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Introdustion.

Thne present memoir is the outeome of an sttempt to obtain the conditions under
which a given symmetric and continuous function x (8, t) is definite, in the sense of
Hiunerr® At an early stage, however, it was found that the class of definite
funetions was too restricted to wllow the determination of necessary und sufficient
conditions in terms of the determinants of §10, The discovery that thix conld be
done for functions of positive or negative type, and the fact that nlmest all the
theorems which are true of definite functions are, with slight modification, true of
these, led finally to the abandonment of the origioal plan in faivour of & discussion of
the properties of functions belonging to the wider clusses.

The first part of the memoir is devoted to the definition of various terms employed,
and to the re-statement of the consequebces which follow from Hiserr's theorem,

In the second part, keeping the theory of quadratic forms in view, the necessary
and sufficient conditions, alveady alluded to, are obtained. These conditions are then
applied to obtain certain general properties of functions of positive and negative type

Part 111 s chiefly devoted to the investigation of a particular eluss of functions of
positive type. In addition, it includes a theorem which shows that, in general, from
each function of positive type it ie possible to deduce an infinite number of others of
that type.

Lastly, in the fourth part, it is proved that when x(s,¢) is of positive or negative
type it may be expanded as a series of products of normal functions, and that this
series converges both absolutely and aniformly.

* ‘Gow. Nuche.' (1904), Hefs L
(456.) 18,10.00
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Parr L—DeriNimiong axp Depvcerioss vrom Hivserr's THroREM.

§1. Let x(s,¢) be a continuous symmetrie fanction of the variables s, ¢ which is
defined in the closed square a=s=b, a =t =05; and let & be the class of all functions
which are continuous in the closed interval (@, 6). When the function # ranges
through the class ®, there are three possible ways in which the double integral

r f w(s,t) 0 (5) O(¢) dadt

may behave :—
(1) There may be two members of @, say 0, and &, such that

j“j' k (8, 1) B, (8) B (t) d de, j‘ f i (5, 1) 0x (5) 0, (¢) ds it

have opposite signs ;
(i) Each function # may be such that

”."(s")*’(s) O(t)dsdt=0;
(iii) Each function # may bo such that
| [ x(s0)0()0(0)dsde =0,

This suggests a classification of continuous symmetric functions defined in the
closed square. We shall speak of those which have the property (i) as functions of
ambiguons type, whilst the others will be said to he of positive or negative type,
according as they satisfy (ii) or (iii).

§2. From the point of view of integral equations this classification is of considerable
importance. HrLeerT has proved® that

0 N I

[ xs 006 0@dsde =32 L[ vy o0)a,

where | (s), ¥a(s), <os Yu(3), ..., ave a complete system of normal functions relating to
the characteristic function « (s, f) of the integral equation

F1) = A w08 $ 0 de

and Ay, Ay ooy Aws -oo, respectively, are the corresponding singular values, It follows
at once from this that, when the singular values are all positive, x (s, ¢) is of positive

¢ (Gitt, Nackr,” (1904), pp. 6B-T0. See also Scumipm, *Math, Ann,' Band 63, pp. 402, 408, We
shall refer to the resuls given above ns Hinxgnt's fheorem. The theorem stated by.lin.nm' on p. 70 of
the paper referred to can be deduced by writing 8(s) = =(s) +¥ (/) in the equation written above.
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type in accordance with the shove definition. Conversely, we may prove that, for
every function of positive type, the above integral equation has only positive singular
values.  For, if we multiply along the homogeneous equation

() = N [ wefo, ) (1) e
by W, (#), and integrate with respect to s between the limits « and b, we obtain
b
Yo b | w8, ) e (5) e (0) ol e = 1.

Bines the double integral on the left cannot be negative, and A, is a finite number,

it appears that
>0,

Thus the necessary and syfficiont condition that a continuwons symmetrie function
should be of positive type is that the integral equation of the second bind of which it s
the characteristic function should have all its singular values positive.®

In & similar manner it may be proved that this statement remains true when we
replace the word positive by negative, in both places where it occure®  Moreover,
gince o function must be of ambiguous type when it is of neither the positive nar the
negative type, we conclude that the necessary and sufficient condition for @ continwous
symmetrie function to be of ambiguous type 1o the existence of both positive and
negutive singular valves of the integral equation of the second kind of which it is the
characteristic function,

§38. It is onsy to see that, corresponding to a function x(s,2) whose type is
ambiguous, there exists a function 0 () which is not zero in the whole interval (a, ),
and satisfies the relation

j:]:x(s,()ﬂ(s)ﬂ(f)dxdf=0. i e e AT

For, iff we employ the notation of (i) above, and suppose that k is any real constant,

we shall have |
J‘F x (3,2) [0, () + 8, (2)] [0, (1) + £, ()] e dt = j'f w (1, £) 0, () 0, (¢) de dt

+kj: r x (3, 1) [0, (5) 0, (2) +0s(3) ol(r.)jdsdt-s-l’j:f x (8, 0) 0, (s) 0, (1) dsdt.

* It follows from these results that, unloss » (4, ¢) is identically sero, wo vannot have
U
j..(.,t) 0 (3) 80 ds df = 0,

for all membors of 0, Wo shall prove this result in o different manner further on (3 12), but it is ussful to
mako the remark st this stage, since it shows conclusively that a function which is not identically zerv
oannot he both of positive and negative type.

VOl. OOIX, —A. 3 n
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The eoeflicient of £ on the right has a sign oppesite to that of the term independent
of k; wecordingly, when we equate the right-hand member to zero, the resulting
quadratic has its roots real It follows that, if we suppose one of them to be «, the
funetion

0(s) = 6, (s) +afl(x)

will satisfy (A), and it eannot be identically zero, because this would imply that 6, (s)
is 0 constant multiple of @, (v), and henew that the two integrals mentioned in (i) have
the suwe sign.

The converse of this theorem, however, i not troe, for there are functions both of
the positive and of the negative type which agree in this property with those of
ambiguous type ; these are known as the seme-defiite fiopetions,  The remainder are
ealled definste functions, snd have the property that (A) can only he satiefied by a
function @ (x) which is zero st each point of («, ©),

The two clssses of functions we have just mentioned bhave distinetive properties in
the theory of integral equatione  For, if « (s, {) is of positive or negative type, it is
evident front Hinsewe's theorem that (A) can only hold when

=
j e (5) O(3)ds =0 n=1,2..)
By a known theorem® we must, therefore, have
»
| k{xnO(Odt=0 (e=s=D)

Thus the wecessary and suffictent condition that a function of positive or negative
type should be defimte iv that it should be perfect,

Parr IL Tur Narvre or Fovortoxs o Posrrive Axp Necamive Tyee,

§4. The double integral A
]”ﬁx(s,f)o(s)ﬂ(l)dsdl, P gl

in which x(s, 1) s an sssigned symmetric and continuous function, and 6 is any
member of the eclass ®, may be regarded as the limit of a certain set of quadratic
expressions. For, let a,, a, ..., a, be points of the interval (a, b), taken in such a
way that the distances hetween consecutive members of the set of points consisting of
a, b and these »n are all equal, Then, by the theory of double integration, and in
virtue of the symmetry of & (s, t), (1) is precisely equal to

(b—etf? Lt [l o) 8 (cty) 4w (s, ) FF (ct) oo+ (it 0, ) 0P 0,) + 2x (g ) Oty ) Bt} 4 ... ] *
w* £

LR

* (f. ScaMIDY, op. 6t pp. 451, 452,
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The quantity inside the square brackets is evidently a particular value of a
quadratic form whose coeflicients arve x(ay, @), x(m, w), x(a, @), 2x (a0, @), .3
and, when @ ranges through the class ®, the numbers ¢ («,), # (@), ..., () will
nssame all possible real values

It s thus suggested that we are to look upon the double integral (1), when @ ranges
through 6, as the limiting ease of a quadratic form whose varinhles assume all possible
real values. The function x(s, 1) clearly takes the place of the ocoefficients of the
form. Moreover, when x(s, () is of positive type, the double integral (1) corvesponds
to a quadratic farm which cannot take negative values for real values of the variable ;
and similarly in vegard to the ease when « (s, f) 18 of negative type.

Now the question, whether a quadratio form does, or does not, take both signs, as
the variables assume all real values, has been shown to depend on the signs of certain
determinants whose elements are coefficients of the form* The considerations we
have just indicated seem, thevefore, to point to the existence of properties of the
function « (¥, 1) which will decide its type, withont directly considering the integral
(1). It is the object of the present section to show that this is actually the case.

§5. Let us, for the present, confine our attention to a function x (s, 1) of positive
type, so that

r.r“(”- ) 0(s) O0(t)dsdt=0,

for nll functions # belonging to &

We shall, in the first place, define o particular elass of the functions . Let v be
any point of the open interval (¢, 0), and suppose that € and » are any two positive
numbers which are so small that the points » + (5+¢) also belong to the interval.
Then the continuous function whicli is zevo for @« =g =s;—y—e aud s 4nte=s=0b,
which is squal to unity for s,—y =S¥ =8+y, and which is a linear function of s in the
intorvals (5,—n—e % =n), (847, s+n+e¢), will be denoted by 8, (s 5).  The values
of the function in these latter intervals will be given by

s—{(&—n—€ (H+n+e)—s
€ : €

respectively, and will evidently be positive numbers less thau unity at interior points.
Consider now the values of the function

B, ,(x; %) 0, .(t; %)

at the various points of the square a=s=b, a=t=h ot the (¢ ¢) plane. In the
accompanying figure this Inxge square, which we shall denote by Q, is intersected by

* Soe, for example, Broswion, * Quadrstic Forms and their Classfication by means of Invarisnt
Factors' (1907), chip, ii., where neesssary conditions are obtainml. It i not difficult to obtain eonditions
which are both secessary wnd sxfficient,

3un
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two sets of four lines drawn parallel to the axes of s and #; these are the lines
t=wkn t=xtnte); s =8ty s=nt(n+e) respectively, and they may be
identified by observing that the oumber at the point where any one of them
interseets an axis is the value of the corresponding variable which is eonstant along
it. It will thus be seen that the square denoted by ¢y i bounded by the four lines

§ = &+n, t = 5,+n; while the ures d,;, which is shaded in the figure, and which will
be referred to us the border of ¢, is the part of the squure bounded by s = 2, + (y+¢€),
t = s+ (n+e) exterior to ¢y, A little reflection will show that, at points of Q which
do not belong either to ¢, or to d,;, one or other of the functions @, (s; ), €, (t; %)
is zero s that, at points of 4y, each of these functions is unity ; and, finally, that in o,
neither function exceeds unity, It follows then that

e
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§6. The integral

f r k(o 0) B, (8 0) 0, (t; %) dedt
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may be looked upon as jx(x.l) O (5300, (t; %) (s dt) taken over Q, or, ns it is
asually written,*®
[ w00 0,0055 ) B85 m) (ds )
0
and, from what has been said in the preceding paragraph, that portion of the latter

which arises from the part of  exterior to oy, is zero, while that arising from g, is
simply

J.v x (8. l) (r’x ot )-
We have, therefore, )
r f "(x' t) 0..,(-" ’ 31) 0...(’ P &) dsdt
- L|x(8. t) (s dt) + L. k(s 0) 0, (5 8) 0, (0; ) (dadt). . . (%)

Again the total area of d,; is 4e(2y+¢), and so, it M is the maximum value of
|x (s, £)] in Q, we have

L w(s, )0, (s:8)0,_(¢;: 5)(ds dl)is de(2n+e) M

also the remaining integral on the right-hand side of (2) ean be replaced by

PR TN
k(e f) de dt,
CHTNAHTY

whieh is evidently equal to 3
j r x (84w, & +v) dudr.

Thus it follows from (2] that
Ir r (5,000, (s:0)8,  (t;%)ds cIf-r r (s +u, +v)dude| =de(In+ ) M. . (3)
Now let us suppose it possible for x (%, %) to have wnegative value, say —a; then,
because x (&, £) is continuous, we can choose a value of 3 so small that

k(8 +u, &+10) < =da,

for all values of w und v whose moduli are not greater than y. Wo shall therefore
have
_I' r {4+, s+2) du dv > 2n'a.
-t =g

Recalling our hypothesis that x (s, t) is of pesitive type, it follows from this and

(1) that
va = 2e(2n+e) M,

* (f. Hupsow, *The Theory of Functions of & Real Variable’ (1907), p. 416.
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for sll values of € which are less than a certain positive number (§5), But this is
evidently impassible, hecause, when ¢ tends to zevo, the right-hand side tends to zero,
and we arrive at the contradiction that a fixed pesitive quantity (viz, 7%a) is less
than, or equal to, zero,

We conclude that x (%, &) cannot be negative when & lies in the open interval
(e, b); and hence, ginee x (5, #) is continuous in the same interval when regarded as
closed, wo have the result that every fitnetion x (s, t) which ix of positive type tn the

spucre o = 5 = b, a =0 = b satisfies the inequality
X (-"“ N]) 2 “' (ll 5 sl 5 ’.')v

§7. This i & fiest condition which must be satisfied by these fanctions, and we may
obtain a second on similar lines.  Let ¥ and %, be any two distinet points of the open
interval (o, b), and, as before, let ¢ and 4 be two positive numbers ; the latter will now
be supposed so small that the intervals [« —(g+¢), 5+ (n+e)], [2= (p+¢), 54 (p+e)]
are both eontained within («, #) and do not overlap, We now propose to consider the
values of the function

(a0, (55 8) + @0, (s28)] [0, (t: )+ a8, (C:%)]

at points interior to Q, when @ and iy are any real constants.  For this purpese we may
mike use of o dingram (fig. 2) which is an obvious extension of the one employed in
the previous paragraph, The square Q is divided in this case not by eight, but by sixteen
lines, viz., those whose equationsare s =8, +5, s=8 +(y+e); b=y, +y, =8+ (n+¢)
(¢, 8=1,2). By giving @ and 8 ull possible values in the equations just written, it
will be seen that we obtain four sets of eight, for each of which we can distinguish a
square ¢, bounded by the lines ¢ =5, + 9, t = 5, % n; moreover, these squares will
evidently have borders dy of width « It ix not dificult to gee that, in those parts
of Q which are exterior to the borders (2, 8 = 1, 2), we have either

8,.,_, (s:m)=0.,(¢;8)=0,
4 01.- (’ ' “I) = ab,q(’; ’2) = 0:1’

that in the square g, we have
b (3:8)=10(t;8)=1,
0,,(8:8.)="0,,(t;8.,)=0;

* Tho rowder snny conspare this with the fact that, when we have n quadeatie form which only sssumes
non-negative values, sad we put all the varinbles sive one (say ) equal to xere, we deduce that the
woofficient of & musn he 2= 0,

t Hoth thess paire of equalitics will hold in certaln parts of the square, but we oaly require that st
Jenst ot of them should Lo true.
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and that i the border ., the last pair of equations still hold, but 8, (x; ».). 8., (1; )
are each less than, or equal to, unity, From this it sppears that the function
[y, (7 %) + 2,0, s 3)| [mf, (05 5) 4w, (t;8)]=wx, ingula.8=1,2),
= ( outside the borders o,

and that in the border d, its modulus is = |z,¢, |,

o T 6 1 N
' 2ls :' () ! ]
. :‘ ! () .l '
RN e i TR SH
Ll i ) ! [ | S0
| ‘) ) ‘' . by z
) l. "L ' ': )
) 4 e ! ' . l' '
A0 ! 'y gy
) 0. ML) .. .. '
| LI ! ! f '
| .l 4.3 $4 ' )
DA 1) WS b
" LI ) ! .' ‘
" .y . R a s '
M .y 'y " L X
M ‘4 'y o ™ °
" ' l. "y " M
N 8 ' AR
" Yy o L SR |
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] ‘!

i A P AL SRS O
L =1
PRoun NS un
} 910 <@ &0 af
o kg

Fig. 2.

§8. Let us now write
0(*") =mf, . [(3; %)+ wyll, o (53 0),

Downloaded from https://royal societypublishing.org/ on 26 May 2022

for the sake of brevity. Tt follows from the remnrks of the preceding paragraph that

»

r r x (2, 1) B(s) B{t) dsdt = é § :r,'r..] i (8, 1) (s dt)
R )

ul fim L
# 5 3 [ a(m00E)O0) dsdr) . . (4)
avl f=) d.‘ L

Now the aren of each of the borders d, 18 42 (2n+¢), and so we have

£ 3 [ (o) 0(s) O(6) (dode)| = s +e) (|l + 1] M3

o=l Aml
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moreover, it is easily proved that, in virtue of the symmetry of x (s, 1),

el =l

3 ét,d‘,[ (s, t)(dsdt)
Yan

can be written as
j‘_. ] ;{.r‘”x (#3412, 9+ 0) + Lirgrgw (5,410, s+ 0) + 2’ (4w, s+0) | dude, . (5)
From this and the equation (4) we finally obtain the inequality
\ j k{#,t) 0 (s) O(t) ds det —j"_‘ f '_'b',(u, )y dude| = se2n+e) (o] + |2l )P M,

where I, (u, ) is the integrand of (5).
The function Ty (w, v) is, of course, dependent on the real constants a; and x,; let
us suppose it possible to choose them in such a way that

Fo (0, 0) = % (%, ) + 2o (8, 8,) + a7 (4, %5)

takes a negative value, say —a, Owing to the fact that « (s ) is coutinuous, it is
then clear that we can chase » so small that

Fy{n, v) < —4a,
for |u =%, |v/ =% From this we deduce the inequality
= 2e(2n+€) (|2 ] + |2 P M,

as in the correspouding place in §6; and hence, as this is impossible for sufficiently
small values of € it follows that, when s, and s, lie in the open interval (a, 4), and =,
and x, wre real, F, (0, 0) 15 not negative,  Accordingly, since x (&, 1) is continuous, it is
easily seen that every fioction k (s, t) wiich ix of positive type in the square a = s = b,
=t =05 such that, when iz, and v, are any real numbers,

\
I'"K (J" "') > .‘)‘rl‘r?“ (le A’) “€+ .l:,’x (6’, ﬂ’) - 0 ((“ $s¥ - b) L

n=sz=0

§9. The reader will now he prepared for o general theorem of which those alveady
considered are partioular cases.  After having been through the latter in detail it will
be sufficient to sketeh the general proof.

Take any n distinet point #, 8,..., 8, in the open interval (a, &), and suppose that e
and % nre so small that the intervals [s,—(n+¢), a4 (n+¢)](a=1,2,..,n) form a
non-overlapping set contained within {a, 4). Now let

0(s) = ;:‘ wd, (2;8,),
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where ay, xy,..., 2, are any real constantz; and consider the values of the function
B{s) 0(1) in Q. Tt will be seen on eonsideration that in this general esse  must be
regarded as divided by 8u lines, aud that there are #® squaces g, each having a
border o, (2, B = 1,2,...,u). It will also b seen that

() 0(t) = iwein gala, B=1,2.... ),
= 0 outside the borders o,

and that in the border o, we have
10() 0(0)] = 7,1,

Proceeding then as in the case n = 2, we obtain the imequality

.

| ﬁ j: x (%, 1) 0(x) 0 () ‘Imlt-.‘-i p r ~F.. (14, ) elve dv | = de (294 ¢) ‘:"‘:l o ). M.

where
Fo(r 1) = e {sy 4 0, 840 ) b’ (et w84 0) + oo s (8410, 84 1)

+ 2wy (841, 4 0) 3 a0

and hence we establish that F, (0, 0) is always = 0. Eventually we obtain the
general theorem :—

Every funietion e (s, t) which & of pasitive Lype in the squtie a =s=0, a =t =1
st be suck that, when sy, 85, ..., 8, 00 any peints of the dosed interved (o, b), e

heere
aryie () 8, ) e (o 04 oo i (8, 8, ) 220 (4, )4 2= 0,

Jor all veal valves of @y, @y, ..., @,
§10. In necordance with the notation employed by Freomorar, let

xh‘g” v 8.‘~l| X (N.,8|) x(s,, «‘g) an K(”). I“)
L3 =
B1y gy g By ) s (28 ) we (2 %) -oome (8o %)

x (e ) w80 .. r(8,8)

Then, by the theory of qmadratic forms, it ia known that, in virtue of the inequality
which has just been obtained, we must have®

']’ &J‘ “hry '.‘>0. 6
“ pet » - - - » ) . » - -
(“h Hay envy M/ ( )
* Vide Broswicnt, *Quadestic Forms amd their Classification by mewna of Tuviriant Facto " (1906),
pp. 19, 20,
VOL. CCIX.—A, 31
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and this is true independently of the number of points, 5, 5., ..., 5, and their situstion
in the interval (o, b).

Conversely, by an appeal to the theory of integral equations, we may prove that
uny continuous symmetrie funetion x (s, £) defined in Q, which satisfies this condition,
i of positive type.  For it will be remembered that, according to Frepmonn's
theory,* the singular vilues of the equation

S@=b-2 [ eletd@d. . . ... @)

nre the zeras of the intngml function

D)) = l—X‘ K(N,.&, (’ﬁ,-{ - ‘ ' (x" !nlrfw,((v,

"h 2

(—”- r 3 ‘tj: x{x" Snsen N')! E RO T S

" “n! - Ty ey 8-;

Applying our hypothesis that (6) holds for all values of 8, 5 ..., 5, it appears that
. ("A).
!
Hitgerr has proved that every eontinuous symmetrie function has its singular values
all real. Tt follows, therefore, that, ift A, is any one of the zeros of D (A), we shull
have

[r (8, .v,):lx,-{- 37 ) ‘ r \ t"'”” 3‘ sy sy sy + ...

Nrneh "’h lv

.,n+l Ir .r:,,x ‘::' S ﬂaﬂ) ds, dy .. (I-‘fuu"l'...]

the coeflicient of in the series on the right cannot be negative; moreover,

oy Fnsy
4 X n -or '31- O &’.)
|+.{‘1_L£ \.v,, x,) anil. ',l .K(s..s,. i oy, dsy ... dsy,
Fasss

where the series in the square brackets on the left is not negative and that on the
right is positive ; and hence, that A, must be positive.  Since we have seen that, for
i (3, t) to be of positive type, it is sufficient that all the singulur values of (7) should he
positive, we may now state the following theorem —

In order thot o continvous symmetrie funchion k (3, t) defined in the square
ass=bh ast=h may be of positive type, it is necessary and sufficient that the

Sunaotions
(8, 8), x(“"v, oo x(”"""":'z:),... A e S B

Nis Sy ceey

shondd never take negative values when the variables 3, 8, ..., 8, ... each range over
the closed interval (a, b).

* Pide * Aets Mathematiza,” XXVIT (1803).
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It may be remarked that, as a corollary of this theorem, we have the notable fact
that, if' any eontinuous symmetric function is such that the integrals

r (a,,x,)ds,,rr (g:‘: olx, J&,,... rf (‘:::::::’: 'h,'h, 7 S

are none of them negative, then the functions (8) have the same property,

§11. The properties of the determinants (8) may be used to obtain some idea of the
nature of functions of pesitive type. Let ns suppose, in the fiest place, that there is
& point (ay, @) belonging to Q at which one of these functions x(s, 1) vanishes  The

- 5 \ . : .
determinant x(" :‘) ovidently veduces to —[x (s, @)f; hence, because it can never
'

bet negative,
x(k‘ ";) = K(“" ”) = 0.

In other words, if we draw the square Q and the diagoual 5 = ¢, the existence of a
point (a4, @) on this diagonal at which (& ) vanishes involves the fact that (s, 1)
vonishes everywhere on the lines drawn through this point parallel to the axes of &
and 4. In partioular, we deduce from this that a function k (s, t) which is of positive
type, aad 18 not zeva everywhere in Q, cannot vanish everywohere on the diagonal 5 = 1.

More generally, lot us suppese that there are points ay, «,, ..., a, of the interval

(e, b) such that
x(ah Qyy voey an) SR e s e S S o Ly S s (9)
gy (s eey Oy

By considering the determinant whose elements are the fisst minors of the four
elements belonging to the fisst two rows and columns of

/3, (‘h a’, vesy G‘) y
“(x.u,.u,,....a,‘ S SRCESSOTRRORT €5

we obtain the equation®
8, 0y, Gy 0o, O, x(alo a?r ceey g
) (0 L TNl ¢ e
By Mgy vory “’n‘ Oy Gy vovy “-H s i 8y My ouey (6, -
"(s, G a.‘.) "(ml, " Sigwrr u,.) [“ («,, oy u,,,}] ”
Recalling that the first term on the right vanishes in virtue of our hypothesis, and

that neither of the terms in the product on the left can be negative, it is clear that
we have

8 y ooy ll,‘ = ()
"(aa.a:. )

* Pide Soorr and Maruews, * Theory of Deteeminants" (1904), p. 6L
312
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at each point of the interval (a, b); and it ean be proved in a similar way that the
remainder of the functions

1 T VIR Y SRS AT S A ¢
e T it “:)(.-= o s cpmY st s (02)
have the same property.

Again, heeanse the determinant (9) and the fusctions (1) ail vanish, it is easily
seen that the function (10) vanishes identieally.  Aecordingly, ift any one of the
functions (£) vanishes for ull values of the varables, so must all these which follow it.
It appears, therefore, that, when x(x t) is of positive type, the determinant of the
integral equation (7) is either an infinite power series in A whase ooefficients are
alternately positive and negative numbers, or else it is & polynomial whose coeflicients
obey the same law,

Anocther property which is worth noticing is that, ift L is the upper limit of the
function x (s, 5) in the interval (4, b}, then

-L=x{s,1)=L

in the whole of the squave Q. This follows immediately from the fact that, since

K (: i) =0,
L= (s, ) n(t, 0) =[xl )F.

wi have

§12. We have so far confined ourselves to the consideration of fanctions of positive
type, but the reader will eagily perceive that the results obtained for these funetions
may be made applicable to thoss of negative type by a simple device, In fuct, if
x (%, 1) i3 of negative type in the square Q, nud we suppose that

& (8,0) = —x(st),

it is evident that «' (s, t) is of positive type in Q. Applying then what we have said
shout functions of positive type to « (s, 1), we may deduce the analogous properties of
x (5, 1); for instance, the necessery and sufficient condition that « cortinwons 3ymmctm'
Sfrnation x(s,t) defined in the square a=<s=b, a=t=0b may b of negative Lype s

that the functions
¥t . 8 § ey 6.
= (84 .v.) .(xx. } o (T (::. s &).

should never be negative when the varialles 8, 85, ..., 8 - oach vange over the closed

inderval (e, b).
We may remark that this result and that of § 10 prove the classes of funetions of
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positive and negative types to be mutunlly sxclusive, gave for the trivial case when
n (5, 1) vanishes everywhere,  For, if x (s, 1) belongs to both classes, we must have

k(8 §)=0, =—xi(s,5)=0

for all points of the interval (o, b); and henee x (s, ) must be zern everywhere in
this interval, It follows, then, from a remark made in § 11, that (s, 1) is zero in the
whole syunre Q.

Panr THL— Cerrasy Fusorions or Posmive Tyre.

§13. In the present section we propose to iuvestigate certain species of functions
which are of positive type. The remark made at the end of the previous seetion
(312) will make it plain that there i no loss in thus limiting onrselves, since the
corresponding results for functions of negative type may be at once dedueed by the
device there explained.

Let us again consider the square ) of the (s, 1) plane which is bounded hy the lines
s=a,8=0b t=a t="0; and let us suppose that it is divided into two triangles by
the diagonul whose equation is ¢ = ¢, The most direct method of defining a continuous
symmetrie funetion in Q i, evidently, to define 1 continuons funetion in one of the
triangles, say that in which §=¢; and then to suppose this continved into the
remaining portion of the square by defining its value at a point for which s > f to be
that at its imsge by reflestion in the dingonal.  For example, if' #(s) is a continuous
funetion of & in the mterval (o, 4), and we define x(s,¢) to be equal to € (s) in the
triangle « =<1, then the continwation of this function into the triangle s> is
evidently #(¢).

The theorom of § 10 may be applied to the function we have just defined, and hence
the condition that it should be of positive type deduced, Instead of doing this,
however, we shall eonsider the more general function®

k(s t)y=0(s)h(t) (x=t)
=d(x)0{t) (s=1),

where @ () and § (#) e both coutinuous in the interval (@, 6). 1t will be remembered
that functions of this kind oceur as Gueny's functions of certain linear differential
equations of the second order, nnd that it is therefore of some intercst to know when
they wre of pesitive type. Accondingly we shall seek necessary and sufficient
conditions which will ensure that this is so,

§14. In the fivst place, let us suppose that @(s) and ¢ (¥) are any continuous
functions whatever; and let £ be the set of points belonging to («, U} ot which
neither of them vanish, This set will evidently be dense in itself in virtue of the

* (Y. Baresax, * Messengoer of Muthematics,” New Series; 1907, p. U3
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continuity of the funetions; but it cannot be closed, nnless it eontains every point of
the interval, Morcover, it can be proved that = and £, its Jower and upper limits
respectively, do not belong to the set, unless they coincide with the end points of the
interval,

At each point of the set ¥ the quotient

8 ()b (%)

will have a definite value, because ¢ (5) is never zero. We may therefore define a
singlo-valued function f(x), whose domain is X, and whose value at any point is that
of this quotient. It will appear in the sequel that the properties of x (e, f) depend
very largely on the nature of f(s), and accordingly, in anticipation of this, we shall
Bpeak of it as the discriminator of w{s,t). The discriminator will evidently be
continuous in its domain, but it will never have the value zevo,

§15. Let us now suppose that « (s, t) is of positive type, and is not zevo everywhere
in the square Q.  'We have proved (§ 11) that, under these cirommstances, the function
K (%), ;), which in the present case is simply £(3,) ¢ (%), cannot be zero in the whole
of (r, b); also, at points where it does not vanish, we know that « (%, %) is positive
(§§6, 10). It follows that, for a function of positive type, the set £ ccrtainly exists,
and that in it the diseriminator only takes positive values,

Again, when #, and 8, are any two points of £, and & > 5, we have

e (55) = [9 (o) b (DS (LS (o)~ ()]
henee, since f'(x,) is & positive number, it follows by the theorem of § 10 that

S(#) = f (%)

This result msy be combined with the previous one in the statement that the
diseriminator of « (s, ¢) is n non-decreasing function whose values are all positive,

We have next to consider the points of (a, b) at which one or both of the functions
0(s), ¢ (x) vanish, These fall naturally into three sets, according as they belong to
(1) the clased interval (e, ), (2) the closed interval (8, 4), or (8) the open interval
(w, B). As regards (1), it is not difficult to show that @ (x) vanishes in the whole
interval. For, if @, is any point of (, @), one at least of the numbers @ (a), é (@)
must be zero; and hence, since x (a4, @,) is zero, the function x (s, ;) & zero at each
point of (a, &) (§11),

Now when & > @, we have

x (8 0) = 8 () §(s),

and, st points of £, ¢ (s) does not vanish ; we must therefore have # (@) = 0. It can

be proved in a similar manner that ¢ (s) vanishes everywhere in the interval (8, ).
Finally, we can show that, at points of the open interval («, 8) which do not belong

to X, both 0(s) and ¢ (s) vanish, In faet, if’ @, is nny one of these points, there are
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clearly points of X both on its right and on its left. The argument we have just
employed will then establish that, by reasan of the former, 0 (a,) 18 zero, and that,
by reason of the latter, ¢ (a;) is zevo,

§16. Conversely, let us suppose that « (s, ¢) is defined in terms of continuous
functions 0 (¢), ¢ (s) which have the propertiea mentioned in the preceding paragraph ;
and let us consider the funetion

Sy Enven ) & g
K(sx,ﬂam. "). P SE O b B el et Gt A

where 5, &, ..., &, are varinbles each confined to the interval (a, ). We may remark
that, as this funetion is symmetrie, it will take all possible values in the domain
H=Eyu=5=..=s. Thus since we are only concerned with the sign of the funetion,
we may always suppese the variables to satisfy these inequulities. Firstly, let us
suppose that one of the variables has a value not belonging to the domain of the
diseriminator of x (s, ¢). 1t sueh a value belongs to (a, a), the point % must evidently
lie in this interval ; hence, since

"(‘"l‘ ‘"') =3 0("1) ¢("f) (')' s la 2- LA ")»

and @ (s) vanishes by our hypothesis, it is evident that all the elements of the first
row of (12) are zoro. In o similar manner it may be proved that, when one of the
variables has a value belonging to the interval (b, 8), all the elements of the last row
vanish.  Again, if one of the variables, say x,, his o value belonging to the open
interval (x, 8), but not to =, we shall have

0(s.) = (1) = 0

by our hypothesis. 1t is thus easily seen that the elements of the m™ row of (12) all
vanish,  Summing up our results so fur, we conclude that the fanction (12) can only
take values different from zero when the varables s, &, ..., 8, are each confined to
the set =,

§17. Let us pext consider the oase when the varisbles are restricted in this manner,
The function (12), when expressed in terms of the functions # and ¢, is

0(‘l)¢("’l)n 0(”l)¢(“ﬂ)’ A 0(“‘)‘#(8-)
F() b (s, O(s) (o) .o O(8) h(x)
O(n) (%), 00} d(os)y ooy O(n) ()

-

O(s) b (a)y O(3) d(s) oy O(s) (s
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bence, by dividing through both the »*" vow and the #* column of this determinnmt
by ¢ (=) (r=1, 2, ..., n), its value is ssen to be

(P (3) = oo @ (8T | S () L300 oy £}
J(s), Sl) v Sss)
SOh S oo fs)

* .
.
. - ' . . .

S&), flsd i f5)
The determinant just written can be evaluated without ditlieulty, and thus we find
that (12) is

[ () b {ss) .. ¢ () F 7'(%) [,f(":)"_].("‘t)] l./.(-‘fn)-f(ﬂg)] v or [‘/'(8.)—1.(3 )\

Now, aceording to our hypothesis, f(s) is positive and eash of the fuctors
[/ (s.)=r(%.-)] 18 lmaitivu_- or zoro, It follows, thon, that (12) eunnot take negative
values when the varinbles am each restricted to the sot % Taking this in conjunction
with what was said in the previous paragraph, we sea that the fanctions

5y IR AR,
x (3845, x( o ". AR aohdliXy '),
",'“h LN Sy #a e 8y
can never take negative values, when the varinbles s, &, ... &, ... vach IROge over

the interval (@, b), and henee, by the theorem of § 10, that « (s, 2) is of positive type
We may, therefore, state our results in the following theorem :—

If O(s) and d(s) are each continuwous functions dyfined in the interval (o, b), the
nocessary and sufficient conditions that the finotion

w(n0) = B(h (D) (+=1)
=(900) (=)

showdd be of positive type are (1) that the diserivinator of the funetion shonld be
positive and non-decreasing o ity domain 2, and (2) that, if « and B8 ave the lower
and upper bimits of X, @(s) shoudd be zevo i the interval (o, a), ¢ (%) zero i the
internal (B, 1), and hoth 0(s8) and ¢ (%) 2erv at points of the open interval (a, B) whick
do not belong to X,

As a corollary of this, by supposing thut ¢ (&) = 1 (e =s=0), the reader may
deducee the corresponding conditions for the funection defined in § 13

§18. Let us now investigate under what circinnstunees o function w (s, £), which
satisfies the conditions stated in the enunciation of the theorem of §17, is definite
If the domain of its discriminator is not dense everywhere, it will bo possible to find
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an interval (o, d), Iving within («, b}, such that at each of its points the function
0(%) ¢ (%) is zevo. We shall, therefore, have (§ 11)
< k(=0 (e=s=d ast=h)

=0 (c=t=d, a=s=Db);

in particular, & (s, 1) will vanish everywhere in the squme ¢ =s=d, e=1=d,
Now, if y (5} 8 any continuons funetion of & defined in the interval (e, &), which is
zero in the intervals a =y =¢, d=y =10, but does not vanish everywhers in (¢, o),
we shall have

j:j:x(s, ) x (¢} % (8) de dt = [“ J“:x(.e, ) x () x () it
= (),

by the propertios of x () and x (s, ). Tt follows from this that, if «(s,¢) is definite,
the domain of its diseriminator must be dense everywhere in (a, b).

Again, lot us supposs that the disoriminator of «(s, ¢) has a constant value p
throughout a certain interval (¢, d). It will then be scen that within the square

c=s=d c=t=d
k() = p () $ (1)

and hence, if x (s) is defined as before, that
h e 3
[: L ks, ) x () x () dsedt = p [L () x (%) 'Is] .

It, may be proved without difficulty that there exists a funetion y (£) which is not
everywhere zero, and 18 such that

frg.(s)x(s)dx:o. 8o e ders S P S )

Por, let x; (%) and y;(s) be any two functions which are not mere multiples of one
another, and which satisfy the conditions imposed on y(s). Then, if cither of the
imtegrals

-‘ : #(4) x: (%) ds, I: () xa () ds

in zero, we shall have an obvious solution of (13) On the other hand, if their
respective values g, py e different from zero, it is easily seen that

= xu(#) _ xuls)
x (#) RS

satisfies (18); and, in virtue of our hypothesis, y (s) is not zevo everywhere in («, b).
We conclude, thevefore, that we can always find a function y (5) which is such that

‘: f. s, ) x (4) x (1) ds dt. = 0.

YOL. COIX.—A, J K
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[t thus appears that the diseriminator of a definite function of positive type cannot
be constunt throughout any interval,

§19, Conversely, we may show that every function of positive type, whose
discriminator (1) has o domain which is dense everywhere in (a, 4), and (2) has not a
constant value in the whole of any interval, is definite. For, if this were not so, we
would be nble to find o continuous funetion y(s) other than zero, such that

o
| k(e ()t =0 (a=s=)*
Supplying in the value of & (s, £), this equation may be written

.[,(,u).\.:O((.)\}(l.)dl-i—o(«)’j(ﬁ(!)qﬁ(()dt=0 (e=s=b) . . . (14

Now, as i (s) is continnous, and is not zero everywhere, we can find an interval
(0, ) of {a, b) within which it does not vanish ; also, #2 the domuin of the discrimi-
nator is dense everywhere, it will be possible to find a point, and, therefore, a whole
interval (y, 8), belonging both to (¢, o) and the domain,  The interval (y, 8) will thus
be such that iu it the functions Y (x), @ (%), ¢ () do not vanish. It follows that in
this mterval the function of &

K.{;(c)@(r)d‘c Sl s R S

has a dervivative which does not vanish ; and hence, by o well-known theorem of the
differential ealeulus, that this function cannot be zero more than once in (y, 8). It is,
therefore, evident that by contracting (y, 8) sufficiently we can ensure for it the
additional property that (15) vanishes at no point belonging to it.

Returning now to the equation (14), and supposing that s is confined to the
interval (y, 8), we seo that

s ==[eww@aff sovo

Henee, since hoth the numerator and the denominator on the right are
differentinble, and the latter does not vanish in (y, 8), the function f{s) is
differentiable in this interval. In fact, by applying the ordinary rules, we obtain

'(8)=0 (y=s=3).

But this is impossible, beeause by our hypothesis j'(s) cannot be constant in any
interval,  We conclude, therefore, that x (s, t) is a definite function.

§20. Tt may be remarked that the conditions (1) and (2) of the preceding
paragraph may be stated in another and more convenient form. For, if' a discrimi-

s Vide§ 3.
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nator satisfying these canditions had the same value at two distinet points, it would
necessarily have that value at all points of its domain which lie between them (§ 15).
Thus, since the condition (1) and the continuity of #(s), ¢ (s) nssure us of an interval
of the domain which lies hetween these points, the condition (2) would he viclated.
Hence a discriminator of this kind must be a steadily increasing function ; and,
conversely, a steadily mcreasing diseriminator satisfies (2). We may, therefore,
sombine the vesults of the two preceding paragraphs in the theorem :—

The necessary and sufficient cordition, that « ﬂmdwn x(s, 1), satisfipng the
requivemends of the theorem of § 17, showld be definite, is that its diseriminator
should be o steadily inereasing funetion whose domain i dense everywhere in (a, b),

As an application of this theorem we may consider the function®

x(s,0) = (1=a) (=) (s=0)
= (t—a) (b=5) (s=1).

The diseriminator bas the open interval (e, b) for its domain, and its value at any
point is
(s—af(l=s),

which steadily inereases with « It follows from §17 and the theorem just stated
that x (2. t) i 0 definite function of positive type,

§21. Leaving the particular class of functions with which we have been dealing,
let us now suppose that « (s, t) is any function of positive type defined in the square
a=s=b a=t=b Teta,a, ... a, be any m points of the interval («, &) which
ure such that

oY LR a,.) 0.
"h “,’ teey (‘"‘-

Then the tunetion
) Wy Uy ey Ty (ul, s n,,')
h (n. ‘) 5 “‘{"0 “lv “b aysd “‘u)/x _“ln My voiy Uy
will evidently be symmetric and continuous in the square a Ss =0, a St =0,
Again, when the function
~(”l1 8o eeny Sy thy, @y ooy G.)
s], 8,, ey 8‘, (l" (" Seey “.

is oxln‘eesed a8 o determinant, it is easy to see that the minor obtained by supjressing
all but the i of tho first n rows and all but the ;™ of the first # columns is

y (x., Oy gy ovey O
8, Gy gy oy O

* This is the generalisad form of Hivnzir's chwsical funetion, vide ' Gott. Nache, p. 237 (1901},
3k 2
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The doterminant of n rows and colummns, whose clemonts are thess minors, will
therefore be
~‘/a'1, Ugy oveq ﬂ-\] a" (ﬂ'. 8% sves 8.)‘
\‘"", (lg, Sren ‘1- "l' N” vy S.‘

But, by the theory of determinants, we also know that it is equal to*

(a,, " N A “..‘) e T B s A L ened a,,)
x x| ;
\ Gy, Cy, 555y Oy LN RTRRE TR et Tl

L

Thus, equating these two values, we find

,‘. |:'_q', Hyy sees N.) = j¢ (Nl. Noy vy Hpy, Wy, weny m"\/“‘ (’(Ih Uy eoey (ln)' ‘ , (l(;)

N B a0y Bhy Bha' v sp oy illay buvy sOhgl s Uy woey o

Now, in virtue of our iypethesis that « (s, () is of positive type, it follows from § 10
that the quotient on the right-hand side of this equation has a denominator which is
positive and a numerator which is not negative.  Hence we have

R ‘?"32 0
\ By, B, vy )

and thus, as this is true for all values of »#, the theorem of §10 shows that A (s, £) &5
of pusitive type.

22, In the light of this result, it appears that each function of positive type can
be used to generate an infinite series of such functions We might, therefore, expect
to obtain other species of functions of positive type by taking x (s, ¢) to be of the kind
considered in §§ 14-20.

For simplicity, let us eonsider the fanction

his, ) = x (3' h ) x (et ),

I,
where

e (ery, ) = 8 (1) () # 0.

Confining our attention to the triangle s =1, it will be seen that the variables
2 and £ ean be related to the constant «y by vither of the inegquulities ;—

() ¢St =m,
N) ==,
(iif) &, =s =t

The reader may find it convenient to refer to the sccompanying diagram, in which

* Fide Scory snd Matrews, op, o, pp. 67, 68,
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the square a =s=h, a =t =0 is deawn, and the portion of the triangle » = ¢ which
corresponds to each set of inequalities is marked with its number,

(a.4) (%)
(m)

(1)

(1) (0,a)

(a.a) (533
Fig. 3,

By expressing /i (s,2) in terms of the functions @ and ¢, it is easily seen that at each

pniut of the l‘('gi"ll (‘) ¢ Ot
h(s,t) = é (@) P() [,f(( )) 0—(%1)—)]

that in (i) & (s, ¢) 8 everywhero zoro, and that in (iii)

f () (%) ]
= 0 {«
b (o 0) = 0 () b (1) [0 o ¢L‘(,¢)
In & similar way, or by u mere interchange of the variables s and ¢, the values of
b (s, €) in the corresponding divisions of the trinngle # > ¢ can be obtained.
Now, let @ (=), ¢ (x) be continuous functions defined hy

Ou(s) = () 0(x) (a0 == b);

¢y (3) = $48) _0s) (a0 = s = a),

& ()~ #(a)

=0 (=38 =10);
also Tet 0, (»), &, () be two others defined by
01(") = () (‘.! ~ 3 “;),

f{s) 5) B -
0((a, ,}f’ ((J.j (S =058 0)-

b (8) = () P (2) (6 =5 =1);
and, finally, et two functions A, (s,¢) (v = 1, 2) bo defined in the syuve a =sz=9,
w=t=0h by
ho(2,8) =0,.(2) . (1) (s=1),
— 4. ()0 (0) (s=0)
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On comparing these latter functions with % (s, ¢), it will be seen that we have
hinty=h{st) a=s=a, a=sSt=a,

= 0 elsewhere ;
llll(l
la(s,0) = his, t) oy =x=b o, =t=10,

= () elsewhere.

It follows from this that we have
h (s. C) = /i, (3, ¢)+lc,(s, t)

at each point of the square in which these funetions are defined. But it is vasily seen
that, as x (s, t) is of positive type, the functions & (s t) satisfy the requirements of
the theorem enunciated in §17. Thus & (s ) is merely the sum of two tunctions of
the same nature as x(y, t), and hence, as it is obvious @ priori that the sum of any
number of funetions of positive type is a function of pesitive type, it appears that we
do not in this way obtain any new species of these functions,

The reader may convinees himself in a similar manner that the same conelusion
holds in regard to the more general function considered in the preceding paragraph.

§ 23, Although the resalt of § 21 proves to be so barren in this respect, it may be
applied to obitain an interesting property of the symmetrieal minors of the deter-
minant of the integral equation :

f(s)=¢(s)—hj:x(s,t)¢(t)dt. ) S

when x(s f)is of positive type.  Adopting the notation and hypothesis of the
paragraph veferrisd to, Jet A(A) be the determinant of the shove integral equation
when A (4, t) veplaces x (s, t). Then, since

A(N) = n-al s, ) ,,J j h(""""}dx =10
(-—”.j. .‘ ' (8"&‘ b ':)da, d%y oo dba+ ...,

ul Nie 83y o

L

1t 18 easily scen from (16) that
OO i O /R VST
A()\):D(A.“:’a:""a:)/ et R

Ly Quy veny G\ [0y Oy 0oy a‘)—kr (8“ y; Oy ""“:)«la -
2 ( 2 Uy Uy vovy an) i3 Ay, gy 4ory Uy, - 2 B1y Cyy Uy ovep @ ;

where

and is, therefore, & symmetrical m™ minor of D (A), the determinant of (7), in accord-
ance with Freouous's definition, But, as we have shown that A (s, ¢) is of positive
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type, the function A () has its zeros all real and positive. It fallows, therefore, from
(17) that all the zeros of the minor

D (x : Gy gy vasy G_)
“lv a!y bie) d_

are real and pesitive.  Since the minor must be identically zero if

K(a'h alb vy an) — 0
nlo Bgy wuny a‘m

(cf: §11), wo hive thus proved the theorem :—

The zevos of all symmetrical minors of the determinant of an inteqeal equation of
the second Find, whose characteristic function is of positive type, are all veal and
})(M'!.lvl'!'f'.

In particular, as K, (s, t), the solving function of (7), is defined by

K, (s,8) = D(\; 5 t)/D(X),

where

j ‘ (" 15 83 th,(?v,, -

’5)“

D& ) =xla )= xf (” s X

it appears that, when s = ¢, the solving function only vanishes for positive values of A

Pagr 1V.—Tue Exraxsion or Foxorioxs o Positive axo Necarive Tyee

§24. It is to be remarked that Hisenr and Scusmvr have been uble to give very
little information about the expansion of u given symmetrie characteristic function in
a series of products of normal functions. Hitgenr® has indeed shown incidentally
that, if the number of singular values is finite,

k(s t) = EMM SN e (11 8)

and Scusmivr] in his dissertation has estublished that this equstion remains valid
when the series on the right is nmiformly convergent. The lstter theorem is, of
course, much wider than the former sg regards its geverality ; but it hus the defect
that the uniform convergence, which it postulates, is not souneceted with any other of
the properties of x (s, £). In the present section we shall attempt to remedy this in
some measure by proving that the equality (18) certainly holds when « (s, ¢) is of

positive or negative type.
* Gt Nache,' 1904, p, 73,

t Printed with wdditions in *Math. Ann., Band LXIIL The theorem eeferrod to will be found on
pp. 449, 450, From a remark mado on p 453 T gather that it s originally doe so Hiustar
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§25. In the paper referred to above, Scryumr™ has proved that, if « (s, ) is any
continuous symmetrie function, the solution of

7G5y = ) =A x(s, ) b (0) e
is given by

A;f"_(:) : : I ) b () e,

fris)=f(s} +2
provided that A is not one of the singular values A, X, ..., A, ... ;T moreover, the
convergence of the series on the right is both absolute sud uniform,  Now, when we

take
S(8) =« (s, 1),

it 18 known that, in virtue of one of the characteristio relations.

$(9) =K. (s 0)

It follows, therefore, from the above expunsion and the hamogencous equations

Wa(t) = Anrw, (@) (z, t)de (n=1,2..),
that

KA(x.r)=x(a.f)-O-E‘M::((:).i‘k()”. RS

It should be remarked that Scumior's theorem only allows us to assume that the
series an the right of (19) is uniformly convergent with respect 10 5 (a =s=10), for
each assigned value of #; and hence, by symmetry, that it is uniformly convergent
with respect to ¢t (« =2=b), for each assigned value of . When x (&, 1) is of positive
type, we may establish the uniform convergence of the series in the whole of the square
t=s=ba=t=bh asollows. If we write ¢ =5 in (19), it is clear that the terms
of the series on the right become fanctions of 5, which, with the possible exeception of a
finite number, wre all of the same sign a5 X ; accordingly, by Dixi's theovem ] this series
is uniformly convergent in the interval e = s =05,  But, in virtue of the inequality

2 [ () e () 1= W7 () + 7 (1),

the terms of the series on the rigbt. of (19) are never greater in alsolute value than

those of
§ s AL () + vt (0)]
=1 A.‘ (A.—A)

* Pp. 453, 454,

t Wo shall always suppoee this to be the awe in what follows,

+ Dayy, “ Pondamenti por ln teoria dolle fungiond & varialili reali 7 (Pisa, 1878), $99.  8ee abo Youna,
“On Mouotone Sequences of Continuoue Functions,” * Proc, Gsinb, Phil, Soc,,* yol. XIV,, pp. 6303,
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Hence, as the latter converges unifarmly fora =s = b, a =1 =0 by what has just
been gaid, the result follows.

§26. Lot us denote the sum of the first i torms of the series an the rght of (19)
by S, (N5 %, 1), and the vemainder after these terms by R, (A; 0. ¢), We have

S (\: \' Vt(”)\['n“) ' “‘-(52“‘:“),
S (Vi 1) = /L R R v A, "

and henee, Keeping m fixed,

148, (A ;80)= — ;ﬂi‘)*—'ﬁ)

| A,

Aw .

L 800 = - $ (0
A,

Thus, sines (19} ean be written
Ki(v ()= Ro(hist)=x{s8,0) # B, (A:41),
we obtain the equations

T2 (K, (s )-Ru(Niw )] = Lt [K(s, )=Roisa ] =x(s 1) ?"-*i’.'v;“i”:",”. (20)
A= =0 al

This relation holds for nny continuous function x (s, £), but we now ndd the further
limitation that the funetion shall be of positive type.  Then, since

R, (A;x, %) “"‘“2._[(";‘ (.—_)xf)

we shall have

Baldeaitln: s g B Sl 5 (21)

for each negative value of A

Let ug, in the next pl:u'.‘e. investigate the valnes of K, («, ) for negative values of A,
it being supposed, as above, that « (s, ) is of positive type, 1 #(5) is any continucus
function defined in the interval (a, &), it follows from (19) and the theorem proved at
the end of the preceding pamgraph that

U A
[ f K. (s, 1) 0(s) 0 ()i de = | ]’ <ln0) 0o 0(0)dsde + 3 (& 5 U b (5) 0 (3) ,/,‘]
Recalling Hitnenr's theorem, it will be seen without difficulty that this reduces Lo

[ (K. (008 €0) dst = b U l#.(x)ﬂ(x)rl.-t]

VOL. CCIX.~—A. 3L
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Now, when X is negative, the terms of the series on the ﬁgbt must be either zero
or positive,  We conelude, therefore, that for all functions of the class ©

‘“ |'. K.(s, t)0(s) 0(t)dsde=0 (A <0)
In other words, K, (s, t) is of positive type for these values of X, Applying, then,
the theorem proved above (§§ 6, 10), we see that
Ki(s,2)=0 (asas=d), A<O0) . « . 7 o % (22)

§ 27, Returning to the formula (20) and writing s = ¢, we obtain

P |

Lt [KA (8) ‘) —R,(’%: ¥, J)] == K(8, 3)_ i Iw.:j)l 8
Accordingly, from (21) and (22), it follows that

x(s,s)>§.[~\‘%gm.. L ey

aml

This is true, of course, for all values of m which are sufficiently great ; and, further,
when we incresse m we only add positive terms to the right-hand side. By a well-
known theorem of the elementary theory of series, we thus see that

< [0 ()T
b R

converges for each value of 5 in the mterval (e, 4); and hence, since

2] g () v (4] 1= [ ()1 + [ (0T
RAULAC

that the series

converges absolutely for each pair of values of the variahles satisfying the inequalities
a=ss=h a=t=h From this last result it follows that the function

,r'(x,c)=~(s.e)—..~_;"‘-’-(‘9&ﬂ9 g s b s

has a definite finite value when the varisbles are restricted in the manner just
mentioned. In the paragraphs which follow we shall consider the properties of
/'(# 1), and eventually prove that it is everywhere zero. It may be remarked that
the inequality (23) proves the relation

0=/(s s)=x(s,9)
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§28. If € is any arbitrarily assigned positive guantity, it follows from the absolute
convergence of the series on the right of (24) that we can choose m great enough to

ensure the inequality
zﬁi’%—‘fﬂ-m<§. 2% AT B S e (88)

H=nsel

And, when this is done, it is easily seen that, since

Wa (@)W (t)] S [Mi ()b ()] (n>m)
A, MA=A) (A< 0)’

we have
| Ro(A: & 1) <% (A < 0).

Again, from (20), we see that a negative number L” ean be chosen with so great an
absolute value that, when A < 1/,

" Kils, ) =Ry (X; 5,8)— [x {s, €] — E"p"(xi}b" (()] I < % :
while, from (24) and (25), we deduce
[ B0 | <5

Adding the three inequalities just written, we obtain
Kils )=/ (s, 0)| <e (A< L),
In other words, we have proved the theorem
l.( _K,. (5, ) =f({3,t) (a=s=d a=t=b)

§29. It may be proved® that, if ¢ is any constant aud a; any point of the interval
(a, b), then the solving function corresponding to the characteristio function

h ("- t’) = x(a, t)— Kia"' “)OK(““ ‘)

H, (5,1) = K, (s, z)-a.'é':.((':""a).&i“(';:.)m).. & R (28)

whilst the corresponding determinant is easily seen to be
s = D0y Bl =x(.00]

* (. Baresmas, ‘Messengor of Mathematics’ (F908), p. 184, The result in question follows from
equations (24), (35), and (26), by writing f{s) = LG8 g(fy = xlay, £) and observing that

e

‘(‘)"K—"%L')v x () = K, (ayf), &n.-w,

[

3 L2
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Now, if' we write ¥ = t = o, in (19) and (24), it is ensy to see that

K,((’l,, lll) -.f‘u,, N,) + I'b' (“l) .y
un) h"'"A
and hence that K, (a,, ) constantly increases with X, 50 long s the latter is negutive,
Consayuently, when e is any positive (uantity, and we take ¢ to be
K (ay, al)-./(”h ay) +¢€,
it follows from the theorem of the preceding paragraph that
K-‘ (”I' “|)-“ (!1,. CI,) +C

can only vanish for positive values of . Thus, as D (A) hna no negative roots, A (s, t)
is of positive type,* and, therefore, in virtue of the remark at the end of § 27,

‘Lt Hy(s,)=0 (a=s=D).

Using the formula (26), it will be seen that this becomes

(s, 8)— u—(‘:' s). =0 (a=sa=h)

But, a8 € may be taken as small as we please, this is evidently impossible unless

Sy, 8) vanishes. It follows that, as o, and & may esch have any sssigned values

belonging ta (o, §), we must have
S(t)=0 (a=s=ha=i=b)
We have thus shown that, in the ease of a function of positive type, the series

s oy (#) 1, (1) (27}

¥an A. - - . - . » . » - . -

has (s, ) for its sun-function. Tt was shown in § 27 that the convergence of this
series is absolute, and, by an application of Dixt’s theorem, it may be shown that the
convergence is also uniform in the square e =s=l, a=t=b.  Hence, if ¥ (s),
Us (8), <oy B (), ooo tve @ complete system of normal functions velating to a function
x (8, 1) of positive type and Ay My ooy My oon are the corvesponding singulay valuos,
then the series '

converges hoth absolutely and unifoemly, and its oon-function i & (s, 0.

* Owing to the fast thot A (L) has only poaitive roota
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§ 80. From this theorem several interesting results may be deduced.  For example,
replacing x (8, £) by the servies (27) in (19), we obtain

Ryt = 3 00,

e T

where the series on the right is uniformly convergent,  Again, if' we write s = in
{28), and integrate with respect to & between the limits « mul b, we obtain

.[:K,(s.»mm.gm‘_x. b A {69)

Provided that A is not positive, the terms of the series on the right are nll positive
and less than those of the series
5
u:, A‘ S
which, by writing A = 0 in (29), s seen 10 converge. It thus follows that, for A =0,
the former series is uniformly convergent. Integrating (29) butweern the limits 0 and A,
whers the latter is negative, und recollecting Frenmonw's formula

—t}’i [log D (A)] = §:K‘ (%, ) s,
it is enstly seen that
D) =1 (1= ~\ (A= 0),

since D (0) = 1. It now follows that, as the right-hand member of this equation is
an integral funetion of A, we may drop the restriction A= 0, We have thus expressed
D (A) 58 an infinite procduet.

Finally, we may remark that ift |A] s less than the lesst of the numbers A, Ao, Ayees
the right-hand side of (20) may he expressed ne a power series in which the coefficient
of A" is

n}:'. ‘A::H'

Also, by employing Nuvmasy's expansion for K, (s, t), it is easily seen that the
coefficient of A" on the left is
o
[ Koy (5, 8) s,
"

where in the usual notation

om0 0) = [Loee [ ) G ) o (1 ) il s (20,

and
(s )= K (%, t).
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1t follows that

1) ]
! Ko, 8)ds=3% — (m=1,2..)
Ed n=1 Ay

§31. In conclusion, it may be pointed out that the theorem ot §29 holds also when
k(s t) is of negative type. This may be deduced from the theorem mentioned by
employing the usual device, or it may be proved direetly by commencing with the
equation

Lt [Ki(s,8) = Ry (N 3 8)] = x (s, 4)— i [ ()" 'S

instead of that at the beginning of § 27, and proceeding by s method similar to that
which we have used above.

It may also be of interest to remark that by a very slight modification of these
proofs we may show that (27) represents x (s, ) when the latter has only a finite
vumber of singular values of one sign, but an unrestricted number of the other.




