Galerkin approximation.

For example, if ξ is a standard normal random variable and F = σ(ξ), f(x) =
f (ξ, x) = (f 1 (ξ, x) , f 2(ξ, x)) for a non-random vector field f , then Pn = Hn(ξ),
where

Hn(x) = (−1)nex
2/2d

ne−x2/2

dxn

is n-th Hermite polynomial, c(n) = n!, and

PmPn =

min(m,n)∑
k=0

m!n!

(m− k)! (n− k)! k!
Pm+n−2k
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(cf. [35, Formula (6.7)]); after some algebraic manipulations, (3.6) becomes

ν∆vl
N =

N∑
n=0

1

n!

∑
k+m=l,

k+n≤N,m+n≤N

(k + n)!

k!

(m+ n)!

m!
(vk+n

N · ∇)vm+n
N +∇plN + f l.

Combining (3.6) with Proposition 3.2, we get the second alternative characterization
of the solution of (3.1).

Proposition 3.3. A collection of functions vl
N , l = 0, . . . , N, with each vl

N ∈
Ĥ1,2

0 (G), is a solution of (3.6) if and only if, for every collection of functions
{wl, l = 0, . . . , N}, wl ∈ D (G), the following equality holds:

ν

N∑
l=0

c(l)
(
∇vl

N ,∇wl
)
0
+

N∑
l=0

c(l)
N∑

m,n=0

Am,k;l a(v
k
N ,v

m
N ,w

l)

= −
N∑
l=0

c (l)
〈
f l,wl

〉
1
, c(l) = EP2

l .

(3.7)

Given ū, v̄, w̄ in
(
H1,2

0 (G)
)N+1

, with ū = (u0, . . . ,uN) and similarly for v̄, w̄, define

A(ū, v̄, w̄) =
N∑
l=0

c(l)
N∑

m,n=0

Am,k;l a(u
k,vm,wl).

Then we can re-write (3.7) as

ν
N∑
l=0

c(l)
(
∇vl

N ,∇wl
)
0
+ A(v̄

N
, v̄

N
, w̄) = −

N∑
l=0

c (l)
〈
f l,wl

〉
1
. (3.8)

Furthermore, given ū, v̄, w̄ in
(
H1,2

0 (G)
)N+1

, define

u =
N∑
k=0

ukPk, v =
N∑
k=0

vkPk, w =
N∑
k=0

wkPk.

Then equality (3.2) implies

A(ū, v̄, w̄) = Ea(u,v,w).

In particular, by (2.7),
A(ū, v̄, v̄) = 0 (3.9)

provided uk ∈ Ĥ1,2
0 (G) for all k = 0, . . . , N .

We now use (3.7) to establish a basic solvability result for equation (3.1).

Theorem 3.4. For every f ∈ H−1,2
0 (G) and N ≥ 1, equation (3.1) has a solution

vN and (3.4) holds.

The solution is unique if there exists a non-random number εN ∈ (0, 1) such that

P
(
|vN |1,2 ≤

2ν(1− εN)√
|G|

)
= 1. (3.10)
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Proof. For M ≥ 1 and l = 0, . . . , N , define

vl
M,N

=
M∑
k=0

zk,l
M,N

hk, (3.11)

where zk,l
M,N

∈ R and the functions hk have the following properties:

(1) hk ∈ Ĥ1,2
0 (G), k ≥ 0;

(2) Finite linear combinations of hk are dense in the space Ĥ1,2
0 (G);

(3) |hk|L2 = 1, (hk,hm)0 = 0, k 6= m.

A possible choice is the normalized eigenfunctions of the Stokes operator [33, Section
I.2.6].

Also, we will use the notations

v̄
M,N

= (v0
M,N

, . . . ,vN
M,N

), v
M,N

=
N∑
l=0

vl
M,N

Pl.

Consider the system of equations

ν
(
∇vl

M,N
,∇hk

)
+

N∑
m,n=0

Am,n;l

(
(vm

M,N
· ∇)vn

M,N
,hk

)
+ 〈f l,hk〉1 = 0, (3.12)

k = 0, . . . ,M, l = 0, . . . , N ; with (3.11) in mind, we think of (3.12) as a system of
equations for the numbers zk,l

M,N
.

To show that (3.12) has a solution for every M ≥ 1, we introduce the following
notations:

z̄ =
(
z0,0
M,N

, . . . , zM,0
M,N

, z0,1
M,N

. . . , zM,1
M,N

, . . . , z0,N
M,N

, . . . , zM,N
M,N

)
,

Qk,l(z̄) = ν
(
∇vl

M,N
,∇hk

)
+

N∑
m,n=0

Am,n;l

(
(vm

M,N
· ∇)vn

M,N
,hk

)
+ 〈f l,hk〉1,

F (z̄) =
∑
k,l

c(l)Qk,l(z̄)z
k,l
M,N

.

Combining (3.11), (3.8), and (3.9),

F (z̄) = ν
N∑
l=0

c(l) |vl
M,N

|21,2 + A(v̄
M,N

, v̄
M,N

, v̄
M,N

) +
N∑
l=0

c (l)
〈
f l,vl

M,N

〉
1

= ν

N∑
l=0

c(l) |vl
M,N

|21,2 +
N∑
l=0

c (l)
〈
f l,vl

M,N

〉
1
.

(3.13)

We now show that if
2ν2

|G|
∑
k,l

c(l)
∣∣zk,l

M,N

∣∣2 = |f |2H−1,2
0

, (3.14)

then
F (z̄) ≥ 0.
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Indeed, by the Cauchy-Schwarz inequality,

F (z̄) ≥ |v
M,N

|H1,2
0

(
ν|v

M,N
|H1,2

0
− |f |H−1,2

0

)
,

whereas the Poincaré inequality (2.4) implies

|v
M,N

|2H1,2
0

≥
2|v

M,N
|2L2

|G|
=

2

|G|
∑
k,l

c(l)
∣∣zk,l

M,N

∣∣2,
so that, under (3.14),

ν2|v
M,N

|2H1,2
0

≥ |f |2H−1,2
0

.

By a multi-dimensional version of the intermediate value theorem [11, Lemma IX.3.1],
we conclude that there exists a z̄∗ with

2ν2

|G|
∑
k,l

c(l)
∣∣z∗,k,l

M,N

∣∣2 ≤ |f |2H−1,2
0

such that Qk,l(z̄
∗) = 0 for all k, l. In other words, we now have existence of solution

of (3.12) for every M ≥ 1. Moreover, by (3.13) the solution satisfies

ν
∣∣v

M,N

∣∣2
H1,2

0
= −E〈f ,v

M,N
〉1.

Then the Cauchy-Schwarz inequality implies

ν
∣∣v

M,N

∣∣
H1,2

0
≤ |f |H−1,2

0
,

which, together with compactness of the embedding H1,2
0 (G) ⊂ L2(G), allows us to

pass to the limit M → ∞ and get a solution of (3.7) in the same way as in [11, pp.
600–601].

To establish uniqueness, let vN be the solution of (3.7) satisfying (3.10) and let ṽ be
the difference between vN and any other possible solution of (3.7). By (3.3),

ν E(∇ṽ,∇w)0 + Ea(vN , ṽ,w)− Ea(ṽ, ṽ − vN ,w) = 0. (3.15)

Because PN ṽ = ṽ and ṽ ∈ Ĥ1,2
0 (G), we can put w = ṽ in (3.15) and then use (2.7)

to conclude that

ν E|ṽ|21,2 + Ea(ṽ,vN , ṽ) = 0,

which, together with (2.6) implies

E

(
|ṽ|21,2

(
ν −

√
|G|
2

|vN |1,2

))
≤ 0. (3.16)

If (3.10) holds, then

ν −
√

|G|
2

|vN |1,2 ≥ νεN > 0,

and (3.16) is only possible when P
(
|ṽ|21,2 = 0

)
= 1, that is, when vN is the unique

solution of (3.7). �
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Similar to (2.11), we need (3.10) to guarantee uniqueness of the stochastic Galerkin
approximation. In fact, without (2.11), uniqueness can fail for the original equation
(2.3) [11, Section IX.2]. Even though system of equations (3.7) has been successfully
used for numerical simulations [14, 32], it is not immediately clear how condition
(3.10) can be verified.

The following theorem is the first key result of the paper and shows that, under (2.11)
and (3.10), stochastic Galerkin approximation vN is indeed an approximation of the
orthogonal projection PNu. In particular, if εN does not depend onN , then stochastic
Galerkin approximation is asymptotically equivalent to the orthogonal projection, in
the sense that, as N → ∞, both converge to the true solution at the same rate.

Theorem 3.5. Assume that (2.11) holds so that (2.3) has a unique solution u, and
let vN be the unique solution of (3.1) satisfying (3.10). Then

|PNu− vN |H1,2
0

≤ θ + 1− εN
εN

|u− PNu|H1,2
0
, (3.17)

|u− vN |H1,2
0

≤
(
1 +

θ + 1− εN
εN

)
|u− PNu|H1,2

0
. (3.18)

Proof. To make the formulas shorter, we write

uN = PNu, uN = uN − vN , and wN = PNw for w ∈ Ĥ1,2
0 (G)

Using (2.14) and (3.2),

ν E
(
∇uN ,∇wN

)
0
+ Ea(u,u,wN) = −E〈f ,wN〉1,

and, after subtracting (3.3),

ν E
(
∇uN ,∇wN

)
0
+ Ea(u,u,wN)− Ea(vN ,vN ,w

N) = 0.

Next,

a(u,u,wN)− a(vN ,vN ,w
N) = a(u,u− vN ,w

N) + a(u− vN ,vN ,w
N)

= a(u,u− uN ,wN) + a(u,uN − vN ,w
N)

+ a(u− uN ,vN ,w
N) + a(uN − vN ,vN ,w

N).

Taking wN = uN leads to

ν E|uN |21,2 + Ea(uN ,vN ,uN) + Ea(u,u− uN ,uN) + Ea(u− uN ,vN ,uN) = 0.

Then (2.6), (2.12), (3.10), and the Cauchy-Schwarz inequality [for expectations] imply

νεN |uN |2H1,2
0

≤ ν(θ + 1− εN)|uN |H1,2
0

|u− uN |H1,2
0
.

We now get (3.17), and then, by triangle inequality, (3.18). �

4. A Discrete Projection Approximation Using Gauss Quadrature

Stochastic Galerkin approximation can be constructed and analyzed for a very general
random force f . In particular, the stochastic dimension of the problem, that is,
the number of random variables generating the sigma-algebra of f , can be infinite.
To study a discrete projection version of the stochastic collocation method, we have
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to assume that the stochastic dimension of the problem is finite; for the sake of
simplicity, we take it equal to one.

The precise setting is as follows. Let (Ω,F ,P) be a probability space with a random
variable ξ and let Fξ be the P-completion of the sigma algebra generated by ξ. We
assume that the moment generating function λ 7→ Eeλξ is defined in some neighbor-
hood of λ = 0. Under this assumption, given a collection {Pn, n ≥ 0} of orthogonal
polynomials corresponding to the distribution of ξ, the collection of random variables

Pn = Pn (ξ) , n ≥ 0,

is an orthogonal basis in L2(Ω,Fξ,P). Denote by PN the orthogonal projection in
L2(Ω,Fξ,P) on the subspace spanned by {Pk, k = 0, . . . , N} . Let

c(n) = EP2
n,

so that every ζ ∈ L2(Ω,Fξ,P) has a (generalized) polynomial chaos expansion

ζ =
∑
k≥0

E
(
ζPk)

c(k)
Pk.

In this section, we assume that the random forcing in equation (2.3) has a special
form

f(x) = f (ξ, x) =
(
f 1 (ξ, x) , f 2(ξ, x)

)
, (4.1)

where f is a non-random vector field. In other words, the sigma algebra of f is Fξ,
and the stochastic dimension of the problem is equal to 1. Given the tools developed
in [27], extension to any finite stochastic dimension is straightforward.

If u = u(ξ) is a solution of (2.3) corresponding to the particular realization of ξ and
uN = PNu, then

u(ξ) ≈ uN(ξ), uN(ξ) =
N∑
k=0

uk
Pk(ξ)

c(k)
, uk = E

(
uPk

)
.

To compute the coefficients uk, k = 0, . . . , N , we use the Gauss quadrature approxi-

mation uk ≈ u
(N)
k , where

u
(N)
k =

N+1∑
j=1

wj,Nu(ξj,N)Pk(ξj,N), (4.2)

ξj,N , j = 1, . . . , N +1, are the roots of PN+1, and wj,N are the corresponding weights;
cf. [12, Section 1.4]. The resulting discrete projection or pseudo-spectral approxima-
tion,

u(N)(ξ) =
N∑
k=0

u
(N)
k

Pk(ξ)

c(k)
, (4.3)

requires the solution u(ξj,N) of (2.3) for N + 1 distinct values of ξ.

To simplify the formulas, it is convenient to introduce the square matrix W =(
Wkj, k = 0, . . . , N, j = 1, . . . , N + 1

)
, with

Wkj = wj,NPk(ξj,N).
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Then (4.2) becomes

u
(N)
k =

N+1∑
j=1

Wkju(ξj,N). (4.4)

The basic property of the Gauss quadrature is that the equality

Eh(ξ) =
N+1∑
j=1

wj,Nh(ξj,N)

holds for all functions h = h(ξ) that are polynomials in ξ of degree at most 2N + 1;
cf. [12, Theorem 1.45]. In particular, for every k,m = 0, . . . , N,

N+1∑
j=1

WkjPm(ξj,N) =
N+1∑
j=1

wj,NPk(ξj,N)Pm(ξj,N) = E
(
PkPm

)
=

{
c(k) > 0, if k = m,

0, if k 6= m,

which means that the matrix W is non-singular.

With the above choice of the sampling points ξj,N , the discrete projection (4.3) is
equivalent to interpolation:

Proposition 4.1. The equality

u(ξj,N) = u(N)(ξj,N) (4.5)

holds for all j = 1, . . . , N + 1.

Proof. Equality (4.3) implies that u(N) is a polynomial in ξ of order at most N , so
that each product u(N)Pk, k = 0, . . . , N, is a polynomial in ξ or order at most 2N .
Then

E
(
u(N)Pk

)
=

N+1∑
j=1

Wkju
(N)(ξj,N), k = 0, . . . , N. (4.6)

On the other hand, (4.3) also implies

E
(
u(N)Pk

)
= u

(N)
k , (4.7)

and then (4.5) follows from (4.4) and non-degeneracy of the matrix W. �

The following theorem is the second key result of the paper and gives an upper bound
on the approximation error E|u− u(N)|21,2. Recall that uN = PNu.

Theorem 4.2. Define
δN = sup

ξ
|u(ξ)− uN(ξ)|1,2. (4.8)

Then
E|u− u(N)|21,2 ≤ E|u− uN |21,2 +N

(
δN
)2
. (4.9)

Proof. By orthogonality,

E|u− u(N)|21,2 = E|u− uN |21,2 + E|uN − u(N)|21,2

= E|u− uN |21,2 +
N∑
k=0

|uk − u
(N)
k |21,2

c(k)
.

(4.10)
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Combining (4.2), (4.6), and (4.7) results in

uk − u
(N)
k =

N+1∑
j=1

wj,N

(
uN(ξj,N)− u(ξj,N)

)
Pk(ξj,N),

or, using the Cauchy-Schwarz inequality and wj,N > 0,

|uk − u
(N)
k |21,2 ≤

(
N+1∑
j=1

wj,N |uN(ξj,N)− u(ξj,N)|21,2

)(
N+1∑
j=1

wj,NP
2
k(ξj,N)

)
.

Properties of the Gauss quadrature imply

N+1∑
j=1

wj,NP
2
k(ξj,N) = EP2

k = c(k), k = 0, . . . , N, and
N+1∑
j=1

wj,N = 1,

whereas (4.8) implies

N+1∑
j=1

wj,N |uN(ξj,N)− u(ξj,N)|21,2 ≤
(
δN
)2 N+1∑

j=1

wj,N .

As a result,

|uk − u
(N)
k |21,2 ≤

(
δN
)2
c(k),

and (4.9) follows from (4.10). �

Of course, E|u− uN |21,2 ≤
(
δN
)2
, leading to a somewhat weaker form of (4.9):

E|u− u(N)|21,2 ≤
(
δN
)2
(1 +N).

Remark 4.3. Both intrusive and non-intrusive approximations require some kind of
an L∞-bound, either in the form of (3.10) or (4.8), to establish an L2-bound on the
approximation error; for (4.9) to be useful, one additionally needs to establish

lim
N→∞

√
NδN = 0. (4.11)

On the one hand, condition (4.11) is easier to verify than condition (3.10). On the
other hand, under condition (3.10), the error bound (3.18) can be better than (4.9),
and this difference can become even more pronounced as the stochastic dimension of
the problem (the number of independent random variables in the input) grows.

Theorem 4.2 is rather general, and the proof does not use the fact that u solves (2.3):
only exactness of the quadrature rule on polynomials of degree up to 2N is required.
On the flip side, without (4.11), the conclusion of the theorem is not especially useful.

To establish (4.11), we need additional information about the polynomials Pn and
about the dependence of u on ξ, which means additional assumptions about equation
(2.3).

As an example, consider the random variable ξ that is uniform on [−1, 1]. Then
Pn = Pn(ξ), where Pn is nth Legendre polynomial; the standard normalization [2,
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equation (6.4.4.)] is Pn(1) = 1, and then

cn =
1

2

∫ 1

−1

P 2
n(x) dx =

1

2n+ 1
.

Theorem 4.4. Assume that, in (4.1), the random variable ξ is uniform on [−1, 1]
and the function f is Lipschitz continuous as a function of ξ: there exists a positive
number Cf such that, for all ξ1, ξ2 ∈ [−1, 1],

|f(ξ1, ·)− f(ξ2, ·)|−1,2 ≤ Cf |ξ1 − ξ2|.
If (2.11) holds and u = u(ξ) is the corresponding unique solution of (2.3), then

sup
ξ

|u(ξ)− uN(ξ)|1,2 ≤ CN−3/4 (4.12)

for some C depending only on Cf , ν, and θ. In particular, we have (4.11).

Proof. By (2.15),

|u(ξ1)− u(ξ2)|1,2 ≤
|f(ξ1, ·)− f(ξ2, ·)|−1,2

ν(1− θ)
≤ Cf

ν(1− θ)
|ξ1 − ξ2|. (4.13)

For the rest of the proof, C denotes positive number depending only on Cf , ν, and θ.
The value of C can be different in different formulas.

Let EN be the error of the best uniform approximation of u by an element of Ĥ1,2
0 (G)

that is a polynomial of degree at most N in ξ:

EN(u) = inf
(

max
ξ∈[−1,1]

|u(ξ)− v(ξ)|1,2 : v ∈ PN
(
Ĥ1,2

0 (G)
))

.

Then

• Jackson’s Theorem [29, Theorem 1.4], together with (4.13), implies

EN(u) ≤
C

N
; (4.14)

• Combining (4.13) with [34, Theorem 2.1] yields

E|u− u(N)|21,2 ≤
C

N3
; (4.15)

• Combining (4.14) and (4.15) with [5, Theorem 1 (p=2)] leads to (4.12) and
completes the proof.

�

5. Summary and Discussion

Within the general framework of numerical analysis, this paper studies a priori error
bounds, as opposed to a posteriori error analysis that requires some basic knowledge
about convergence of the numerical procedure; cf. [1, Section 9.3]. Comparing the
(intrusive) stochastic Galerkin approximation [Theorem 3.5] and a (non-intrusive)
stochastic collocation/Gauss quadrature approximation [Theorem 4.2] for equation
(2.3), we see that
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• The intrusive approximation works for a broader class of random input and
can, in principle, achieve an asymptotically optimal rate of convergence;

• The non-intrusive approximation is easier to study, both analytically and nu-
merically.

While the setting in the paper, a stationary two-dimensional Navier-Stokes system
with zero boundary conditions and additive random perturbation, is intentionally
simple to isolate the effects of non-linearity (the convection term) on the stochastic
Galerkin approximation, some of the results are rather universal and can be used for
many other equations with a quadratic-type nonlinearity. The key is equality (3.5)
describing the product of two chaos expansions.

For example, (3.5) implies that equations (3.6) describe the stochastic Galerkin ap-
proximation for the stationary Navier-Stokes system in any number of space dimen-
sions and with randomness in both boundary conditions and the external force; after
minor modifications, time-dependent problems with a random initial condition will
also be covered. The stochastic dimension of the problem does not matter either, as
long as the corresponding orthogonal basis {Pn, n ≥ 0} with property (2.2) can be
constructed [27].

The main technical difficulty, both in the general analysis of stochastic Galerkin
approximation and in the particular proof of Theorem 3.5, is related to the fact that,
for the solution v of a nonlinear equation,

PNv 6= vN .

The two possible sources of non-linearity are (a) the structure of the underlying
deterministic equation, and (b) the way the random perturbation enters the equation.
For example, consider the system (2.3) with random viscosity

ν =
∞∑
k=0

νkPk.

Equality (3.5) shows that the stochastic Galerkin approximation in this case will be

N∑
m,k=0

Am,k;l νk ∆vm
N =

N∑
m,k=0

Am,k;l (v
k
N · ∇)vm

N +∇plN + f l, l = 0, . . . , N. (5.1)

Equation (5.1) illustrates the effects of the two sources of nonlinearity: the convection
term leads to the coupling of the functions vm

N on the right-hand side, whereas random
viscosity leads to a similar coupling on the left-hand side. While not very different
from (3.6), analysis of (5.1) must be carried out from scratch and, for now, is left to
an interested reader.

It is the “deterministic nonlinearity” that leads to hard-to-verify conditions of the
type (3.10). Linear equations with random coefficients, such as heat equation

∂v

∂t
= a∆v

with random diffusion coefficient a, exhibit some non-linear features when it comes to
stochastic Galerkin approximation, but are much more manageable when it comes to
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the corresponding error analysis [6, 7]. The non-linear effects can be further mitigated
by replacing the usual product with the Wick product, a convolution operation � such
that Pm �Pn = αmnPm+n, αmn ∈ R [16, 26, 27].

To conclude, let us note that there are many equivalent ways to write Navier-Stokes
equations: even the basic velocity-pressure formulation (2.3) admits at least four
alternative forms [10, Section 5], not to mention alternative variables, such stream
function and vorticity [4, 23]. For the purpose of our investigation, it appears that
none of the alternatives will lead to any major simplifications, but, as reference [10]
suggests, one should keep those alternatives in mind for further analysis of various
approximations of (2.3).
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