XVI. Functions of Pasitive and Negative Type, and their Connection with the Theory of Integral Equations.

By J. Mebcer, B. A., Trinity College, Cambiridge.

Comnumicated by Prof. A. R. Fonsyth, Sc. D., LL.D., F.R.S.

Received December 21, 1908 -Read May 13, 1909.

Introduction.

Trie present memoir is the outoome of an attempt to obtain the conditions under which a given symmetrie and continuous function $\kappa(s, t)$ is definite, in the sense of Hramer." At an early stage, however, it was found that the class of definite functions was too restricted to ullow the determination of necessary and sufficient conditions in terms of the determinants of $\$ 10$. The diseovery that this could be done for functions of positive or negative type, and the fact that almost all the theorems which are true of definite functions are, with slight modification, true of these, led fimally to the abandonment of the original plan in favour of a discussion of the properties of functions belonging to the wider classes.

The first part of the memoir is devoted to the definition of rarious terms employed, and to the re-statement of the consequences which follow from Hrasert's theorem.

In the second part, keeping the theory of quadratic forms in view, the necessary and suffieient conditions, already alluded to, are obtained. These conditions are then applied to obtain certain general properties of fumetions of positive and negative type.

Part III. is chiefly devoted to the investigation of a partieular elass of functions of positive type. In addition, it includes a theorem which shows that, in general, from each function of positive type it is possible to deduce an infinite number of others of that type.

Lastly, in the fourth part, it is proved that when $\kappa(s, t)$ is of positive or negative type it may be expanded as a series of products of normal functions, and that this series converges both absolutely and aniformly.

[^0]
Pabt I.-Dbfinttiong and Deductions from Htlbert's Thbohim.

§1. Let $\kappa(s, t)$ be a continuous symmetric function of the variables s, t which is defined in the closed square $a \leq s \leq b, a \leq t \leq b$; and let Θ be the class of all functions which are continuous in the closed interval (a, b). When the function θ ranges through the class Θ, there are three possible ways in which the double integral

$$
\int_{e}^{T} \int_{a}^{1} \kappa(s, t) \theta(s) \theta(t) d s d t
$$

may behave :-
(i) There may be two membens of Θ, say θ_{1} and θ_{2} such that

$$
\int_{a}^{b} \int_{a}^{b} \kappa(s, t) \theta_{1}(s) \theta_{1}(t) d s d t, \quad \int_{a}^{b} \int_{a}^{b} \kappa(s, t) \theta_{2}(s) \theta_{3}(t) d s d t
$$

have opposite signs ;
(ii) Each function θ may be such that

$$
\int_{a}^{b} \int_{a}^{b} \kappa(s, t) \theta(s) \theta(t) d s d t \geq 0 ;
$$

(iii) Each function θ may be such that

$$
\int_{a}^{0} \int_{0}^{s} \kappa(s, t) \theta(s) \theta(t) d s d t \leq 0 .
$$

This suggests a classification of continuous symmetric functions defined in the closed square. We shall speak of those which have the property (i) as functions of ambignous type, whilst the others will be said to be of positive or negative type, according as they satisfy (ii) or (iii).
§2. From the point of view of integral equations this classification is of considerable importance. Hrbbert has proved* that

$$
\int_{a}^{0} \int_{a}^{s} \kappa(s, t) \theta(s) \theta(t) d s d t=\sum_{n=1}^{\Sigma} \frac{1}{\lambda_{n}}\left[\int_{-}^{3} \psi_{n}(s) \theta(s) d s\right]^{2},
$$

where $\psi_{1}(s), \psi_{2}(s), \ldots, \psi_{n}(s), \ldots$, are a complete system of normal functions relating to the characteristic function $\kappa(s, t)$ of the integral equation

$$
f(s)=\phi(s)-\lambda \int_{a}^{t} \kappa(s, t) \phi(t) d t
$$

and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2}, \ldots$, respectively, are the corresponding singular values It follows at once from this that, when the singular values are all positive, $\kappa(s, t)$ is of positive

[^1]type in accorlance with the above definition. Conversely, we may prove that, for every function of positive type, the above integral equation has only positive singular values. For, if we multiply along the homogeneous equation
$$
\psi_{k}(s)=\lambda_{n} \int_{a}^{b} \kappa(s, t) \psi_{n}(t) d t
$$
by $\psi_{n}(s)$, and integrate with respect to s between the limits a and b, we obtain
$$
\lambda_{s} \int_{a}^{b} \int_{n}^{s} k(s, t) \psi_{n}(s) \psi_{n}(t) d s d t=1 .
$$

Since the double integral on the left cannot be negative, and λ_{n} is a finite number, it appears that

$$
\lambda_{n}>0 .
$$

Thus the necesscry and sufficient condition that a continuous symmetric function should be of pasitive type is that the integral equation of the second kind of which it is the characteristic foriction should have all its singular values positive."

In a similar manner it may he proved that this statement remains true when we replace the word positive by negative, in both places where it occurs. Moreover, since a function must be of ambiguous type when it is of neither the positive nor the negative type, we conclude that the necessary and sufficient condition for a contiantous symmetric function to be of ambigwous type xas the existence of both positicn and negative singular values of the integral equation of the second kind of which it is the characteristic funotion.
$\S 3$. It is easy to see that, corresponding to a function $\kappa(s, t)$ whose type is ambiguons, there exists a function $\theta(s)$ which is not zero in the whole interval (a, b), and satisfies the relation

$$
\begin{equation*}
\int_{a}^{b} \int_{a}^{b} \kappa(s, t) \theta(s) \theta(t) d s d t=0 . \tag{A}
\end{equation*}
$$

For, if we employ the notation of (i) above, and suppose that k is any real constant, we shall have

$$
\begin{aligned}
& \int_{0}^{b} \int_{0}^{t} \kappa(s, t)\left[\theta_{1}(s)+k \theta_{2}(s)\right]\left[\theta_{1}(t)+k \theta_{2}(t)\right] d s d t=\int_{a}^{0} \int_{a}^{s} \kappa(s, t) \theta_{1}(s) \theta_{1}(t) d s d t \\
& +k \int_{a}^{b} \int_{a}^{b} \kappa(s, t)\left[\theta_{1}(s) \theta_{2}(t)+\theta_{2}(s) \theta_{1}(t)\right] d s d t+l^{2} \int_{a}^{b} \int_{0}^{6} \kappa(s, t) \theta_{2}(s) \theta_{2}(t) d s d t .
\end{aligned}
$$

* It follows from these realte that, unless $*(a, t)$ is identically zero, wo eunot have

$$
\int_{a}^{0} \pi(0, t) \theta(\theta) \theta(\eta) d z d t=0
$$

for all members of θ. We ahall prove this remalt in a different manner further on (812), but it in useful to make the remark at this stage, since it showe conelasively that a funetion which is not identically sere cannot he hoth of positive and negative type.
vole vorx. - A.

The coefficient of β^{3} on the right has a sign opposite to that of the term independent of k; accordingly, when we equate the right-hand member to zero, the resulting quadratic has its roots real. It follows that, if we suppose one of them to be α, the function

$$
\theta(s)=\theta_{1}(s)+a \theta_{2}(s)
$$

will satisfy (A), and it cannot be identically zero, because this would imply that $\theta_{1}(s)$ is a constant multiple of $\theta_{2}(s)$, and hence that the two integrals mentioned in (i) have the same sign.

The converse of this theorem, however, is not true, for there are functions both of the positive and of the negative type which agree in this property with those of ambiguous type ; these ane known as the semi-definite fromctions. The remainder are called definite functions, and have the property that (A) can only be satisfied by a furction $\theta(s)$ which is zero at each point of (α, b).

The two classes of functions we have just mentioned have distinctive properties in the theory of integral equationk. For, if $k(s, 1)$ is of positive or negative type, it is evident frons Husear's theorem that (A) can only hold when

$$
\int_{a} \psi_{s}(s) \theta(s) d s=0 \quad(n=1,2, \ldots)
$$

By a known theorem* we must, therefore, havo

$$
\int_{0}^{1} \kappa(x, t) \theta(t) d t=0 \quad(a \leq s \leq b)
$$

Thus the recessary and sufficrent eondition that a function of positive or negative type should be definite is that it should be pergeet.

Part II.-The Nature of Functions of Positive and Negative Type.

§4. The double integral

$$
\begin{equation*}
\int_{n}^{b} \int_{a}^{h} x(s, t) \theta(s) \theta(t) d s d t, \tag{1}
\end{equation*}
$$

in which $\kappa(s, t)$ is an assigned symmetric and continuous function, and θ is any member of the class Θ, may be regarded as the limit of a certain set of quadratic expressions. For, let $a_{1}, a_{2}, \ldots, a_{n}$ be points of the interval (a, b), taken in such a way that the distances between consecutive members of the set of points consisting of a, b and these n are all equil. Then, by the theory of double integration, and in virtue of the symmetry of $\kappa(s, t),(1)$ is precisely equal to

$$
(b-\alpha)^{2} \mathrm{~L}_{2 \rightarrow-} \frac{\left[\kappa\left(a_{1+}, a_{1}\right) \theta^{2}\left(a_{1}\right)+\kappa\left(a_{2}, a_{2}\right) \theta^{2}\left(a_{2}\right)+\ldots+\kappa\left(a_{n}, a_{n}\right) \theta^{2}\left(a_{2}\right)+2 \kappa\left(a_{1}, a_{2}\right) \theta\left(a_{1}\right) \theta\left(a_{2}\right)+\ldots\right]}{n^{2}}
$$

The quantity inside the square brackets is evidently a particular value of a quadratic form whose coefficients are $\kappa\left(a_{1}, a_{1}\right), \kappa\left(\alpha_{2}, a_{2}\right), \kappa\left(a_{n}, a_{n}\right), 2 \kappa\left(a_{1}, a_{2}\right), \ldots$; and, when θ ranges through the class θ, the numbers $\theta\left(a_{1}\right), \theta\left(\alpha_{2}\right), \ldots, \theta\left(\alpha_{n}\right)$ will assume all possible real values.

It is thus suggested that we are to look upon the double integral (1), when $\theta_{\text {ranges }}$ through Θ, as the limiting case of a quadratic form whose variables assume all possible real values. The function $k(s, t)$ clearly takes the place of the coefficients of the form. Moreover, when $\kappa(s, t)$ is of positive type, the double integral (1) corresponds to a quadratic form which cannot take negative values for real values of the variable; and similarly in regard to the case when $\kappa(s, t)$ is of negative type.

Now the question, whether a quadratic form does, or does not, take both signs, as the variables assume all real values, has been shown to depend on the signs of certain determinants whose elements are coefficients of the form.* The considerations we have just indicated stem, therefore, to point to the existence of properties of the function $\kappa(x, t)$ which will decide its type, without directly considering the integral (1). It is the objoet of the present section to show that this is actually the case.
§5. Let us, for the present, coafine our attention to a function $\kappa(8, t)$ of positive type, so that

$$
\int_{a}^{b} \int_{a}^{b} \kappa(s, t) \theta(s) \theta(t) d s d t \geq 0
$$

for all functions θ belonging to θ
We shall, in the first place, define a particular class of the functions θ. Let s_{1} be any point of the open interval (c, b), and suppose that ϵ and η are any two positive numbers which are so samall that the points $x_{1} \pm(\eta+\epsilon)$ also belong to the interval. Then the continuous fimetion which is zero for $a \leq s \leq s_{1}-\eta-\varepsilon$ and $s_{1}+\eta+\varepsilon \leq s \leq b$, which is equal to unity for $z_{1}-\eta \leq 8 \leq y_{1}+\eta_{1}$ and which is a linear function of s in the intervals $\left(s_{1}-\eta-\epsilon, s_{1}-\eta\right),\left(s_{1}+\eta, s_{1}+\eta+\epsilon\right)$, will be denoted by $\theta_{n}\left(s ; s_{1}\right)$. The values of the function in these latter intervals will be given by

$$
\frac{s-\left(\varepsilon_{1}-\eta-\epsilon\right)}{\epsilon}, \frac{\left(s_{1}+\eta+\epsilon\right)-\varepsilon}{\epsilon}
$$

respectively, and will evidently be positive numbers less than unity at interior pointe.
Consider now the values of the function

$$
\theta_{*, 0}\left(n ; s_{1}\right) \theta_{s, v}\left(t ; s_{1}\right)
$$

at the various points of the square $a \leq s \leq b, a \leq t \leq b$ of the (s, t) plane. In the accompanying figure this large square, which we shall denote by Q, is intersected by

[^2]two sets of four lines drawn parallel to the axes of s and t; these are the lines $t=s_{1} \pm \eta_{1} t=s_{1} \pm(\eta+\epsilon) ; z=s_{1} \pm \eta, s=s_{1} \pm(\eta+\epsilon)$ respectively, and they may be identified by ohserving that the number at the point where any one of them intersects an axis is the value of the corresponding variable which is constant along it. It will thus be seen that the square denoted by $q_{n 1}$ is bounded by the four lines

Fig. 1.
$s=s_{1} \pm \eta_{1} t=s_{1} \pm \eta$; while the area d_{11}, which is shaded in the figure, and which will be referred to as the border of q_{t}, is the part of the square bounded by $s=s_{1} \pm(\eta+\epsilon)$, $t=s_{1} \pm(\eta+e)$ exterior to η_{11}. A little reflection will show that, at points of Q which do not belong either to q_{n} or to d_{n}, one or other of the functions $\theta_{6 n}\left(s ; y_{1}\right), \theta_{6, v}(t ; s)$ is zero; that, at points of q_{n}, each of these functions is unity ; and, finally, that in d_{n} neither function exceeds unity. It follows then that

$$
\begin{aligned}
\theta_{\mathrm{s}, \mathrm{r}}\left(s ; s_{1}\right) \theta_{\mathrm{s}, \mathrm{~s}}\left(t ; s_{1}\right) & =1 \text { in } q_{\mu t} \\
& \leq 1 \text { in } d_{3 n} \\
& =0 \text { elsewhere. }
\end{aligned}
$$

§6. The integral

$$
\int_{a}^{b} \int_{a}^{a} \kappa(s, t) \theta_{b, v}\left(s ; s_{1}\right) \theta_{\alpha,}\left(t ; s_{1}\right) d s d t
$$

may be looked upon as $\int \kappa(s, t) \theta_{6, \eta}\left(s ; s_{1}\right) \theta_{6, n}\left(t ; x_{1}\right)(d x d t)$ taken over Q, or, is it is usually written,*

$$
\int_{Q} \kappa(s ; t) \theta_{s_{,},}\left(s ; s_{1}\right) \theta_{\theta_{1}, t}\left(t ; s_{1}\right)(d s d t) ;
$$

and, from what has been said in the preceding paragraph, that portion of the latter which arises from the part of Q exterior to d_{11} is zero, while that arising from q_{11} is simply

$$
\int_{0_{11}} \kappa(x, t)(d x d t)
$$

We have, therefore,

$$
\begin{align*}
\int_{\pi}^{t} \int_{a}^{1} \kappa(s, t) & \theta_{6, v}\left(s ; s_{1}\right) \theta_{n, v}\left(t ; s_{1}\right) d s d t \\
& =\int_{n_{1}} \kappa(s, t)(d s d t)+\int_{v_{11}} \kappa(s, t) \theta_{6, n}\left(s ; s_{1}\right) \theta_{6, n}\left(t ; s_{1}\right)(d s d t) \ldots . \tag{2}
\end{align*}
$$

Again the total area of d_{11} is $4 \epsilon(2 \eta+\epsilon)$, and so, it M is the maximum value of $|\kappa(s, t)|$ in Q, we have

$$
\left|\int_{d_{13}} k(s, t) \theta_{6,}\left(s ; s_{1}\right) \theta_{c, n}\left(t ; s_{1}\right)(d s d t)\right| \leq 4 c(2 \eta+\epsilon) \mathrm{M} ;
$$

also the remaining integral on the right-hand side of (2) can be replaced by
which is evidently equal to

$$
\int_{-1}^{v} \int_{-1}^{4} \kappa\left(s_{1}+u_{x} s_{1}+v\right) d u d v
$$

Thus it follows from (2) that

$$
\begin{equation*}
\left|\int_{a}^{b} \int_{a}^{b} \kappa(s, t) \theta_{\omega, n}\left(s ; s_{1}\right) \theta_{\sigma, n}\left(t ; s_{1}\right) d s d t-\int_{-a}^{u} \int_{-\infty}^{1} \kappa\left(s_{1}+u, s_{1}+v\right) d u d v\right| \leq 4 \epsilon(2 \eta+\epsilon) \mathrm{M} . \tag{3}
\end{equation*}
$$

Now let us suppose it possible for $\kappa\left(y_{1}, y_{1}\right)$ to have a-negative value, say $-a$; then, because $\kappa(s, t)$ is continuous, we can choose a value of η so small that

$$
\kappa\left(s_{1}+u, s_{1}+v\right)<-\frac{1}{2} u,
$$

for all values of u and v whose moduli are not greater than η. Wo shall therefore have

$$
-\int_{-\pi}^{1} \int_{-0}^{\pi} \kappa\left(s_{1}+v, s_{1}+v\right) d u d v>2 \eta^{2} a
$$

Recalling our hypothesis that $\kappa(s, t)$ is of positive type, it follows from this and (3) that

$$
\eta^{2} a \leq 2 \epsilon(2 \eta+\epsilon) \mathrm{M}
$$

+ cy. Hobson, + The Theory of Functions of a Real Variable' (1907), p. 416.
for all valnes of ε which are less than a certain positive number ($\$ 5$). But this is evidently impossible, because, when e tends to zero, the right-hand side tends to zero, and we arrive at the contradiction that a fixed pasitive quantity (viz, $\eta^{3}(0)$ is less than, or equal to, zero.

We conclude that $\kappa\left(s_{1}, s_{1}\right)$ eannot be negative when s_{1} lies in the open interval (α, b); and hence, since $\kappa(s, s)$ is continuous in the same interval when regarded as closed, we have the result that every function $\kappa(s, t)$ uhich is of positive type in the square $a \leq s \leq b, a \leq t \leq b$ satisfies the inrquality

$$
\kappa\left(s_{1}, s_{1}\right) \geq 0^{*} \quad\left(a \leq s_{1} \leq b\right) .
$$

\$7. This is a first condition which must be satisfied by these functions, and we may obtain a second on similar lines. Let x_{1} and x_{2} be any two distinct points of the open interval (a, b), and, as before, let e and η be two positive numbers; the latter will now be supposed so small that the intervals $\left[s_{1}-(\eta+c), s_{1}+(\eta+\epsilon)\right],\left[s_{2}-(\eta+\epsilon), s_{2}+(\eta+\epsilon)\right]$ are both contained within (a, b) and do not overlap. We now propose to consider the values of the finction

$$
\left[x_{1} \theta_{\theta_{i},}\left(s ; s_{1}\right)+x_{2} \theta_{c_{1}}\left(s ; s_{2}\right)\right]\left[x_{1} \theta_{c_{1},}\left(\ell ; s_{1}\right)+x_{2} \theta_{0, \pi}\left(t ; s_{3}\right)\right]
$$

at points interior to Q, when x_{1} and x_{2} are any real constants. For this purpose we may make use of a diagram (fig. 2) which is an obvions extension of the one employed in the previous paragraph. The square Q is divided in this case not by eight, but by sixteen lines, viz, those whose equations are $s=s, \pm \eta, s=s_{2} \pm(\eta+\epsilon) ; t=s_{n} \pm \eta, t=s_{n} \pm(\eta+\epsilon)$ ($\alpha, \beta=1,2$). By giving α and β all possible values in the equations just written, it will be seen that we obtain four sets of eight, for each of which we can distinguish a square q_{a} bounded by the lines $s=s_{0} \pm \eta, t=s_{n} \pm \eta$; moreover, these squares will evidently have borders $d_{n s}$ of width ϵ It is not difficult to see that, in those parts of Q which are exterior to the borders $d_{a}(\alpha, \beta=1,2)$, we have either

$$
\theta_{\varepsilon, y}\left(s ; s_{1}\right)=\theta_{\varepsilon, n}\left(s ; s_{2}\right)=0,
$$

or

$$
\theta_{c_{21}}\left(t ; s_{1}\right)=\theta_{t_{i n}}\left(t ; s_{2}\right)=0 ; \dagger
$$

that in the square q_{a} we have

$$
\begin{aligned}
& \theta_{c, 4}(s ; s)=\theta_{c_{-v}}\left(t ; s_{n}\right)=1, \\
& \theta_{\text {an }}\left(s ; s_{2-n}\right)=\theta_{a, q}\left(l ; s_{s-o}\right)=0 ;
\end{aligned}
$$

[^3]and that in the border $d_{a p}$ the last pair of equations still hold, but $\theta_{4, \theta}(x ; s), \theta_{6,}\left(t ; s_{a}\right)$ are each less than, or equal to, unity. From this it appears that the function
\[

$$
\begin{aligned}
{\left[x_{1} \theta_{2,}\left(s ; s_{1}\right)+x_{2} \theta_{c_{i},}\left(s ; s_{2}\right)\right]\left[x_{1} \theta_{2, s}\left(\ell ; s_{1}\right)+c_{2} \theta_{t, n}\left(\ell ; s_{y}\right)\right] } & =x_{1} x_{\beta} \text { in } \eta_{n p}(\alpha, \beta=1,2), \\
& =0 \text { outside the botders } d_{a, s}
\end{aligned}
$$
\]

and that in the border d_{∞} its modulus is $\leq\left|x_{N} x_{A}\right|$.

Fig. 2.
§8, Let us now write

$$
\theta(s)=x_{1} \theta_{\infty, ~}\left(s ; x_{1}\right)+x_{2} \theta_{2+1}\left(s ; x_{2}\right),
$$

for the sake of brevity. It followe from the remarks of the preceding paragraph that

$$
\begin{align*}
\int_{a}^{s} \int_{=}^{n} \kappa(s, t) \theta(s) \theta(t) d s d t & =\sum_{s=1}^{n} \sum_{i=1}^{n} x_{\lambda s} x_{s} \int_{v_{k}} k(s, t)(d s d t) \\
& +\sum_{s=1}^{3} \sum_{s=1}^{2} \int_{u=1} \kappa(s, t) \theta(s) \theta(t)(d s d t) . \tag{4}
\end{align*}
$$

Now the aren of each of the borders $d_{4 i}$ is $4 e(2 \eta+\epsilon)$, and so we have

$$
\left|\sum_{i=1}^{\sum} \sum_{k=1}^{\sum} \int_{\alpha_{N n}} \kappa(s, t) \theta(s) \theta(t)(d s d t)\right| \leq 4 \varepsilon(2 \eta+\epsilon)\left(\left|x_{1}\right|+\left|i_{2}\right|\right)^{2} \mathrm{M} ;
$$ moreover, it is easily proved that, in virtue of the symmetry of $k(x, t)$,

$$
\sum_{a=1}^{2} \sum_{\beta=1}^{2} x_{a} x_{p} \int_{\gamma_{a \beta}} \kappa(s, t)(d s d t)
$$

can be written as

$$
\begin{equation*}
\int_{-v}^{T} \int_{-1}^{0}\left[x_{1}{ }^{2} \kappa\left(s_{1}+v_{1} s_{1}+v\right)+2 r_{1} x_{2} \kappa\left(s_{1}+v_{1} s_{2}+v\right)+x_{2}^{2} \kappa\left(s_{2}+u_{1} s_{2}+v\right)\right] d u d v_{1} . \tag{5}
\end{equation*}
$$

From this and the equation (4) we finally obtain the inequality

$$
\left|\int_{a}^{\infty} \int_{\pi}^{t} \kappa(x, t) \theta(s) \theta(t) d s d t-\int_{-1}^{1} \int_{-1}^{\varphi} \mathrm{F}_{2}(u, v) d u d v\right| \leq 4 \epsilon(2 \eta+\epsilon)\left(\left|x_{1}\right|+\left|x_{2}\right|\right)^{v} \mathrm{M}
$$

where $F_{2}(w, v)$ is the integrand of (5).
The function $F_{2}(u, v)$ is, of course, dependent on the real constants x_{1} and x_{2}; let us suppose it possible to choose them in such a way that

$$
\mathrm{F}_{2}(0,0)=x_{1}^{3} k\left(s_{1}, s_{2}\right)+2 x_{1}, x_{2} k\left(s_{1}, s_{2}\right)+x_{2}^{2} \kappa\left(s_{2}, s_{2}\right)
$$

takes a negative value, say $-\alpha$. Owing to the fact that $\kappa(s, c)$ is continuous, it is then clear that we can chose η so small that

$$
F_{2}(u, v)<-\frac{1}{2} a,
$$

for $|u| \leq \eta,|v| \leq \eta$. From this we deduce the inequality

$$
\eta^{2} a \leq 2 \epsilon(2 \eta+\epsilon)\left(\left|x_{1}\right|+\left|x_{2}\right|\right)^{2} \mathrm{M}_{1}
$$

as in the corresponding place in $\S 6$; and hence, as this is impossible for sufficiently small values of ϵ, it follows that, when s_{1} and s_{2} lie in the open interval (a, b), and x_{1} and x_{2} are real, $\mathrm{F}_{2}(0,0)$ is not neigative. Accordingly, since $\kappa(s, t)$ is continnous, it is easily seen that every fonction $\kappa(s, t)$ which is of positive type in the square $a \leq s \leq b$, $a \leq t \leq b$ is such that, when x_{1} and x_{2} are any real numbers,

$$
x_{1}^{3} k\left(s_{1}, s_{1}\right)+2 x_{1} x_{2} k\left(s_{1}, s_{2}\right)+x_{2}^{2} k\left(s_{2}, s_{2}\right) \geq 0\binom{a \leq s_{1} \leq b}{a \leq s_{2} \leq b} .
$$

§9. The reader will now be prepared for a general theorem of which those already considered are particular cases. After having been through the latter in detail it will be sufficient to sketch the general proof:

Take any n distinet point $s_{1}, s_{2} \ldots, s_{n}$ in the open interval (a, b), and suppose that e and η are so small that the intervals $\left[s_{\varepsilon}-(\eta+\varepsilon), s_{\alpha}+(\eta+e)\right](\alpha=1,2, \ldots, n)$ form a non-overlapping set contained within (a, b). Now let

$$
\theta(s)=\sum_{x=1}^{\sum \sum} x_{\mathrm{s}} \theta_{\mathrm{e}, 9}\left(s ; s_{\mathrm{a}}\right),
$$

where $x_{1}, x_{2}, \ldots, x_{4}$ are any real constants; and consider the values of the function $\theta(s) \theta(t)$ in Q . It will be seen on consideration that in this general ease Q must be regarded as divided by $8 n$ lines, and that there are n^{2} squares $q_{\text {ub }}$ each having a border $d_{a \beta}(a, \beta=1,2, \ldots, n)$. It will also be seen that

$$
\begin{aligned}
\theta(s) \theta(t) & =x_{\alpha} x_{n} \text { in } q_{n}(\alpha, \beta=1,2, \ldots, n), \\
& =0 \text { outside the borders } d_{a, p}
\end{aligned}
$$

and that in the border $d_{n a}$ we have

$$
|\theta(s) \theta(t)| \leq\left|x_{n} x_{\theta}\right|
$$

Proceeding then as in the case $n=2$, we obtain the inequality

$$
\left|\int_{n}^{b} \int_{a}^{n} x(x, t) \theta(x) \theta(t) d s d t-\int_{-=}^{n} \int_{-=}^{t} \mathrm{~F}_{n}(u, r) d u d x\right| \leq 4 \varepsilon(2 \eta+e)\left(\sum_{n}^{n} \mid x_{n}\right)^{2} \mathrm{M}_{1}
$$

where

$$
\begin{aligned}
F_{n}(v, r)=x_{1}^{2} \kappa\left(s_{1}+v_{1} s_{1}+v\right)+x_{2}^{2} \kappa\left(s_{2}+v_{1} s_{2}+v\right) & +\ldots+x_{n}^{2} \kappa\left(s_{2}+v v_{1} s_{0}+r\right) \\
& +2 x_{1} x_{2} \kappa\left(s_{1}+v_{1} s_{2}+v\right)+\ldots ;
\end{aligned}
$$

and bence we establish that $\mathrm{F}_{\mathrm{n}}(0,0)$ is alwnys ≥ 0. Eventually we obtain tho general theorem:-

Every function $k(s, t)$ which is of pasitive type in the square $a \leq s \leq b, a \leq t \leq b$ must be such that, whem $s_{1}, \delta_{p}, \ldots, s_{n}$, wre any prints of the dosed interval (a, b), we have

$$
x_{1}^{y} k\left(s_{1}, x_{1}\right)+x_{2}^{x} k\left(s_{2}, x_{2}\right)+\ldots+x_{2}^{3} k\left(s_{2 \pi}, s_{n}\right)+2 x_{1} x_{2} k\left(s_{2}, s_{2}\right)+\ldots \geq 0,
$$

for all real ivelues of $x_{1}, x_{2}, \ldots, x_{n}$.
§10. In accordance with the notation employed by Fremnor.m, let

$$
\kappa\binom{s_{1}, s_{2}, \ldots, s_{n}}{s_{1}, s_{2}, \ldots, s_{4}}=\left|\begin{array}{ccc}
\kappa\left(s_{1}, s_{1}\right) \kappa\left(s_{1}, s_{2}\right) \ldots \kappa\left(s_{1}, s_{2}\right) \\
\kappa\left(s_{2}, s_{1}\right) & \kappa\left(s_{2}, s_{2}\right) \ldots \kappa\left(s_{2}, s_{2}\right) \\
\vdots & \vdots & + \\
\vdots & \vdots & \vdots \\
\vdots\left(s_{*}, s_{1}\right) & \kappa\left(s_{n}, s_{2}\right) \ldots \kappa\left(s_{n}, s_{n}\right)
\end{array}\right|
$$

Then, by the theory of quadratic forms, it is known that, in virtue of the imequality which has just been obtained, we must have*

$$
\kappa\left(\begin{array}{ll}
s_{1}, & s_{2}, \ldots, \tag{6}\\
x_{1}, & x_{2}, \ldots, \\
x_{n}
\end{array}\right) \geq 0 ;
$$

+ Vide Broswich, 'Quulfatie Forme and their Classification by meana of Invariant Facturn' (1906), pp. 19,20 .
voI. COIX.-A.
and this is true independently of the number of points, $s_{1}, s_{2}, \ldots, s_{4}$, and their situation in the interval (a, b).

Conversely, by an appeal to the theory of integral equations, we may prove that any continuons symmetrie function $\kappa(s, t)$ defined in Q, which satisfies this condition, is of positive type. For it will be remembered that, according to Feerroom's theory,* the singular values of the equation

$$
\begin{equation*}
f(s)=\phi(s)-\lambda \int_{n}^{x} x(s, t) \phi(t) d t . \tag{7}
\end{equation*}
$$

are the zeros of the integral function

$$
\begin{aligned}
& D(\lambda)=1-\lambda \int_{a}^{2} \kappa\left(n_{1}, s_{1}\right) d s_{1}+\frac{\lambda^{3}}{2!} \int_{a}^{s} \int_{a}^{s} \kappa\binom{s_{1}, s_{2}}{s_{1}, s_{2}} d s_{1} d s_{1} \ldots \\
&+\frac{(-\lambda)^{n}}{n!} \int_{a}^{b} \ldots \int_{a}^{b} \int_{a}^{b} \kappa\binom{s_{1}, s_{2}, \ldots, s_{0}}{s_{1}, x_{2}, \ldots, s_{n}} d s_{1} d s_{2} \ldots d s_{n}+\ldots
\end{aligned}
$$

Applying our hypothesis that (6) holds for all values of $s_{y}, s_{y_{1}}, \ldots, s_{x}$ it appeare that the coefficient of $\frac{(-\lambda)^{n}}{n!}$ in the series on the right cannot be negative; moreover, Himberer has proved that every continuous symmetric function has its singular values all real. It follows, therefore, that, if λ_{r} is any one of the zeros of $D(\lambda)$, we shull have

$$
\begin{aligned}
& \lambda_{r}\left[\int_{a}^{b} \kappa\left(s_{1}, s_{1}\right) d s_{3}+\frac{\lambda_{r}^{y}}{3!} \int_{a}^{n} \int_{0}^{1} \int_{a}^{b} \kappa\binom{s_{1}, s_{2}, s_{3}}{s_{1}, s_{2}, s_{3}} d s_{s} d s_{2} d s_{3}+\ldots\right. \\
& \left.+\frac{\lambda_{r}^{2 n}}{2 n+1!} \int_{0}^{b} \ldots \int_{\alpha}^{n} \int_{a}^{b} \kappa\binom{s_{2}, s_{2}, \ldots, s_{2 n+1}}{s_{1}, s_{2}, \ldots, s_{2 k+1}} d s_{1} d s_{2} \ldots d s_{2 n+1}+\ldots\right] \\
& =1+\frac{\lambda_{0}^{2}}{2} \int_{a}^{n} \int_{a}^{n} \kappa\binom{s_{1}, s_{2}}{s_{1}, s_{2}} d s_{1} d s_{2}+\ldots+\frac{\lambda_{0}^{2 n}}{2 n 1} \int_{a}^{b} \ldots \int_{a}^{n} \int_{a}^{b} \kappa\binom{s_{1}, s_{1} \ldots, s_{s}}{s_{12}, s_{21} \ldots, s_{2 n}} d s_{1} d s_{y_{2}} \ldots d s_{s_{2 n}} \\
& +\ldots,
\end{aligned}
$$

where the series in the square brackets on the left is not negative and that on the right is positive; and hence, that λ_{r} must be positive. Since we have seen that, for $\kappa(s, t)$ to be of positive type, it is sufficient that all the singular values of (7) should be positive, we may now state the following theorem :-

In order that a continuous symmetrie function $\kappa(s, t)$ defined in the square $a \leq s \leq b, a \leq t \leq b$ may be of positive type, it is mecssary and sufficient that the functions

$$
\begin{equation*}
\kappa\left(s_{1}, s_{1}\right), \kappa\binom{s_{1}, s_{2}}{s_{1}, s_{2}}, \ldots \ldots \kappa\binom{s_{1}, s_{2}, \ldots, s_{n}}{s_{1}, s_{2}, \ldots, s_{n}}, \ldots \ldots \tag{8}
\end{equation*}
$$

shomld never take negative values when the variables $s_{1}, s_{2}, \ldots, s_{n}$. . ewoh range over the closed interval (a, b).

It may be remarked that, as a conollary of this theorem, we have the notable fact that, if any continuous symmetric function is such that the integrals

$$
\int_{\omega}^{b} \kappa\left(s_{1}, s_{1}\right) d s_{1} \int_{*}^{b} \int_{n}^{b} \kappa\binom{s_{1}, s_{2}}{s_{1}, s_{2}} d s_{1} d s_{2}, \ldots, \int_{n}^{b} \ldots \int_{n}^{b} \int_{a}^{b} \kappa\binom{s_{1}, s_{2}, \ldots, s_{n}}{s_{s}, s_{2}, \ldots, s_{n}} d s_{1} d s_{2} \ldots d s_{n}, \ldots
$$

are none of them negative, then the functions (8) have the same property.
§11. The properties of the determinants (8) may be used to obtain some idea of the nature of functions of positive type, Let us suppose, in the first place, that there is ${ }^{\text {a }}$ point $\left(\alpha_{3}, a_{1}\right)$ belonging to Q at which one of these functions $\kappa(s, t)$ vanishes. The determinant $\kappa\left(\begin{array}{l}s_{,}, a_{1} \\ s_{1}, \\ a_{1}\end{array}\right)$ evidently meduces to $-\left[\kappa\left(\varepsilon_{1}, a_{2}\right)\right]$; hence, because it ean never be negative,

$$
\kappa\left(s, \alpha_{i}\right)=\kappa\left(\alpha_{1}, n\right)=0 .
$$

In other words, if we draw the square Q and the diagonal $s=t$, the existence of a point $\left(\sigma_{2}, a_{3}\right)$ on this diagonal at which $\kappa(s, t)$ vanishes involves the fact that $\kappa(s, t)$ vanishes everywhere on the lines drawn through this point parallel to the axes of 8 and 1 . In particular, we deduce from this that a function $\kappa(s, t)$ which is of positive

Mone generally, let us suppose that there are pointe $a_{1}, a_{1}, \ldots, a_{n}$ of the interval (a, b) such that

$$
\kappa\left(\begin{array}{ll}
\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \tag{9}\\
\alpha_{1}, & \alpha_{2}, \ldots, \\
\hline
\end{array}\right)=0 .
$$

By considering the determinant whose elements are the first minors of the four elements belonging to the first two rows and columns of

$$
\kappa\left(\begin{array}{llll}
s, & a_{1}, & \alpha_{2} & \ldots, \tag{10}\\
s, & a_{n} \\
s, & a_{1}, & a_{2}, & \ldots, \\
a_{n}
\end{array}\right),
$$

we obtain the equation*

$$
\begin{aligned}
& \kappa\left(\begin{array}{llll}
8, & \alpha_{1}, & \alpha_{21}, \ldots, \alpha_{n} \\
*, & a_{1}, & a_{2}, \ldots, & \alpha_{n}
\end{array}\right) \kappa\left(\begin{array}{llll}
\alpha_{2}, & a_{3}, \ldots, a_{n} \\
a_{2}, & a_{32}, \ldots, & a_{n}
\end{array}\right) \\
& =\kappa\left(\begin{array}{ll}
s, & a_{2}, \ldots, \\
s_{1}, & a_{2}, \ldots, \\
\varepsilon_{n}
\end{array}\right) \kappa\left(\begin{array}{lll}
a_{1}, & a_{2}, \ldots, & a_{n} \\
a_{1}, & a_{2}, \ldots, & a_{n}
\end{array}\right)-\left[\kappa\left(\begin{array}{ccc}
s, & a_{2}, \ldots, & a_{n} \\
a_{2}, & a_{2}, \ldots, & a_{n}
\end{array}\right)\right]^{*},
\end{aligned}
$$

Recalling that the first term on the right vanishes in virtue of our hypothesis, and that neither of the terms in the product on the left can be negative, it is clear that we have

$$
\kappa\left(\begin{array}{lll}
3, & a_{2}, \ldots, a_{n} \\
a_{2}, & a_{2}, \ldots, & a_{n}
\end{array}\right)=0
$$

[^4]at ench point of the interval (a, b); and it can be proved in a similar way that the remainder of the functions
\[

$$
\begin{equation*}
\kappa\binom{a_{1}, a_{1}, \ldots, a_{r-1}, z_{5}, a_{r+1}, \ldots, a_{n}}{a_{1+}, a_{2}, \ldots, a_{n-1}, a_{n}, a_{c+1}, \ldots, n_{n}}(r=1,2, \ldots, n) . \tag{11}
\end{equation*}
$$

\]

have the same property.
Again, because the determinant (9) and the functions (11) all vanish, it is easily seen that the function (10) vanishes identically. Acoordingly, if any one of the functions (8) vanishes for all values of the variables, so must all those which follow it. It appears, therefore, that, when $\kappa(x, t)$ is of positive type, the determinant of the integral equation (7) is either an infinite power series in λ whose coefficients are alternately positive and negative numbers, or else it is a polynomial whose coetficients ohey the same law,

Another property which is worth noticing is that, if L is the upper limit of the function $\kappa(s, s)$ in the interval (a, b), then

$$
-\mathrm{I} \leq \kappa(s, t) \leq \mathrm{L},
$$

in the whole of the square Q. This follows immediately from the fact that, since

$$
\kappa\binom{s, t}{s, t} \geq 0,
$$

we have

$$
\mathrm{L}^{y} \geq \kappa(s, x) \kappa(t, t) \geq[\kappa(s, t)]^{2} .
$$

§12. We have so far confined ourselves to the consideration of functions of positive type, but the reader will easily perceive that the results obtained for these functions may be made applicable to those of negative type by a simple device. In fact, if $\kappa(x, t)$ is of negative type in the square Q, and we suppose that

$$
\kappa^{\prime}(s, t)=-\kappa(s, t),
$$

it is evident that $\kappa^{\prime}(s, t)$ is of positive type in Q. Applying then what we have said sbout functions of positive type to $\kappa^{\prime}(s, t)$, we may deduce the analogous properties of $\kappa(s, t)$; for instance, the necessory and sufficient condition that α vontinuous symmetrie fanction $\kappa(s, t)$ defined in the square $a \leq s \leq b, a \leq t \leq 4$ may bs of negative type is that the functions

$$
-\kappa\left(s_{1}, s_{1}\right), \kappa\left(\begin{array}{l}
x_{1}, x_{2} \\
x_{1},
\end{array} x_{2}\right), \ldots,(-1)^{\kappa} \kappa\left(\begin{array}{lll}
s_{5}, & x_{2}, & \ldots, \\
x_{2}, & s_{2} & \ldots, \\
s_{n} & , & x_{n}
\end{array}\right), \ldots,
$$

should never be negative when the vervialles $s_{1}, s_{2}, \ldots, s_{n} \ldots$ each nange oner the closed intemal (a, b).

We may remark that this result and that of $\S 10$ prove the classes of functions of
pusitive and negative types to be mutually exclusive, save for the trivial case when $\kappa(s, t)$ vanishes everywhere. For, if $\kappa(s, t)$ belongs to both classes, we must have

$$
\kappa\left(s_{1}, s_{1}\right) \geq 0, \quad-\kappa\left(s_{1}, s_{1}\right) \geq 0
$$

for all points of the interval (a, b); and hence $\times\left(s_{1}, s_{1}\right)$ must he zaro everywhere in this interval. It follows, then, from a remark made in $\S 11$, that $\kappa(s, t)$ is vero in the whole square Q.

Pabr III.-Cbrtain Funetiosa of Poatrive Tyte.

813. In the present section we propose to iuvestigate certain species of functions which are of positive type. The remark made at the end of the previous section $(\$ 12)$ will make it plain that there is no loss in thus limiting ourselves, since the corresponding results for fimetions of negative type may be at once deduced by the device there explained.

Let us again consider the square Q of the (s, t) plane which is bounded by the lines $*=a, s=b, t=\alpha, \iota=b$; and let us suppose that it is divided into two triangles by the diagomal whose equation is $s=t$. The most direct method of defining a continuous symmetric function in Q is, evidently, to define a continuons function in one of the triangles, say that in which $s \leq t$; and then to suppose this contimed into the remaining portion of the square by defining its value at a point for which $s>t$ to be that at ita image by reflection in the diagronal. For example, if $\theta(s)$ is a continuous function of s in the interval (a, b), and we define $\kappa(s, l)$ to be equal to $\theta(s)$ in the triangle $s \leq t$, then the continuation of this function into the triangle $s>t$ is evidently $\theta(t)$.

The theorem of $\$ 10$ may be applied to the fimetion we have just defined, and hence the condition that it should be of positive type deduced. Instead of doing this, however, we shall consider the more general function*

$$
\begin{aligned}
x(s, 1) & =\theta(s) \phi(t) \quad(x \leq t) \\
& =\phi(s) \theta(t) \quad(x \geq t),
\end{aligned}
$$

where $\theta(x)$ and $\phi(x)$ are hoth coutinuous in the interval (a, b). It will be remembered that functions of this kind oceur as Grers's functions of certnin linear differential equations of the second order, and that it is therefore of some intereat to know when they are of positive type. Accondingly we shall seek necessary and sufficient conditions which will ensure that this is so.
§14. In the first place, let us suppose that $\theta(s)$ and $\phi(s)$ are any continuous functions whatever; and let Σ bo the set of points belonging to (a, b) at which neither of them vanish. This set will evidently be dense in itself in virtue of the

[^5]continuity of the functions; but it cannot be closed, unless it contains every point of the interval. Moroover, it can be proved that α and β, its lower and upper limits respectively, do not belong to the set, unless they coincide with the end points of the interval.

At each point of the set Σ the quatient

$$
\theta(s) / \phi(s)
$$

will have a definite value, because $\phi(s)$ is never zero. We may therefore define a single-valued function $f(x)$, whose domain is Σ, and whose value at any point is that of this quotient. It will appear in the sequel that the properties of $\kappa(s, t)$ depend very largely on the nature of $f(s)$, and accordingly, in anticipation of this, we shall speak of it as the discriminator of $\kappa(s, t)$. The discriminator will evidently be continuous in its domain, but it will never have the value zero.
§ 15. Let us now suppose that $\kappa(s, t)$ is of positive type, and is not yero everywhere in the square Q. We have proved ($\$ 11$) that, under these circumstances, the function $\kappa\left(s_{1}, s_{1}\right)$, which in the present case is simply $\theta\left(s_{1}\right) \phi\left(s_{1}\right)$, cannot be zero in the whole of (α, b); also, at points where it does not vanish, we know that $\kappa\left(s_{1}, s_{1}\right)$ is positive ($\$ 56,10$). It follows that, for a function of positive type, the set $\mathbb{\Sigma}$ ecrtainly exists, and that in it the discriminator only takes positive values.

Again, when s_{1} and s_{2} are any two points of Σ, and $s_{2}>s_{1}$, we have

$$
\kappa\binom{s_{1}, s_{2}}{s_{1}, \varepsilon_{2}}=\left[\phi\left(s_{1}\right) \phi\left(s_{2}\right)\right] f\left(p_{1}\right)\left[f\left(s_{3}\right)-f\left(s_{1}\right)\right] ;
$$

hence, since $f\left(x_{1}\right)$ is a positive number, it follows by the theorem of $\$ 10$ that

$$
f\left(s_{2}\right) \geq f\left(\varepsilon_{1}\right) .
$$

This result mas be combined with the previous one in the statement that the discriminator of $\kappa(s, t)$ is a non-decreasing function whose values are all positive.

We have next to consider the points of (a, b) at which one or both of the functions $\theta(s), \phi(x)$ vanish. These fall natumally into three sets, according as they belong to (1) the elosed interval $(\alpha, \alpha),(2)$ the elosed interval (β, b), or (3) the open interval (α, β). As regards (1), it is not difficult to show that $\theta(s)$ vanishes in the whole interval. For, if α_{1} is any point of (a, α), one at least of the numbers $\theta\left(a_{1}\right), \phi\left(a_{1}\right)$ must be zero; and hence, since $\kappa\left(a_{2}, a_{1}\right)$ is zero, the function $\kappa\left(s, a_{1}\right)$ is zero at each point of $(a, b)(\$ 11)$.
Now when $s>a_{1}$ we have

$$
\kappa\left(s, a_{2}\right)=\theta\left(a_{1}\right) \phi(z),
$$

and, at points of $\Sigma, \phi(s)$ does not vanish; we must therefore have $\theta\left(\alpha_{3}\right)=0$. It can be proved in a similar manner that $\phi(s)$ vanishes everywhere in the interval (β, b).

Finally, we can show that, at points of the open interval (α, β) which do not belong to Σ, both $\theta(s)$ and $\phi(s)$ vanish. In fact, if a_{1} is any one of these points, there are
clearly points of Σ both on its right and on its left. The argument we have just employed will then establish that, by reason of the former, $\theta\left(a_{2}\right)$ is sero, and that, by reason of the latter, $\phi\left(a_{1}\right)$ is zero.
§16. Conversely, let us suppose that $\kappa(s, t)$ is defined in terms of continuous functions $\theta(s), \phi(s)$ which have the properties mentioned in the preceding paragnaph; and let us consider the function

$$
\kappa\left(\begin{array}{l}
s_{1}, s_{21}, \ldots, \tag{12}\\
s_{1}, s_{2}, \ldots, \\
s_{k}
\end{array}\right), \ldots . . .
$$

where $s_{1}, s_{2}, \ldots, s_{n}$ are varinbles each confined to the interval (a, b). We may remark that, as this function is symmetric, it will take all possible values in the domain $s_{1} \leq s_{2} \leq x_{3} \leq \ldots \leq s_{3}$. Thus, since we are only concerned with the sign of the function, we may alwnys suppose the variables to satisfy these inequalities. Firstly, let us suppose that one of the variables has a value not belonging to the domain of the discriminator of $\kappa(s, t)$. If such a value belongs to (a, a), the point s_{1} must evidently lie in this interval; bence, since

$$
\kappa\left(s_{1}, s_{r}\right)=\theta\left(s_{1}\right) \phi\left(s_{r}\right)(r=1,2, \ldots, n),
$$

and $\theta\left(s_{1}\right)$ vanishes by our hypothesis, it is evident that all the elements of the first row of (12) are zero. In a similar manner it may be proved that, when one of the variables has a value belonging to the interval (b, β), all the elements of the last row vanish. Again, if one of the variables, say ${x_{n}}_{\infty}$ has a value belonging to the open interval (α, β), but not to Σ, we shall have

$$
\theta\left(s_{m}\right)=\phi\left(s_{m}\right)=0
$$

by our hypothesis. It is thus easily seen that the elements of the $m^{\text {dh }}$ row of (12) all vanish. Summing up our results so fir, we conclude that the function (12) can only take values different from zero when the variables $s_{1}, s_{2}, \ldots, s_{n}$ are each confined to the set Σ.
§17. Let us next consider the case when the variables are restricted in this mamer. The finction (12), when expressed in terms of the functions θ and ϕ, is

$$
\begin{aligned}
& \left|\begin{array}{llll}
\theta\left(s_{1}\right) \phi\left(s_{1}\right), & \theta\left(s_{1}\right) \phi\left(s_{2}\right), \ldots, & \theta\left(s_{2}\right) \phi\left(s_{n}\right) \\
\theta\left(s_{3}\right) \phi\left(s_{2}\right), & \theta\left(s_{2}\right) \phi\left(s_{2}\right), \ldots, & \theta\left(s_{2}\right) \phi\left(s_{n}\right) \\
\theta\left(s_{1}\right) \phi\left(s_{3}\right), & \theta\left(s_{2}\right) \phi\left(s_{3}\right), \ldots, & \theta\left(s_{3}\right) \phi\left(s_{n}\right) \\
\cdot . . & . & \ldots, \ldots,
\end{array}\right|\left(s_{1} \leq s_{3} \leq \quad \leq s_{n}\right), \\
& \left|\begin{array}{cccc}
\cdots & \cdots & \cdots & \cdots \\
\theta\left(s_{1}\right) \phi\left(s_{n}\right), & \theta\left(s_{2}\right) \phi\left(s_{n}\right), \ldots, & \theta\left(s_{n}\right) \phi\left(s_{n}\right)
\end{array}\right|
\end{aligned}
$$

bence, by dividing through both the $r^{\text {th }}$ row and the $r^{\text {an }}$ column of this determinant by $\phi\left(s_{r}\right)(r=1,2, \ldots, n)$, its value is seen to be

The determinant just written can be evaluated without ditieulty, and thas we find that (12) is

$$
\left[\phi\left(s_{1}\right) \phi\left(s_{2}\right) \ldots \phi\left(x_{n}\right)\right]^{2} f\left(s_{1}\right)\left[f\left(x_{2}\right)-\hat{f}\left(s_{1}\right)\right]\left[f\left(s_{3}\right)-f\left(s_{2}\right)\right] \ldots\left[f\left(s_{n}\right)-f\left(s_{n-1}\right)\right] .
$$

Now, aceording to our bypothesis, $f\left(s_{1}\right)$ is positive and each of the factors $\left[f\left(s_{s}\right)-f\left(s_{z-1}\right)\right]$ is positive or zero. It follows, thom, that (12) cannot take negative values when the variables are each restricted to the sut Σ. Taking this in conjunction with what was said in the previous paragraph, we see that the functions

$$
\kappa\left(s_{1}, s_{2}\right), \kappa\binom{s_{1}, x_{2}}{s_{3}, x_{2}}, \ldots, \kappa\binom{s_{1}, s_{2}, \ldots, x_{n}}{s_{1}, s_{2}, \ldots, s_{n}}, \ldots
$$

can never take negative values, when the variables $s_{i}, s_{i}, \ldots, s_{k}, \ldots$ each range over the interval (a, b), and hence, by the theorem of $\S 10$, that $\kappa(s, l)$ is of positive type We may, therefore, state our resalts in the following theorem:-

If $\theta(s)$ and $\phi(s)$ are cuch continuous fiosetions defined in the interval (a, b), the nocessary and sufficient conditions theut the finnotions

$$
\begin{aligned}
\kappa(s, t) & =\theta(s) \phi(t) \quad \\
& (s \leq t) \\
& =\phi(s) \theta(t) \quad(s \geq t),
\end{aligned}
$$

should be of positive type are (1) that the discriminator of the funaction shondd be positire and non-leercesing is ite donucin Σ, and (2) that, if a and β are the lower and upper limits of $\Sigma, \theta(s)$ should be zero in the interval (α, α), $\phi(s)$ zero in the internal (β, b), and both $\theta(s)$ and $\phi(x)$ sero at points of the open intereal (α, β) which do not belong to $\mathbf{\Sigma}$.

As a corollary of this, by supposing that $\phi(s)=1(\alpha \leq s \leq b)$, the reader may deduce the corresponding conditions for the function defined in $\$ 13$.
§18. Let us now investigate under what circumstances a function $\kappa(s, t)$, which satisfies the conditions stated in the enunciation of the theorem of $\S 17$, is definite If the domain of its discriminator is not dense everywhere, it will be possible to find
an interval (c, d), lying within (a, b), such that at each of its points the fumction $\theta\left(s_{1}\right) \phi\left(s_{1}\right)$ is zero. We shall, therefore, have (\$ 11)

$$
\begin{array}{rlrl}
\kappa(s, t) & =0 \quad & (c \leq s \leq d, \quad a \leq t \leq b) \\
& =0 \quad(c \leq t \leq d, \quad a \leq s \leq b) ;
\end{array}
$$

in particular, $\kappa(s, t)$ will vanish everywhere in the square $e \leq s \leq d, c \leq t \leq d$, Now, if $\chi(s)$ is any contimuous funetion of $\&$ defined in the interval (a, b), which is sero in the intervals $a \leq x \leq c, d \leq x \leq b$, but does not vanish everywhere in (c, d), we shall have

$$
\begin{aligned}
\int_{a}^{t} \int_{a}^{t} \kappa(s, t) X(s) X(t) d s d t & =\int_{v}^{d} \int_{e}^{t} \kappa(s, t) X(s) \chi(t) d s d t \\
& =0
\end{aligned}
$$

by the propecties of $X(s)$ and $\kappa(s, t)$. It follows from this that, if $\kappa(s, t)$ is definite, the domain of its discriminator must be dense everywhere in (a, b).

Again, let us suppose that the discriminator of $\kappa(s, t)$ has a constant value p throughout a certain interval (c, d). It will then be seen that within the square $c \leq s \leq d, c \leq t \leq d$

$$
\kappa(x, t)=p \phi(s) \phi(t)
$$

and hence, if $\chi(s)$ is defined as before, that

$$
\int_{a}^{t} \int_{a}^{n} x(s, t) X(s) X(t) d s d t=p\left[\int_{0}^{a} \phi(s) X(s) d s\right]^{s}
$$

It may be proved without difficulty that there exists a function $\chi(s)$ which is not everywhere zero, and is such that

$$
\begin{equation*}
\int_{s}^{4} \phi(s) \times(s) d s=0 \tag{13}
\end{equation*}
$$

For, let $\chi_{1}(s)$ and $\chi_{2}(s)$ be any two functions which are not mere multiples of one another, and which satisfy the conditions imposed on $\chi(s)$. Then, if either of the integrals

$$
\int_{c}^{d} \phi(s) X_{1}(s) d s, \quad \int_{c}^{s} \phi(s) X_{2}(s) d s
$$

is zero, we shall have an obvious solution of (13). On the other hand, if their respective values μ_{1}, μ_{2} be different from zeco, it is easily seen that

$$
\chi(s)=\frac{\chi_{1}(z)}{\mu_{1}}-\frac{\chi_{2}(s)}{\mu_{z}}
$$

satisfies (13) ; and, in virtue of our hypothesis, $\chi(s)$ is not zero everywhere in (a, b). We conclude, therefore, that we can always find a function $\chi(s)$ which is such that

$$
\int_{a}^{h} \int_{a}^{+} x(s, t) \times(x) \times(t) d s d t=0
$$

vOI $\mathrm{OCIX}-\mathrm{A}$. 3 K

It thus appears that the discriminator of a definite function of positive type cannot be constant throughout any interval.
§19. Conversely, we may show that every function of positive type, whose discriminator (1) has a domain which is dense everywhere in (a, b), and (2) has not a constant value in the whole of any interval, is definite. For, if this were not so, we would be able to find a continuous function $\psi(8)$ other than zero, such that

$$
\int_{a}^{b} k(s, t) \psi(t) d t=0 \quad(a \leq s \leq b) . *
$$

Supplying in the value of $\kappa(s, t)$, this equation may be written

$$
\begin{equation*}
\phi(s) \int_{a}^{n} \theta(t) \psi(t) d t+\theta(s) \int_{s}^{s} \phi(t) \psi(t) d t=0 \quad(a \leq s \leq b) . . \tag{14}
\end{equation*}
$$

Now, as $\psi(s)$ is continuous, and is not gero everywhers, we can find an interval (c, d) of (a, b) within which it does not vanish; also, as the domain of the discriminator is dense everywhere, it will be possible to find a point, and, therefore, a whole interval (γ, δ), belonging both to (c, d) and the domain. The interval (γ, δ) will thus be such that in it the functions $\psi(s), \theta(x), \phi(s)$ do not vanish. It follows that in this interval the function of $\&$

$$
\begin{equation*}
\int_{0}^{b} \phi(t) \psi(t) d t \tag{15}
\end{equation*}
$$

has a derivative which does not vanish; and bence, by a well-known theorem of the differential calculus, that this function cannot be zero more than once in $(\gamma, 8)$. It is, therefore, evident that by contracting (γ, δ) sufficiently we can ensure for it the additional property that (15) vanishes at no point belonging to it.

Returning now to the equation (14), and supposing that s is confined to the interval (γ, δ), we see that

$$
f(s)=-\int_{a}^{t} \theta(t) \psi(t) d t / \int_{s}^{s} \phi(t) \psi(t) d t .
$$

Hence, since both the numerator and the denominator on the right are differentiable, and the latter does not vanish in (γ, δ), the function $f(x)$ is differentiable in this interval. In fact, by applying the ordinary rules, we obtain

$$
f^{\prime}(s)=0 \quad(\gamma \leq s \leq 8)
$$

But this is impossible, because by our hypothesis $f(s)$ cannot be constant in any interval. We conclude, therefore, that $\kappa(s, t)$ is a definite function.
§20. It may be remarked that the conditions (1) and (2) of the preceding paragraph may be stated in another and more convenient form. For, if a discrimi-
nator satisfyiug these conditions had the same value at two distinct points, it would necessarily have that value at all points of its dmmain which lie between them ($\$ 15$). Thus, since the condition (1) and the continuity of $\theta(s), \phi(s)$ ussure us of an interval of the domain which lies hetween these points, the condition (2) would be violated. Hence a discriminator of this kind must be a steadily increasing function; and, conversely, a steadily increasing discriminator satisfies (2). We may, therefore, combine the results of the two preceding paragraphs in the theorem:-

The necessary and sufficient condition, that a function $\kappa(s, t)$, satisfiging the requirements of the theorem of $\S 17$, should be definite, is that its discriminator should be a steadily increasing fimetion whose domain is dense everywhere in (a, b).

As an application of this theorem we may consider the function"

$$
\begin{aligned}
\kappa(s, t) & =(s-a)(b-t) \quad(s \leq t), \\
& =(t-a)(b-s) \quad(s \geq t) .
\end{aligned}
$$

The diseriminator bas the open interval (a, b) for its domain, and its value at any point is

$$
(s-a) /(b-s),
$$

which steadily increases with \& . It follows from $\S 17$ and the theorem just stated that $\kappa(x, t)$ is a definite function of positive type.
$\$ 21$. Leaving the particular class of functions with which we have been dealing, let us now suppose that $\kappa(\delta, t)$ is any function of positive type defined in the square $a \leq s \leq b, a \leq i \leq b$. Let $a_{2}, a_{2}, \ldots, a_{\mathrm{s}}$ be any m points of the interval (a, b) which are such that

$$
\left.\kappa\left(\begin{array}{l}
a_{1}, a_{2}, \ldots, a_{n} \\
a_{1}, a_{21}, \ldots, \\
\hline
\end{array}\right) \not a_{n}\right) \not \approx 0 .
$$

Then the tunction

$$
h(x, t)=\kappa\left(\begin{array}{l}
x_{1}, a_{1}, a_{2}, \ldots, a_{n} \\
\left\langle, a_{1}, a_{2}, \ldots,\right. \\
a_{n}
\end{array}\right) / \kappa\binom{a_{1}, a_{2}, \ldots, a_{n}}{a_{1}, a_{2}, \ldots,}
$$

will evidently be symmetric and continuous in the square $a \leq s \leq b, a \leq t \leq b$.
Again, when the function

$$
\kappa\left(\begin{array}{lll}
s_{1}, s_{2}, \ldots, s_{n} & a_{1}, a_{2}, \ldots, a_{n} \\
s_{1}, s_{n} & \ldots, & s_{n}, \\
a_{n}, & a_{2} & \ldots, \\
a_{n}
\end{array}\right)
$$

is expressed as a determinant, it is easy to see that the minor obtained by suppressing all but the $i^{\text {th }}$ of the first n rows and all but the $j^{\text {the }}$ of the first n columns is

- This is the generalised form of Huwixıt's chusical function, vide 'Göut Nache.,' p. 2277 (2904).

The determinant of n rows and columns, whose elements are these minots, will therefore be

$$
\left[\kappa\left(\begin{array}{ll}
a_{1}, a_{2}, \ldots, a_{n} \\
a_{1}, & a_{2}, \ldots, \\
\alpha_{1}
\end{array}\right)\right]^{n} h\left(\begin{array}{lll}
s_{1}, & s_{3}, \ldots, & s_{n} \\
s_{1}, & s_{n} & \ldots, \\
s_{n}
\end{array}\right) .
$$

But, by the theory of determinants, we also know that it is equal to*

$$
\left[\kappa\left(\begin{array}{llll}
a_{1}, & a_{2}, \ldots, & a_{m} \\
\alpha_{2} & a_{2}, \ldots, & a_{m}
\end{array}\right]^{n-1} \kappa\left(\begin{array}{llll}
s_{1}, s_{21}, \ldots, s_{n} & a_{1}, \ldots, a_{n} \\
s_{2}, s_{2 n} & \ldots, s_{n}, & a_{1}, \ldots, a_{n}
\end{array}\right) .\right.
$$

Thus, equating these two values, we find

$$
h\left(\begin{array}{l}
s_{1}, s_{2}, \ldots, s_{n} \tag{16}\\
s_{1}, \\
s_{2}, \ldots, \\
s_{k}
\end{array}\right)=\kappa\left(\begin{array}{llll}
s_{1}, s_{2}, \ldots, & s_{n}, \alpha_{1}, \ldots, & \alpha_{1} \\
s_{1}, & s_{21}, \ldots, & s_{2}, & \alpha_{1}, \ldots, \\
\alpha_{1}
\end{array}\right) / \kappa\left(\begin{array}{lll}
\alpha_{1}, & \alpha_{2}, \ldots, \alpha_{n} \\
\alpha_{1}, & \alpha_{2}, \ldots, & \alpha_{n}
\end{array}\right), \quad,
$$

Now, in virtue of our lypothesis that $\kappa(s, t)$ is of positive type, it follows from $\S 10$ that the quotient on the right-hand side of this equation has a denominator which is positive and a numerator which is not negative Hence we have

$$
h\binom{s_{1}, s_{2}, \ldots, s_{n}}{s_{1}, s_{2}, \ldots, s_{n}} \geq 0 ;
$$

and thus, as this is true for all values of n, the theorem of $\S 10$ shows that $h(x, t)$ is of positive type.
§22. In the light of this result, it appears that each function of positive type can be used to generate an infinite series of such functions. We might, therefore, expeet to obtain other species of functions of positive type by taking $\kappa(s, t)$ to be of the kind considered in $\$ 14-20$.

For simplicity, let us consider the function
where

$$
\left.h(s, t)=\kappa\binom{s_{1}, a_{1}}{t,} / \kappa\left(a_{1}\right) / a_{3}, a_{3}\right),
$$

$$
\kappa\left(a_{1}, a_{1}\right)=\theta\left(\alpha_{1}\right) \phi\left(a_{1}\right) \neq 0 .
$$

Confining our attention to the triangle $s \leq t$, it will be seen that the variables s and t ean be related to the constant α_{1} by either of the inequilities:-

$$
\begin{aligned}
& \text { (i) } \quad s \leq t \leq u_{1}, \\
& \text { (ii) } s \leq \alpha_{1} \leq t, \\
& \text { (iii) } \alpha_{1} \leq s \leq t .
\end{aligned}
$$

The reader may find it convenient to refer to the accoupanying diagram, in which

[^6]the square $a \leq s \leq b, a \leq t \leq b$ is drawn, and the portion of the triangle $x \leq t$ which corresponds to each set of inequalities is marked with its number.

Fig. 3.
By expressing $h(s, t)$ in terms of the functions θ and ϕ, it is easily seen that at each point of the region (i)

$$
h(x, t)=\phi\left(a_{1}\right) \theta(s)\left[\frac{\phi(t)}{\phi\left(a_{1}\right)}-\frac{\theta(t)}{\theta\left(a_{1}\right)}\right]
$$

that in (ii) $h(0, t)$ is everywhere noro, and that in (iii)

$$
\lambda(i, t)=\theta\left(a_{1}\right) \phi(t)\left[\frac{\theta(s)}{\theta\left(a_{3}\right)}-\frac{\phi(s)}{\phi\left(a_{1}\right)}\right]
$$

In a similar way, or by a mere interchange of the variables s and t, the values of $h(s, t)$ in the corresponding divisions of the triangle $s>t$ can be obtained.

Now, let $\theta_{1}(s), \phi_{1}(x)$ be continuors functions defined by

$$
\begin{array}{rlrl}
\theta_{1}(s) & =\phi\left(a_{1}\right) \theta(x) & & (a \leq s \leq b) \\
\phi_{1}(s) & =\frac{\phi(s)}{\phi\left(a_{1}\right)}-\frac{\theta(s)}{\theta\left(a_{1}\right)} & \left(a \leq s \leq a_{1}\right), \\
& =0 & & \left(a_{1} \leq s \leq b\right)
\end{array}
$$

also let $\theta_{y}(x), \phi_{2}(x)$ bee two others defined by

$$
\begin{array}{rlrl}
\theta_{2}(s) & =0 & & \left(a \leq s \leq a_{1}\right), \\
& =\frac{\theta(s)}{\theta\left(a_{1}\right)-\phi(s)} \phi\left(a_{1}\right) & \left(a_{1} \leq s \leq b\right) ; \\
\phi_{2}(s) & =\theta\left(a_{1}\right) \phi(s) & & (a \leq s \leq b) ;
\end{array}
$$

and, finally, let two fumetions $h_{e}(x, t)(r=1,9)$ be defined in the square $a \leq 8 \leq b$, $a \leq t \leq b$ by

$$
\begin{aligned}
h_{r}(x, t) & =\theta_{r}(s) \phi_{r}(t) \quad(s \leq t), \\
& =\phi_{,}(t) \theta_{r}(t) \quad(x \geq t) .
\end{aligned}
$$

On comparing these latter functions with $h(s, t)$, it will be seen that we have

$$
\begin{aligned}
h_{1}(n, t) & =h(s, t) \quad a \leq s \leq a_{i}, a \leq t \leq a_{k} \\
& =0 \text { elsewhere }
\end{aligned}
$$

and

$$
\begin{aligned}
h_{a}(s, t) & =h(s, t) \quad a_{1} \leq x \leq b, \quad a_{1} \leq t \leq b \\
& =0 \text { elsewhere. }
\end{aligned}
$$

It follows from this that we have

$$
h(s, t)=h_{1}(s, t)+h_{3}(s, t)
$$

at each point of the square in which these functions are defined. But it is easily seen that, as $\kappa(s, t)$ is of pesitive type, the fumetions h. (s, t) satisfy the requirements of the theorem enunciated in $\S 17$. Thus $h(s, t)$ is merely the sum of two functions of the same nature as $\kappa(s, t)$, and hence, as it is obvious \dot{d} priori that the sum of any number of functions of positive type is a function of positive type, it appears that we do not in this way obtain any new species of these functions

The reader may convince himself in a similar manner that the same conclusion holds in regard to the more general function considered in the preceding paragraph.
$\S 23$. Although the result of $\S 21$ proves to be so barren in this respect, it may be applied to olitain an interesting property of the symmetrical minors of the determinant of the integral equation

$$
\begin{equation*}
f(s)=\phi(s)-\lambda \int_{s}^{s} \kappa(s, t) \phi(t) d t, \tag{7}
\end{equation*}
$$

when $\kappa(s, C)$ is of positive type Adopting the notation and hypothesis of the paragraph referred to, let $\Delta(\lambda)$ be the determinant of the above integral equation when $h(s, t)$ replaces $\kappa(s, t)$. Then, since

$$
\begin{aligned}
\Delta(\lambda)=1-\lambda \int_{n}^{b} h\left(s_{1}, s_{1}\right) d s_{1} & +\frac{\lambda^{2}}{2!} \int_{n}^{b} \int_{a}^{b} h\binom{s_{1}, s_{2}}{s_{1}, s_{2}} d s_{1} d s_{2}-\ldots \\
& +\frac{(-\lambda)^{*}}{n!} \int_{0}^{b} \ldots \int_{a}^{h} \int_{a}^{b} h\binom{s_{1}, s_{2}, \ldots, s_{n}}{s_{1}, s_{2}, \ldots, s_{n}} d s_{1} d s_{2} \ldots d s_{2}+\ldots
\end{aligned}
$$

it is casily seen from (16) that

$$
\Delta(\lambda)=\mathrm{D}\left(\lambda ; \begin{array}{c}
\alpha_{1}, a_{2}, \ldots, \alpha_{n} \tag{17}\\
\alpha_{1}, a_{2}, \ldots, a_{n}
\end{array}\right) / \kappa\binom{a_{1}, a_{2,}, \ldots, a_{n}}{a_{1}, \alpha_{2}, \ldots, \alpha_{n}},
$$

where

$$
\mathrm{D}\left(\lambda ; \begin{array}{l}
a_{1}, a_{2}, \ldots, a_{n} \\
a_{3}, a_{2}, \ldots, a_{n}
\end{array}\right)=\kappa\binom{a_{1}, a_{2}, \ldots, a_{n}}{a_{2}, a_{2}, \ldots, a_{n}}-\lambda \int_{n}^{b} \kappa\binom{s_{1}, a_{1}, a_{21}, \ldots, a_{n}}{s_{1}, a_{1}, a_{2}, \ldots, a_{n}} d s_{1}+\ldots
$$

and is, therefore, a symmetrical $\mathrm{m}^{\text {th }}$ minor of $\mathrm{D}(\lambda)$, the determinant of (7), in accordance with Frednotm's definition. But, as we have shown that $h(n, t)$ is of positive
type, the function $\Delta(\lambda)$ has its zeros all real and positive. It follows, therefore, from (17) that all the zeros of the minor

$$
\mathrm{D}\left(\lambda ; \begin{array}{l}
a_{1}, a_{2}, \ldots, a_{\mathrm{m}} \\
a_{1}, a_{2}, \ldots, a_{\mathrm{m}}
\end{array}\right)
$$

nre real and pesitive. Since the minor must be identically zero if

$$
\kappa\left(\begin{array}{llll}
a_{1}, & a_{2}, & , \ldots, & \alpha_{m} \\
\alpha_{1}, & \alpha_{2} & \ldots, & \alpha_{m}
\end{array}\right)=0
$$

(cf. § 11), we hive thus proved the theorem:-
The seros of all symmetrioal minors of the determinant of an integral equation of the second kind, whose characteristic function is of positive type, are all real and positive

In particular, as $\mathrm{K}_{\mathrm{A}}(s, t)$, the solving function of (7), is defined by

$$
\mathrm{K}_{\lambda}(s, t)=\mathrm{D}(\lambda ; s, t) / \mathrm{D}(\lambda),
$$

where

$$
\mathrm{D}(\lambda ; s, t)=\kappa(s, t)-\lambda \int_{a}^{\kappa} \kappa\binom{s_{1}, s_{1}}{t, s_{1}} d s_{1}+\frac{\lambda^{n}}{2!} \int_{n}^{n} \int_{\alpha}^{n} \kappa\binom{s_{1}, s_{1}, s_{2}}{t, s_{3}, s_{2}} d s_{2} d s_{2}+\ldots .
$$

it appears that, when $s=t$, the solving function only vanishes for positive values of λ.

Part 1V.-The Expansion of Funcrions of Positive and Negative Type.

§24. It is to be remarked that Hilbmat and Schmme have been able to give very little information about the expansion of a given symmetric charactaristic function in a series of products of normal functions. Hwbent has indeed shown ineidentally that, if the number of singular values is finite,

$$
\begin{equation*}
\kappa(s, t)=\sum_{n=1} \frac{\psi_{n}(s) \psi_{n}(t)}{\lambda_{s}} ; \tag{18}
\end{equation*}
$$

and Schmivrt in his dissertation has established that this equation remains valid when the series on the right is uniformly convergent. The latter theorem is, of course, much wider than the former as regards its generality; but it his the defect that the uniform convergence, which it postalates, is not connected with any other of the properties of $\kappa(s, t)$. In the present section we shall attempt to pemedy this in some measure by proving that the equality (18) certainly holds when $\kappa(5, t)$ is of positive or negative type.

[^7]§25. In the paper referred to above, Scrmmor has proved that, if $\kappa(s, t)$ is any continuous symmetric function, the solution of
$$
f(s)=\phi(s)-\lambda \int_{s}^{s} \kappa(s, t) \phi(t) d t
$$
is given by
$$
\phi(s)=f(s)+\Sigma \frac{\lambda \psi_{n}(s)}{\lambda_{n}-\lambda} \int_{a}^{b} f(x) \psi_{n}(x) d x .
$$
provided that λ is not one of the singular values $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{w r} \ldots$; moneover, the convergence of the series on the right is both absolute and uniform. Now, when we take
$$
f(s)=\kappa(s, t),
$$
it is known that, in virtue of one of the characteristic relations,
$$
\phi(s)=K_{,}(s, t) .
$$

It follows, therefore, from the above expansion and the homogeneous equations

$$
\psi_{n}(t)=\lambda_{n} \int_{n}^{n} \dot{\psi}_{n}(x) \kappa(x, t) d x \quad(n=1,2, \ldots)
$$

that

$$
\begin{equation*}
K_{A}(s, t)=\kappa(s, t)+\underset{s=1}{\Sigma} \lambda_{\psi_{n}}(s) \psi_{n}(t) \text {. } \tag{19}
\end{equation*}
$$

It should be remarked that Scummi's theorem only allows us to nsaume that the series on the right of (19) is uniformly convergent with respect to $s(a \leq s \leq b)$, for each assigned value of t; and hence, by symmetry, that it is uniformly convergent with respect to $t(a \leq t \leq b)$, for ench asaigned value of s. When $\kappa(s, t)$ is of positive type, we may establish the uniform convergence of the series in the whole of the square $a \leq s \leq b, a \leq t \leq b$, as follows. If we write $t=s$ in (19), it is clear that the terms of the series on the right become functions of s, which, with the possible exception of a finite number, are all of the same sign as λ; accordingly, by Dinis theorem,, this series is uniformly convergent in the interval $a \leq s \leq b$. But, in virtue of the inequality

$$
2 \mid \psi_{n}(s) \psi_{n}(t) \leq \psi_{n}^{3}(s)+\psi_{n}^{3}(t) .
$$

the terms of the series on the right of (19) ate never greater in absolute value than those of

$$
\frac{1}{2} \leq \frac{\lambda\left[\psi_{n}^{3}(x)+\psi_{n}^{2}(t)\right]}{\lambda_{n}\left(\lambda_{n}-\lambda\right)} .
$$

[^8]Hence, as the latter converges uniformly for $a \leq 8 \leq b, a \leq 1 \leq b$ by what has just been said, the result follows,
§26. Let us denote the sum of the first m torms of the series on the right of (19) by $\mathrm{S}_{m}(\lambda ; s, t)$, and the remainder after these terms by $\mathrm{R}_{n}(\lambda ; s, t)$. We have
and hence, keeping m fixed,

$$
\begin{aligned}
& \operatorname{Lt}_{n}(\lambda ; s, t)=-\sum_{x=1}^{\sum_{n}} \frac{\psi_{s}(x) \psi_{n}(t)}{\lambda_{n}} \\
& \text { Le }_{2} S_{n}(\lambda ; x, t)=-\sum_{n=1}^{\sum} \frac{\psi_{n}(x) \psi_{n}(t)}{\lambda_{n}}
\end{aligned}
$$

Thus, sinee (19) can be written

$$
\mathrm{K}_{\lambda}(n, t)-\mathbf{R}_{n}(\lambda ; s, t)=\kappa(s, t)+\mathrm{S}_{n}\left(\lambda ; s_{t} t\right),
$$

we obtain the equations

$$
\begin{equation*}
\underset{\lambda=\infty}{\mathrm{L}}\left[\mathrm{~K}_{\lambda}(s, t)-\mathrm{R}_{w}(\lambda ; s, t)\right]=\mathrm{L}_{\lambda}\left[\mathrm{K}_{\lambda}(s, t)-\mathrm{R}_{n}(\lambda ; s, t)\right]=\kappa(s, l)-\sum_{n=1}^{\sum} \frac{\psi_{n}(x) \psi_{n}(t)}{\lambda_{n}} . \tag{20}
\end{equation*}
$$

This relation holds for any continuous fumction $\kappa(s, t)$, but we now add the further limitation that the function shall be of positive type. Then, since

$$
\mathrm{R}_{n}\left(\lambda ; \lambda_{1}, x\right)= \pm \frac{\lambda\left[\psi_{n}(s)\right]^{2}}{\lambda_{1}=n+1} \lambda_{0}\left(\lambda_{n}-\lambda\right)^{2},
$$

we shall bave

$$
\begin{equation*}
\mathbf{R}_{m}(\lambda ; \delta, x)<0, . \tag{21}
\end{equation*}
$$

for each negative value of λ.
Let us, in the next place, investigate the valnes of $\mathrm{K}_{\star}(x, s)$ for negative values of λ, it being supposed, as above, that $\kappa(s, t)$ is of positive type. If $\theta(x)$ is any continuous fuuction defined in the interval (a, b), it follows from (19) and the theorem proved at the end of the preceding parsgraph that
$\int_{n}^{t} \int_{1}^{h} \mathrm{~K}_{\lambda}(s, t) \theta(s) \theta(t) d s d t=\int_{a}^{t} \int_{0}^{t} k(s, t) \theta(s) \theta(t) d s d t+\sum_{\Delta=1}^{\sum} \frac{\lambda}{\lambda_{n}\left(\lambda_{-}-\lambda\right)}\left[\int_{0}^{t} \psi_{n}(s) \theta(z) d s\right]^{2}$,
Recalling Hmemer's theorem, it will be seen without difficulty that this reduces to

$$
\int_{a}^{b} \int_{a}^{t} \mathbf{K}_{\lambda}(s, t) \theta(s) \theta(t) d s d t=\sum_{\pi=1} \frac{1}{\lambda_{x}-\lambda}\left[\int_{a}^{b} \psi_{\Delta}(s) \theta(s) d s\right]^{2} .
$$

VOL COIX. $-\lambda$.

Now, when λ is negative, the terms of the series on the right must be either zero or positive. We conelude, therefore, that for all functions of the class Θ

$$
\int_{\mathrm{n}}^{\lambda} \int_{a}^{b} \mathrm{~K}_{\mathrm{A}}(s, t) \theta(s) \theta(t) d s d t \geq 0 \quad(\lambda<0) .
$$

In other words $\mathrm{K}_{1}(s, t)$ is of positive type for these values of λ. Applying, then, the theorem proved above ($\$ \S 6,10$), we see that

$$
\begin{equation*}
\mathrm{K}_{\perp}(s, s) \geq 0 \quad(a \leq s \leq b), \quad(\lambda<0) . \tag{22}
\end{equation*}
$$

§27. Returning to the formula (20) and writing $s=t$, we obtain

$$
\underset{n \rightarrow-\infty}{\operatorname{Lt}}\left[\mathrm{K}_{\lambda}(s, s)-\mathrm{R}_{m}(\lambda ; s, s)\right]=\kappa(s, s)-\sum_{x=1}^{\mathbb{E}} \frac{\left[\psi_{x}(s)\right]^{2}}{\lambda_{n}} .
$$

Accordingly, from (21) and (22), it follows that

$$
\begin{equation*}
\kappa(s, s)>\sum_{n=1}^{n} \frac{\left[\psi_{n}(s)\right]^{z}}{\lambda_{s}} . \tag{23}
\end{equation*}
$$

This is true, of course, for all values of m which are sufficiently great; and, further, when we increase m we only add positive terms to the right-hand side. By a wellknown theorem of the elementary theory of series, we thus see that

$$
\underset{n=1}{\leq} \frac{\left[\psi_{n}(s)\right]}{\lambda_{a}}
$$

converges for each value of s in the interval (a, b); and hence, since

$$
2\left|\psi_{m}(s) \psi_{m}(t)\right| \leq\left[\psi_{m}(s)\right]+\left[\psi_{n}(t)\right]^{2},
$$

that the series

$$
\sum_{k=1}^{\psi_{n}(s) \psi_{n}(t)} \lambda_{n}
$$

converges absolutely for each pair of values of the variahles satisfying the inequalities $a \leq s \leq b, a \leq t \leq b$. From this last result it follows that the function

$$
\begin{equation*}
f^{\prime}(s, t)=\kappa(s, t)-\sum_{k=1}^{\psi_{n}(s) \psi_{n}(t)} \frac{\lambda_{n}}{} \tag{24}
\end{equation*}
$$

has a definite finite value when the variables are restricted in the manner just mentioned. In the paragraphs which follow we shall consider the properties of $f(a, t)$, and eventually prove that it is everywhere zera. It may be remarked that the inequality (23) proves the relation

$$
0 \leq f(s, s) \leq \kappa(s, s) .
$$

§28. If ϵ is any arbitrarily assigned positive quantity, it follows from the absolute convergence of the series on the right of (24) that we can choose m great enough to ensure the inequality

$$
\begin{equation*}
\sum_{u=n+1} \frac{\left|\psi_{n}(s) \psi_{k}(t)\right|}{\lambda_{n}}<\frac{\epsilon}{3} . \tag{25}
\end{equation*}
$$

And, when this is done, it is easily seen that, since
we have

$$
\frac{\left|\psi_{m}(s) \psi_{n}(t)\right|}{\lambda_{2}}>\frac{\left|\lambda_{n} \psi_{n}(s) \psi_{n}(t)\right|}{\lambda_{n}\left(\lambda_{n}-\lambda\right)} \quad \begin{aligned}
& (n>m) \\
& (\lambda<0)
\end{aligned},
$$

$$
\left|\mathbb{R}_{m}(\lambda ; s, t)\right|<\frac{\epsilon}{3} \quad(\lambda<0)
$$

Again, from (20), we see that a negative number L ' can be chosen with so great an absolute value that, when $\lambda<\mathrm{L}^{\prime}$,

$$
\left|\mathbf{K}_{\lambda}(s, t)-\mathbf{R}_{n}(\lambda ; s, t)-\left[\kappa(s, t)-\sum_{*=1}^{\mathbb{~}} \psi_{n}(s) \psi_{n}(\vartheta)\right]\right|<\frac{\epsilon}{3} ;
$$

while, from (24) and (25), we deduce

$$
\left|\left[k(s, t)-\sum_{n=1}^{m} \frac{\psi_{n}(s) \psi_{s}(t)}{\lambda_{s}}\right]-f(s, t)\right|<\frac{\epsilon}{3} .
$$

Adding the three inequalities just written, we obtain

$$
\left|\mathbf{K}_{,}(s, t)-f(s, t)\right|<\epsilon \quad\left(\lambda<L^{\prime}\right)
$$

In other words, we have proved the theorem

$$
\underset{A t}{\mathrm{~L} t} \mathrm{~K}_{A}(s, t)=f(x, t) \quad(a \leq s \leq b, \alpha \leq t \leq b)
$$

§29. It may be proved ${ }^{*}$ that, if c is any constant and a_{1} any point of the interval (a, b), then the solving function corresponding to the characteristio function

$$
h(s, t)=\kappa(s, t)-\frac{\kappa\left(\alpha_{1}, s\right) \kappa\left(\alpha_{1}, t\right)}{v}
$$

is

$$
\begin{equation*}
\mathrm{H}_{\lambda}(s, t)=\mathrm{K}_{\lambda}(s, t)-\frac{\mathrm{K}_{\lambda}\left(a_{3}, s\right) \mathrm{K}_{\lambda}\left(a_{1}, t\right)}{c+\mathrm{K}_{i}\left(a_{1}, a_{2}\right)-\kappa\left(a_{1}, a_{1}\right)}, \tag{26}
\end{equation*}
$$

whilst the corresponding determinant is easily seen to be

$$
\Delta(\lambda)=\mathrm{D}(\lambda)\left[1+\frac{\mathrm{K}_{\lambda}\left(a_{1}, a_{3}\right)-\kappa\left(\alpha_{2}, a_{1}\right)}{c}\right]
$$

- Cf. Batemax, 'Messenger of Mathematice' (1908), p. 184. The resule in question followa from equations (24), (25), and (26), by writing $f(t)=\frac{\kappa\left(a_{1}, t\right)}{c}, g(t)=\kappa\left(a_{3}, t\right)$ and observing that $\phi(s)=\frac{K_{3}\left(a_{1}, s\right)}{c}, \times(0)-K_{A}\left(a_{1+}, t\right), \lambda \tau_{11}-\frac{K_{\lambda}\left(a_{2}, a_{1}\right)-\kappa\left(a_{2}, a_{3}\right)}{c}$,

Now, if we write $x=t=a_{2}$ in (19) and (24), it is easy to see that

$$
\mathbf{K}_{\lambda}\left(\alpha_{n}, \sigma_{1}\right)=f\left(u_{1}, \omega_{1}\right)+\underset{n=1}{\underline{\left[\psi_{n}\left(\alpha_{1}\right)\right]^{2}}} \lambda_{n}-\lambda \text {. }
$$

and hence that $\mathrm{K}_{\lambda}\left(\alpha_{1}, \alpha_{1}\right)$ constantly increases with λ, so long ws the latter is negative. Consequently, when ε is any positive quantity, and we take c to be

$$
\kappa\left(a_{2}, a_{1}\right)-f\left(a_{1}, a_{1}\right)+\epsilon_{1}
$$

it follows from the theorem of the preceding paragraph that

$$
\mathrm{K}_{\lambda}\left(d_{1}, c_{1}\right)-\kappa\left(a_{1}, a_{2}\right)+c
$$

can only vanish for positive values of λ. Thus, as $\mathrm{D}(\lambda)$ han no negative ronts, $h(x, t)$ is of positive type,* and, therefore, in virtue of the remark at the end of $\$ 27$,

$$
\cdot \mathrm{L} t \mathrm{H}_{\lambda}(s, s) \geq 0 \quad(u \leq s \leq b) .
$$

Using the formula (26), it will be seen that this beromes

$$
f(s, s)-\frac{\left[f\left(u_{1}, s\right)\right]^{e}}{c} \geq 0 \quad(\alpha \leq s \leq b)
$$

But, as є may be taken as small as we please, this is cvidently impossible unless $f\left(c_{1}, s\right)$ vanishes. It follows that, as α_{1} and s may each have any assigned values belonging to (a, b), we must have

$$
f(s, t)=0 \quad(a \leq s \leq b, a \leq t \leq b) .
$$

We have thus shown that, in the case of a function of positive type, the series

$$
\begin{equation*}
\sum_{n=1} \frac{\psi_{n}(s) \dot{v}_{n}(t)}{\lambda_{n}} \tag{27}
\end{equation*}
$$

has $\kappa(s, t)$ for its sum-function. It was shown in $\S 27$ that the convergence of this series is absolute, and, by an application of Dixi's theorem, it may be shown that the convergence is also uniform in the square $a \leq s \leq 1, \alpha \leq t \leq b$. Hence, if $\psi_{1}(s)$, $\psi_{2}(s), \ldots, \psi_{n}(s), \ldots$ are a completo system of normal functions relatiag to a function $\kappa(s, t)$ of pasitive type and $\lambda_{\mathrm{b}}, \lambda_{2}, \ldots, \lambda_{n}, \ldots$ ane the corresponding singulas valuns, then the series

$$
\sum_{n=1}^{ \pm} \frac{\psi_{n}(s) \psi_{n}(t)}{\lambda_{n}}
$$

converges both cbisolutely and uniformily, and its num-function is $\kappa(x, t)$.

[^9]§30. From this theorem several intenenting results may be deduced. For example, replacing $\kappa(s, t)$ by the series (27) in (19), we obtain
\[

$$
\begin{equation*}
\mathrm{K}_{\lambda}(s, t)=\underset{\Delta=\frac{\psi_{n}(s) \psi_{n}(t)}{\lambda_{n}-\lambda}}{ } \tag{28}
\end{equation*}
$$

\]

where the series on the right is uniformly couvergent. Again, if we write $s=t$ in (28), and integrate with respect to s between the limits a and b, we obtain

$$
\begin{equation*}
\int_{0}^{b} K_{\Delta}(s, s) d \delta=\sum_{n=1} \frac{1}{\lambda_{n}-\lambda} \tag{29}
\end{equation*}
$$

Provided that λ is not positive, the terms of the series on the right ave all positive and less than those of the series

$$
{\underset{n}{x}=1}_{\sum}^{\frac{1}{X_{n}},}
$$

which, by writing $\lambda=0$ in (29), is seen to converge. It thus follows that, for $\lambda \leq 0$, the former series is uniformly convergent. Integrating (29) between the limits 0 and λ, where the latter is negative, and recollecting FramHolm's formula

$$
-\frac{d}{d \lambda}[\log \mathrm{D}(\lambda)]=\int_{0}^{\lambda} \mathrm{K}_{\lambda}(s, s) d s
$$

it is easily seen that

$$
1)(\lambda)=\prod_{\lambda=1}\left(1-\frac{\lambda}{\lambda_{0}}\right) \quad(\lambda \leq 0)
$$

since $\mathrm{D}(0)=1$. It now follows that, as the right-hand member of this equation is in integral finction of λ, we may drop the restriction $\lambda \leq 0$. We have thus expressed $\mathrm{D}(\lambda)$ us an intinite product.

Finally, we may remark that if $|\lambda|$ is less than the least of the numbers $\lambda_{1}, \lambda_{5} \ldots, \lambda_{n} \ldots$ the right-band side of (29) may be expressed nsa power series in which the coefficient of $\lambda^{n \prime}$ is

$$
\sum_{n=1}^{\sum_{n}} \frac{1}{\lambda_{n}^{n+1}}
$$

Also, by employing Nrumaxn's expansion for $K_{\wedge}(s, t)$, it is easily seen that the coefficient of $\lambda^{\prime \prime}$ on the left is

$$
\int_{a}^{s} k_{k+1}(s, s) d s_{i}
$$

where in the usual notation

$$
\kappa_{m+1}\left(s_{s} t\right)=\int_{a}^{t} \ldots \int_{a}^{t} \int_{0}^{s} \kappa\left(s, s_{1}\right) \kappa\left(s_{1}, s_{1}\right) \ldots \kappa\left(s_{a v} b\right) d s_{1} d s_{1+\ldots} d s_{a} \quad(m \geq 1),
$$

and

$$
\kappa_{1}(s, t)=\kappa(s, t) \text {. }
$$

It followe that

$$
\int_{a}^{b} K_{m}(s, s) d s=\sum_{n=1}^{\sum} \frac{1}{\lambda_{n}{ }^{* \prime}} \quad(m=1,2, \ldots)
$$

§31. In conclusion, it may be pointed out that the theorem of $\$ 29$ holds also when $\kappa(s, t)$ is of negative type. This may be deduced from the theorem mentioned by employing the usual device, or it may be proved direotly by commencing with the equation

$$
\underset{x \rightarrow \infty}{\mathrm{~L} t}\left[\mathrm{~K}_{A}(s, s)-\mathrm{R}_{m}(\lambda ; s, s)\right]=\kappa(s, s)-\sum_{n=1}^{m} \frac{\left[\psi_{n}(s)\right]}{\lambda_{x}}
$$

instead of that at the beginning of $\$ 27$, and proceeding by a method similar to that which we have used sbove.

It may also be of interest to remark that by a very slight modification of these proofs we may show that (27) represents $\times(s, t)$ when the latter has only a finite number of singular values of one sign, but an unrestricted number of the other.

[^0]: - 'Gött. Nachr.' (1904). Heft L

[^1]: * 'Gibtt. Naekr.' (1904), pp. 60-70. See also Scmmidt, 'Math. Anni, Band 63, pp. 452, 453. We shall refer to the reanls given above as Hmarht's theorm. The theorem stated by Hinaiket on p. 70 of the paper referred to can be deduced by writing $\theta(s)-z(s)+y(r)$ in the equation written above.

[^2]: * See for example, Brostwicir, 'Quadratio Forme and their Classification by meana of Invariant Factors' (1907), chap. in., where mossary oonditions are obtained. It is not difficult to olitain conditions which are both necersury and svericient.

[^3]: * The rader may conpare this with the fait that, whon we haven quulnatic form which only assumes non-negative valnes, und we pat all the variablen save one (say x_{1}) equal to zero, wo deduce that the coofficient of x_{1}^{2} mul be ≥ 0.
 \dagger Hoth these pains of equalities will hold in certain parts of the aquare, but we only require that at least one of them ahath le true.

[^4]: * Yide Scort and Mathews, +Theory of Determinaits' (1904), p. 62

[^5]: * ef. Batman, 'Messenger of Mathematice,' Nev Suries, 1907, p. 93.

[^6]: * IVde Scory and Matuews, op, itit, pp. 67, 68.

[^7]: * 'Gert, Naclir., 1904, p. 73,
 + Printed with meditions in "Math. Amn.' Band LXIII. Tha theorem erferrod to will be found on PI. 449,450 . From a remark made on p. 453 I gather that it is originally dae to Hmatan:

[^8]: ${ }^{+} \mathrm{P}_{\mathrm{P}}$ 453, 454.

 + We shall alwayes suppoce this to be the oase in what follows.
 \ddagger Dins, "Fondamenti per la teorin delle funxioni di varialili roali" (Piea, 1878), s99. Boe abo Youno,

[^9]: * Owing to the fact that $\Delta(A)$ hus only poaitive moote

