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Introduction.

T h e  present memoir is the outcome of an attempt to obtain the conditions under 
which a given symmetric and continuous function (s , t )  is definite, in the sense of 
H i l b e r t .*  At an early stage, however, it wTas found that the class of definite 
functions was too restricted to allow the determination of necessary and sufficient 
conditions in terms of the determinants of § 10. The discovery that this could be 
done for functions of positive or negative type, and the fact that almost all the 
theorems which are true of definite functions are, with slight modification, true of 
these, led finally to the abandonment of the original plan in favour of a discussion of 
the properties of functions belonging to the wider classes.

The first part of the memoir is devoted to the definition of various terms employed, 
and to the re-statement of the consequences which follow from H i l b e r t ’s  theorem.

In the second part, keeping the theory of quadratic forms in view, the necessary 
and sufficient conditions, already alluded to, are obtained. These conditions are then 
applied to obtain certain general properties of functions of positive and negative type.

Part III. is chiefly devoted to the investigation of a particular class of functions of 
positive type. In addition, it includes a theorem which shows that, in general, from 
each function of positive type it is possible to deduce an infinite number of others of 
that type.

Lastly, in the fourth part, it is proved that when k  ( , t )  is of positive or negative 
type it may be expanded as a series of products of normal functions, and that this 
series converges both absolutely and uniformly.

(456.)
* ‘Gott. Nadir.’ (1904), Heft I.

18.10.09
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416 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

P a r t  I .— D e f in i t io n s  a n d  D educ t io n s  f rom  H i l b e r t ’s  T heo r em .

§ 1. Let k (s , t) be a continuous symmetric function of the variables t which is 
defined in the closed square a< s <  b ,a ^ t ^ b ;  and let © be the class of all functions 
which are continuous in the closed interval b). When the function 6 ranges 
through the class ©, there are three possible ways in which the double integral

k (s, t) 6 (s) dt
may behave:—

(i) There may be two members of ©, say and such that

k (s, t) 0X ( s)( ) ds dt,

have opposite signs ;
(ii) Each function 6 may be such that

k ( s,t) 02 (s) 02 ds dt

[ [ (s) 0 {t) ds 0 ;
J a J a

(iii) Each function 0 may be such that

[ [ k ( t) 6 (s) 0 (t) ds dt <  0.
a J a

This suggests a classification of continuous symmetric functions defined in the 
closed square. We shall speak of those which have the property (i) as functions of 
ambiguous type, whilst the others will be said to be of positive or negative type, 
according as they satisfy (ii) or (iii).

§ 2. From the point of view of integral equations this classification is of considerable 
importance. H i l b e r t  has proved* that

[ [ x(s,t) 6(s) 6 (t) ds dt =  tJ- [ \fjn (s) 0 (s) ds
J a * a 7 i= l a _

where (s), \fj2 (s), (s),•••> are a complete system of normal functions relating to 
the characteristic function k (s, t) of the integral equation

f  (s) =  (f> (s)—X (" (£) dt,
J a

and \ u k2, ..., \ n, ..., respectively, are the corresponding singular values. I t follows 
at once from this that, when the singular values are all positive, k {s, t) is of positive

* ‘Gott. Nachr.’ (1904), pp. 69-70. See also Schmidt , ‘Math. Ann.,’ Band 63, pp. 452, 453. We 
shall refer to the result given above as H ilbert ’s theorem. The theorem stated by H ilbert  on p. 70 of 
the paper referred to can be deduced by writing 6{s) — x (s) + y (s) in the equation written above.
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AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 417

type in accordance with the above definition. Conversely, we may prove that, for 
every function of positive type, the above integral equation has only positive singular 
values. For, if we multiply along the homogeneous equation

'I’n (s) =  Kf k  (.s, (t)
d a

by if*n (s),and integrate with respect to s between the limits and we obtain

rb rb

K/c (s, t) x\}n (s) xfjn ( ) ds dt = 1.
J a J a

Since the double 
it appears that

integral on the left cannot be negative, and \ n is a finite number,

K >  o.

Thus the necessary and sufficient condition that a continuous symmetric function 
should be o f  positive type is that the integral equation o f  the second kind o f  which it is 
the characteristic function should have all singular values positive* '

In a similar manner it may be proved that this statement remains true when we 
replace the word positive by negative, in both places where it occurs.* Moreover, 
since a function must be of ambiguous type when it is of neither the positive nor the 
negative type, we conclude that the necessary and sufficient condition fo r  a continuous 
symmetric function to be o f ambiguous type is the existence o f both positive and 
negative singular values o f  the integral equation o f the second hind o f  which it is the 
characteristic function.

§ 3. I t  is easy to see that, corresponding to a function k  (  , t )  whose type is 
ambiguous, there exists a function 9 (s) which is not zero in the whole interval ( , 
and satisfies the relation

[ f k(s, t) 0 (s) 6 (t) ds dt =  0...(A)

For, if we employ the notation of (i) above, and suppose that k is any real constant, 
we shall have

f I K(s’ 0  [0i (*) + ̂ 2  (s)] [0i (0 + &02 (*)] i I k (s, t) 6X (s) (t) ds dtJ a J a J a J a

+ k f [ k(5, t) [#! ( s) 92 (t) + 9 (̂s) 9X (i)] ds dt + k2\ I k (5, t) 92 ( 92 ds dt.
J a J a J a J a

*  It follows from these results that, unless k (s, t) is identically zero, we cannot have

|  k (s, t) 0 (s) 6 (/) ds dt = 0,

for all members of 0. We shall prove this result in a different manner further on (§ 12), but it is useful to 
make the remark at this stage, since it shows conclusively. that a function which is not identically zero 
cannot be both of positive and negative type.

VOL. CCIX.— A. 3 H
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418 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

The coefficient of k2 on the right has a sign opposite to that of the term independent 
of k;accordingly, when we equate the right-hand member to zero, the resulting 
quadratic has its roots real. I t  follows that, if we suppose one of them to be a, the 
function

0 (s) = 01 ( + a02

will satisfy (A), and it cannot be identically zero, because this would imply that 01 ( 
is a constant multiple of 02 (s),and hence that the two integrals mentioned in (i) have 
the same sign.

The converse of this theorem, however, is not true, for there are functions both of 
the positive and of the negative type which agree in this property with those of 
ambiguous type; these are known as the sem functions. The remainder are 
called definite functions, and have the property that (A) can only be satisfied by a 
function 0 (s) which is zero at each point of

The two classes of functions we have just mentioned have distinctive properties in 
the theory of integral equations. For, if t) is of positive or negative type, it is 
evident from H ilbert ’s theorem that (A) can only hold when

f i pn(s)6 (s)ds = 0 =  1, 2, ...).
d a

By a known theorem* we must, therefore, have

| k ( s, t) 6 (t) dt = 0 (a <  s <  b).
d a

Thus the necessary and sufficient condition that a function o f positive or negative 
type should be definite is that it should be perfect.

P a r t  II.— T h e  N a t u r e  of  F unc t io n s  of  P o s it iv e  a n d  N eg a t iv e  T y p e .

§ 4. The double integral
I [ k(s, t) 9 (0 ( ) ds
J n J n

■ (1)

in which k  ( s, t) is an assigned symmetric and continuous function, and 6  is any 
member of the class @, may be regarded as the limit of a certain set of quadratic 
expressions. For, let au a2,..., an be points of the interval ( , b), taken in such a 
way that the distances between consecutive members of the set of points consisting of 
a, b and these n are all equal. Then, by the theory of double integration, and in 
virtue of the symmetry of k  ( s,t), (1) is precisely equal to

( b - a )2 L t[* °h) ̂ 2(a i) + K(a2>aa) + ... + *(«„, a») hfiafi + 2K(auaa) Ojaffi + ... ]

* Cf. Schmidt , op, dt., pp, 451, 452,
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AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 419

The quantity inside the square brackets is evidently a particular value of a 
quadratic form whose coefficients are K(a1 K(a2, a2)> 2/c(<q, a2), ... ; 
and, when 0 ranges through the class ©, the numbers (<q), 0 (a2), ..., 0 (an) will 
assume all possible real values.

I t  is thus suggested that we are to look upon the double integral (l), when Granges 
through ©, as the limiting case of a quadratic form whose variables assume all possible 
real values. The function k ( s , t) clearly takes the place of the coefficients of the 
form. Moreover, when k (s, t) is of positive type, the double integral (1) corresponds 
to a quadratic form which cannot take negative values for real values of the variable ; 
and similarly in regard to the case when k (s, t) is of negative type.

Now the question, whether a quadra,tic form does, or does not, take both signs, as 
the variables assume all real values, has been shown to depend on the signs of certain 
determinants whose elements are coefficients of the form.# The considerations we 
have just indicated seem, therefore, to point to the existence of properties of the 
function k (s,t) which will decide its type, without directly considering the integral 
(1). I t  is the object of the present section to show that this is actually the case.

§ 5. Let us, for the present, confine our attention to a function k  (s , t) of positive 
tvpe, so that

" r  rb cb
k (s , t) 6( s )9 (t) d t  >  0 ,

J a J a

for all functions 0 belonging to ©
We shall, in the first place, define a particular class of the functions ©. Let q  be 

any point of the open interval ( a, b), and suppose that e and rj are any two positive 
numbers which are so small that the points q±(i7 + e) also belong to the interval. 
Then the continuous function which is zero for and q  + 77 + e <  s <  b,
which is equal to unity for q — rj< s< s1 + rj,and which is a linear function of s in the 
intervals ( q - ^ - e ,  q —77), (q + ??, q  + 7? + e), will be denoted by q). The values
of the function in these latter intervals will be given by

S — (sl—rj — e) (q + 77 + e)—
€ €

respectively, and will evidently be positive numbers less than unity at interior points. 
Consider now the values of the function

Si) si)

at the various points of the square a ^ t ^ b  o± the (s, t) plane. In the
accompanying figure this large square, which we shall denote by Q, is intersected by *

* See, for example, Bromwich , ‘ Quadratic Forms and their Classification by means of Invariant 
Factors’ (1907), chap, ii., where necessary conditions are obtained. It is not difficult to obtain conditions 
which are both necessary and sufficient.

3 h  2
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two sets of four lines drawn parallel to the axes of s and these are the lines 
t = s1±rj, t = s1±(r) + e); s = s ^ r j ,  s = s1±(r) + respectively, and they may be 
identified by observing that the number at the point where any one of them 
intersects an axis is the value of the corresponding variable which is constant along 
it. It will thus be seen that the square denoted by is bounded by the four lines

420 ME. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYhE*

A X IS  OF S

s =  s1±r), t — Si + 7) ; while the area dn,which is shaded in the figure, and which will 
be referred to as the border of qn, is the part of the square bounded by (77+  e),

t — s1±(rj + e) exterior to qn. A little reflection will show that, at points of Q which 
do not belong either to qu or to dn, one or other of the functions 0e>r,(s s^, 6e ri{ t ; s) 
is zero ; that, at points of qn, each of these functions is unity ; and, finally, that in du 
neither function exceeds unity. I t  follows then that

Sx) 0e,„(£; sx) = 1 in qn,
<  1 in
= 0 elsewhere.

f f k  (s,t )  0etV(s ; sx) ; ds d t
J a J a

§ 6. The integral
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AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 421

may be looked upon as j k (s, t) 0e>v(s ; sx) 0(<r)( t ; taken over Q, or, as it is
usually written,#

I * (s; t ) 0e>r)(s; Si) 0e>„(£; d t ) ;
JQ

and, from what has been said in the preceding paragraph, tha t portion of the latter 
which arises from the part of Q exterior to dn is zero, while that arising from qn is 
simply

k ( s , t )  dt). 
*hn

We have, therefore,

( f k (s, t )0e>ri(s] Sx)0e>ri( t ; s j d s d t
•J a J a

= f K (s,t) (ds dt) + f K (s, t) ; sx) ; sx) (ds dt). . .
J qn  J du

Again the total area of dn is 4e(2i7 + e), and so, it M is the maximum value of 
| k( s, t) | in Q, we have

f k (s, t) 0etV(s ; 5X) 0e>r)(t; (ds dt) <  4e (2^ + e) M ;
J <£u

also the remaining integral on the right-hand side of (2) can be replaced by

* si-v s*-7!

( k (sx + u, Sx + v) du dv.
J  — y] J —  yj

Thus it follows from (2) that

f  f/c(s, t ) 0t>n(s; s1) 0et71(t; s ^ d s d t - ^ P ( s x +  u , Sx +  v) < 4e(27? + e)M. . (3)
J a J a J —ri J —y)

Now let us suppose it possible for k (si , Sto have a*negative value, say —a ; then,
because k (s, t) is continuous, we can choose a value of so small that

k (sx + it, Sx + v) <  —

for all values of u and v whose moduli are not greater than rj. We shall therefore 
have

which is evidently equal to

[V f1?
— k  (sx + u, Sx + v) d.u dv >  2i72a.

* - 7] J - 7]

Recalling our hypothesis that k  (s , t )  is of positive type, it follows from this and 
(3) that

rfa  2e (2^ + e) M,

*Cf. H obson , ‘ The Theory of Functions of a Real Variable’ (1907), p. 416.
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422 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

for all values of e which are less than a certain positive number (§ 5). But this is 
evidently impossible, because, when e tends to zero, the right-hand side tends to zero, 
and we arrive at the contradiction that a fixed positive quantity (viz., 7 is less 
than, or equal to, zero.

We conclude that k (sx, sx) cannot be negative when sx lies in the open interval 
(a, b); and hence, since k ( s , s) is continuous in the same interval when regarded as
closed, we have the result that every function k (5 , t) 'which is o f positive type in the 
square a <  s <  b, â  t<6  satisfies the inequality

k (sl5 Si) 5 : 0* <  <  b).

§ 7. This is a first condition which must be satisfied by these functions, and we may 
obtain a second on similar lines. Let sx and be any two distinct points of the open 
interval ( a,b), and, as before, let e and 77 be two positive numbers ; the latter will now 
be supposed so small that the intervals [sx — (77 + 6), sx+ (77 + e)], [s2— (17 + e), s2 + (1? + e)] 
are both contained within (a, b) and do not overlap. We now propose to consider the 
values of the function

O A ,, (s ; $1) + x f i ^  (s; s2)] [xxf v ; + ;

at points interior to Q, when xx and x2 are any real constants. For this purpose we may 
make use of a diagram (fig. 2) which is an obvious extension of the one employed in 
the previous paragraph. The square Q is divided in this case not by eight, but by sixteen 
lines, viz., those whose equations are s = sa ± 77, .9 — sa ± (77 + e) ; t = sfi± 77, = ± (77 + e) 
(a, /3 = 1, 2). By giving a and (3 all possible values in the equations just written, it 

will be seen that we obtain four sets of eight, for each of which we can distinguish a 
square q# bounded by the lines s =  sa ± 77, t = ŝ  ±77; moreover, these squares will 
evidently have borders dag of width e. I t  is not difficult to see that, in those parts 
of Q which are exterior to the borders daf} (a 1, 2), we have either

0e,v(s ;= 0e<r) (s ; s2) 0, 
or

ê, r; (t 5 ,<?l) =  ê,r, 5 2̂) =   ̂ 5 I

that in the square qaP we have

sa) = sp) = 1,

0e, 1) (s ; s3_a) = 9^  (t ; s3_p) =  0 ;

* The reader may compare this with the fact that, when we have a quadratic form which only assumes 
non-negative values, and we put all the variables save one (say xx) equal to zero, we deduce that the 
coefficient of aq2 must be >: 0.
f Both these pairs of equalities will hold in certain parts of the square, but we only require that at 

least one of them should be true.
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AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 423

and tha t in the border daf} the last pair of equations still hold, but 0ttr) ; ( t ;
are each less than, or equal to, unity. From this it appears that the function

lx Av(S ; *0 + x20 ^  (s ; s2)] ( t ; sx) + ; in 0 = 1 , 2),

= 0 outside the borders daf},
and tha t in the border d afi its modulus is <  j x aXp | .

§ 8. Let us now write

0 (s) = xx9 ^  (s; + (s ;

for the sake of brevity. I t  follows from the remarks of the preceding paragraph that

rb rb 2 2 r
k ( s , t) 0k(s) 9 (t) 'ds dt = X xaXp k  (s, t) dt)

* a J a a-1  ̂= 1

+  2 f .a=i =̂i u af}

Now the area of each of the borders dafi is 4e and so we have

f k  (s, t) 9 (s)0 (t) (dsdt) <  4e + e) ( | | + ! |)2 M ;
J d ~

W

2 2

t  %
a = l /S — 1 *1 d
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42 4 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE

moreover, it is easily proved that, in virtue of the symmetry of k

2 2 r
2 2 xaxp ( , t) (< dt)

a = l  /3 =  1 J <7 «â/3

-17 '  -17

can be written as

[x ^ k(sj + w, Sj + v) + 2ayr2/c(s1 + w, s2 + v) + a;2V (s2 + ̂ , s2+v)] dudv. . (5)
?

From this and the equation (4) we finally obtain the inequality

I f k (s, t) 0(s) 0(t)dsdt-P P F2(w , v)dud< + |a:2|)2M,
' Cl * Cl J  — yj J —77

where F2(u, v) is the integrand of (5).
The function F 2(u,v) is, of course, dependent on the real constants xx and x2; let 

us suppose it possible to choose them in such a way that

F2 (0, 0) = xxk (su sx) + 2 ( s 2) + x 2 k  ( s 2, s 2)

takes a negative value, say — a. Owing to the fact that k  ( , t) is continuous, it is 
then clear that we can chose 17 so small that

F 2{u, v) <

for | u| <  r),| v| <  77. From this we deduce the inequality

yfa <  2e (217 + e) ( | | + | | )2 M,

as in the corresponding place in § 6 ; and hence, as this is impossible for sufficiently 
small values of e, it follows that, when and s2 lie in the open interval and
and x2 are real, F2 (0, 0) is not negative. Accordingly, since k  ( , t) is continuous, it is 
easily seen that every function k  (s, t) which is o f  positive type in the square <  <  6,
a ^ t ^ b  is such that , when xxand x2 are any real ,

xxk  (sx, sx) + 2xxx2k(s1? s2) -t- x2k (s2, s2) >: 0

§ 9. The reader will now be prepared for a general theorem of which those already 
considered are particular cases. After having been through the latter in detail it will 
be sufficient to sketch the general proof.

Take any n distinct point sx, s2,..., sn in the open interval ( , b), and suppose that e 
and y are so small that the intervals [sa— (17+ e), sa + (̂ ? + e)] (« = 1, 2,..., form a 
non-overlapping set contained within (a, b). Now let

0{s) = t  xa6 ^ ( s \  ),

fa  <  <  b\
\a  <  s2 <  b) ‘ D
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AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 425

where xu x2, . . . , x nare any real constants; and consider the values of the function
0 (s) 0 (t)in Q. I t  will be seen on consideration that in this general case Q must be
regarded as divided by 8 nlines, and that there are 2 squares each having a 
border da/3 (a, (3 = 1, 2 , . . .,  n). I t  will also be seen that

0 (s) 0 (t) = xaxpin qafi 1 , 2 n),

= 0 outside the borders

and that in the border dafi we have

| 0 (s) 0 (t)| <  | xaxp | .

Proceeding then as in the case n — 2, we obtain the inequality

f f k (s, t) 6 (s) 0 (t)ds d t— f I F„ du dv <  4e + e) ) M,
J  —r\ J —7] \ a = l  /

where

F„ ( u , v )  = x?k (sl + u, sx + v) + x£k (s2 + u, + + ...  + (sn+ u, +
+ (<§! -f + v') + ... ;

and hence we establish that Fre (0, 0) is always >: 0. Eventually we obtain the 
general theorem :—

Every function k ( s, t) which is o f  positive type in the square a <  .9 <  b, < 6
must be such that, when sx, s 2, ..., sn awe any points o f the closed interval (a, b), we 
have

X \ K  (§i, Si) +  X 2 K ( S2, S2) +  . . .  +  X n2K ( , Sre) +  (<9x, 2) 4" . ..  0 ,

fo r  all real values o f xu x2, ..., xn.
§ 10. In accordance with the notation employed by Fuedholm , let

K
S-y, S 2, S n

^*2? • • '  J S]l

k ( s u  S i )  K ( S i , S 2)  K ( S i , S n)  

K ( S 2, Si) K (<92, 2̂) (s2,6 n)

K (Sn, Si) K S2) ... K (sn,Sn)

Then, by the theory of quadratic forms, it is known that, in virtue of the inequality 
which has just been obtained, we must have#

k (Su S‘2, s n\ 0.....
Vk, 2̂, V

* Vide Bromwich , ‘Quadratic Forms and their Classification by means of Invariant Factors’ (1906),

pp. 19, 20.

VOL. CCIX.—A. 3 I
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426 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

and this is true independently of the number of points, su and their situation
in the interval ( a, b).

Conversely, by an appeal to the theory of integral equations, we may prove that 
any continuous symmetric, function k  (s,t)defined in Q, which satisfies this condition, 
is of positive type. For it will be remembered that, according to F r ed h o lm ’s  
theory,# the singular values of the equation

f ( s )  = <j> ( s ) - \  f K t) (t)
J a

are the zeros of the integral function

d  (x) =  i - x  f  k (#„«,) d s ^  v  r  r  K h>  y  ds^ds,...
J a A I J a d a \^1> ^2/

( 0

+ ( - V rb rb

k  ( Sl ’s '2’ ' ‘ ‘ ’ Sn) ds ds2 ... + ....1 $i, s2, ..., snl

Applying our hypothesis that (6) holds for all values of s1} s2, ..., it appears that

the coefficient of  ̂ — d in the series on the right cannot be negative; moreover,

H i l b e r t  has proved that every continuous symmetric function has its singular values 
all real. I t  follows, therefore, that, if Xr is any one of the zeros of D (X), we shall 
have

k (sx, s x) dsx + I f | k dsx ..
O I Ja da da \̂ 1? ’->2? 3̂/

2 rb rb
1 + 2 ! \Si , s2J 2

b rb
^1) ^2? • • • 5 S2r*' ' -• ] dsx ds2... ds2n

> a a \^1? ^2? • •• )  2̂n

where the series in the square brackets on the left is not negative and that on the 
right is positive; and hence, that \ r must be positive. Since we have seen that, for 
k  (  s , t )  to be of positive type, it is sufficient that all the singular values of (7) should be 
positive, we may now state the following theorem :—

In  order that a continuous symmetric function k  (s, t) defined in the square 
a <  s <  b, a<  t < b  may be o f positive t, it is necessary and sufficient that the
functions

• K («1, Si), K/ Si, S2\ K •..,sn\
\Si,S2/ ’ ” \Si, s2, . s j ( 8)

should never take negative values when the variables s2, ..., sn each range over 
the closed interval (a, b).

Vide ‘Acta Mathematical XXVII (1903).
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AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 427

I t  may be remarked that, as a corollary of this theorem, we have the notable fact 
that, if any continuous symmetric function is such that the integrals

K («., S.) ds„ f  f  k h ’s: )  dSl ds2, P  f  k f  ds, ds2... ds„ ...
Jet Ja ^2/ Ja Ja Ja \̂ 1? 2̂? •••? &n/

are none of them negative, then the functions (8) have the same property.
§ 11. The properties of the determinants (8) may be used to obtain some idea of the 

nature of functions of positive type. Let us suppose, in the first place, that there is 
a point (cq, cq) belonging to Q at which one of these functions k  vanishes. The

determinant k  ^  (̂  \ evidently reduces to — [#c (s,eq)]2; hence, because it can never

be negative,
k( s, cq) =  k(cq, s) =  0.

In other words, if we draw the square Q and the diagonal the existence of a
point (cq, cq) on this diagonal at which k  (s , t) vanishes involves the fact that k  (s, 
vanishes everywhere on the lines drawn through this point parallel to the axes of s 
and t. In particular, we deduce from this that function k  (s, t) is o f positive
type, and is not zero everywhere inQ, cannot vanish everywhere on the diagonal — 

More generally, let us suppose that there are points cq, cq, ..., an of the interval 
(cq h) such that

( 0
dl.j CC2y •••) CLn
d \ y  d 2y • • • ?  CLn

By considering the determinant whose elements are the first minors of the four 
elements belonging to the first two rows and columns of

we obtain the equation4

S5 di,
Sy CLi? 0̂2, ( 10)

Sy d \ y  0/2)

Sy d \ y  d  2)

, , dn
* p dn

aa, ^3 ? • •• i \
g 2, a3, .. ., a j

. /̂ 5 2̂) • ' a f
' \s, a2, anj

d 1 ,  d2p Sy a 2

d\ , do

d
1 • • ? CLn

Becalling that the first term on the right vanishes in virtue of our hypothesis, and 
that neither of the terms in the product on the left can be negative, it is clear that 
we have

s, cq, 
cq, cq, ••• 5 a}

Vide Scott  and Mathews , ‘ Theory of Determinants’ (1904), p. G2.

3 I 2
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428 ME. J. MERCER: FUNCTIONS OF POSITIVE ANI) NEGATIVE TYPE,

at each point of the interval {a, b); and it can be proved in a similar way that the 
remainder of the functions

K•••5 Ctr -1, S, CCr+i, Cl’n

'̂27 •••? Ctr— i, O',., . •«,

have the same property.
Again, because the determinant (9) and the functions ( ! l)  all vanish, it is easily 

seen that the function (10) vanishes identically. Accordingly, if any one of the 
functions (8) vanishes for all values of the variables, so must all those which follow it. 
I t  appears, therefore, that, when k  (s , t )  is of positive type, the determinant of the 
integral equation (7) is either an infinite power series in X whose coefficients are 
alternately positive and negative numbers, or else it is a polynomial whose coefficients 
obey the same law.

Another property which is worth noticing is that, if L is the upper limit of the 
function k  (.s , s) in the interval ( a, b), then

— L <  k  (s, t )  S. L

in the whole of the square Q. This follows immediately from the fact that, since

we have
k  (.9, s) k  ( t, >  [_k  £ ) ] 2.

§ 12. We have so far confined ourselves to the consideration of functions of positive 
type, but the reader will easily perceive that the results obtained for these functions 
may be made applicable to those of negative type by a simple device. In fact, if 
k  (s, t) is of negative type in the square Q, and we suppose that

K' (s, t) =  —k(s t),

it is evident that k(.s, t)is of positive type in Q. Applying then what we have said 
about functions of positive type to k  (s , t) , we may deduce the analogous properties of 
k  (s, t); for instance, the necessary and sufficient condition a continuous symmetric 
function k  (s,t) defined in the square a ^ s ^  may be negative type is 
that the functions

should never be negative when the variables 6*x, . sn, ... each range over the closed
interval ( a, b).

We may remark that this result and that of § 10 prove the classes of functions of

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 M

ay
 2

02
2 



AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 429

positive and negative types to be mutually exclusive, save for the trivial case when 
k (.s1, t)vanishes everywhere. For, if k (s, t) belongs to both classes, we must have

k (su s1)̂0, 5x) >  0

for all points of the interval (a, b ) ; and hence k (su must be zero everywhere in 
this interval. I t  follows, then, from a remark made in § 11, that k (s, is zero in the 
whole square Q.

P a r t  III .—Ce r t a in  F unc t io ns  of  P o s it iv e  T ype .

§ 13. In the present section we propose to investigate certain species of functions 
which are of positive type. The remark made at the end of the previous section 
(§ 12) will make it plain that there is no loss in thus limiting ourselves, since the 
corresponding results for functions of negative type may be at once deduced by the 
device there explained.

Let us again consider the square Q of the (s, t) plane which is bounded by the lines 
s = a, s = b, t  = a, t = b ;and let us suppose that it is divided into two triangles by 
the diagonal whose equation is s — t.The most direct method of defining a continuous 
symmetric function in Q is, evidently, to define a continuous function in one of the 
triangles, say that in which s< t ;and then to suppose this continued into the 
remaining portion of the square by defining its value at a point for which s >  to be 
that at its image by reflection in the diagonal. For example, if is a continuous 
function of s in the interval (a, b), and we define k ( , t) to be equal to (s) in the 
triangle s< £, then the continuation of this function into the triangle s >  is 
evidently 6 (t).

The theorem of § 10 may be applied to the function we have just defined, and hence 
the condition that it should be of positive type deduced. Instead of doing this, 
however, we shall consider the more general function*

K(.9, t) = 6 (s)(f) (s <  t)
= <f>(s)0 (t)

where 6 (s) and <j> (s) are both continuous in the interval (a, b). I t  will be remembered 
that functions of this kind occur as G r e e n ’s functions of certain linear differential 
equations of the second order, and that it is therefore of some interest to know when 
they are of positive type. Accordingly we shall seek necessary and sufficient 
conditions which will ensure that this is so.

§ 14. In the first place, let us suppose that and (,v) are any continuous
functions whatever ; and let t  be the set of points belonging to (a, b) at which 
neither of them vanish. This set will evidently be dense in itself in virtue of the

* Cf. Bateman , ‘ Messenger of Mathematics,’ New Series, 1907, p. 93.
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430 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

continuity of the functions ; but it cannot be closed, unless it contains every point of 
the interval. Moreover, it can be proved that a and /3, its lower and upper limits 
respectively, do not belong to the set, unless they coincide with the end points of the 
interval.

At each point of the set X the quotient

will have a definite value, because (f> (.s) is never zero. We may therefore define a 
single-valued function f(«), whose domain is and whose value at any point is that 
of this quotient. I t  will appear in the sequel that the properties of k (s, depend
very largely on the nature of f  (s), and accordingly, in anticipation of this, we shall 
Speak of it as the discriminator o f  k  ( s, The discriminator will evidently be 
continuous in its domain, hut it will never have the value zero.

§ 15. Let us now suppose that k (s, t) is of positive type, and is not zero everywhere 
in the square Q. We have proved (§ 11) that, under these circumstances, the function 
k (sx, which in the present case is simply 0 (f> cannot be zero in the whole
of (a, b); also, at points where it does not vanish, we know that k (sx, $i ) is positive 
(§§ 6, 10). It follows that, for a function of positive type, the set X certainly exists, 
and that in it the discriminator only takes positive values.

Again, when s1 and s2 are any two points of X, and >  we have

* &  3  =  [* W  * (*)]*/(*•) [ / ( * ) - / ( * • ) ] ;

hence, since f  (sx) is a positive number, it follows by the theorem of § 10 that

/(* i)  - / ( *  i)-

This result may be combined with the previous one in the statement that the 
discriminator of k  ($, t )  is a non-decreasing function whose values are all positive.

We have next to consider the points of ( , b) at which one or both of the functions 
0 (s), </> (s) vanish. These fall naturally into three sets, according as they belong to 
(l) the closed interval ( a, a), (2) the closed interval (/3, or (3) the open interval 
(a, /3). As regards (l), it is not difficult to show that 0 (s)vanishes in the whole 
interval. For, if ax is any point of ( a, a), one at least of the numbers 6 (ax), <f> 
must be zero ; and hence, since k (au ax) is zero, the function k ax) is zero at each 
point of ( a, b)(§11).

Now when s >  axwe have
k (s,ax) = </> (s),

and, at points of X, <j> (s)does not vanish ; we must therefore have 0 (ax) 0. I t  can 
be proved in a similar manner that (f) ( s) vanishes everywhere in the interval (/3, b).

Finally, we can show that, at points of the open interval (a, /3) which do not belong 
to X, both 6 {s) and <f> (s) vanish. In fact, if ax is any one of these points, there are
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clearly points of t  both on its right and on its left. The argument we have just 
employed will then establish that, by reason of the former, (ay) is zero, and that, 
by reason of the latter, <£ (cq) is zero.

§16. Conversely, let us suppose that k is defined in terms of continuous 
functions 9 ( s ) , (j> (s) which have the properties mentioned in the preceding paragraph ;
and let us consider the function

Su s2, ...,sn
sl> s2, ... , sn

where su s2,. . . ,  snare variables each confined to the interval ( , b). We may remark 
that, as this function is symmetric, it will take all possible values in the domain 
Si <  s2< s3< ... <  sn.Thus, since we are only concerned with the sign of the function, 
we may always suppose the variables to satisfy these inequalities. Firstly, let us 
suppose th a t one of the variables has a value not belonging to the domain of the 
discriminator of k  ( s,t). If  such a value belongs to (a, a), the point sx must evidently 
lie in this in terval; hence, since

k (s15 sr) =  0(Si) <j>{sr)(r = 1, 2, ... ,

and 9 (sx) vanishes by our hypothesis, it is evident that all the elements of the first 
row of (12) are zero. In a similar manner it may be proved that, when one of the 
variables has a value belonging to the interval (6, /3), all the elements of the last row 
vanish. Again, if one of the variables, say sm, has a value belonging to the open 
interval (a, /3), but not to we shall have

0 ( O  =  <£ (sm) =  0

AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 431

by our hypothesis. I t  is thus easily seen that the elements of the mth row of (12) all 
vanish. Summing up our results so far, we conclude that the function (12) can only 
take values different from zero when the variables sx, . . . ,  are each confined to 
the set 2.

§ 17. Let us next consider the case when the variables are restricted in this manner. 
The function (12), when expressed in terms of the functions 6 and <£, is

9 (sx) (f)(sx), 6(sx) (f> (s2),..., (sx)

0 (sx) (j>(s2), 9 (s2) <j)(s2), ...,

9 (sx) <f> (s3),9 ( s2)(f> (s3), ..., 9 (s3) (j) (

9{sl) 4>(sn), 9(s2) <f>(sn),...,

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 M

ay
 2

02
2 



hence, by dividing through both the r th row and the r th column of this determinant 
by (■<)(r  — L 2, n ),its value is seen to be

432 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

/ ( * l). /(*l)> •••» /(«■)

/ O ) .  / ( * » ) .  •••. / G )

/ ( » i). /(* > ) . / W

/ ( * ) .  / ( * ) .  .... / ( * . )
The determinant just written can he evaluated without difficulty, and thus we find 

that (12) is

W («.)*(«.) •• ^(s«)]2/'(si) [/(*>)-/(«l)] [/(*»)-/(*»)] ••• [/(s.)-/(s»-i)]-

Now, according to our hypothesis, /*(s1) is positive and each of the factors 
[ /  ( Sn )—J  (sn-i)~] is positive or zero. I t  follows, then, that (12) cannot take negative 
values when the variables are each restricted to the set 2. Taking this in conjunction 
with what was said in the previous paragraph, we see that the functions

can never take negative values, when the variables su s2, ..., ... each range over
the interval ( a, b), and hence, by the theorem of § 10, that t) is of positive type. 
We may, therefore, state our results in the following theorem :—

I f  0 (s)and (s)are each continuous functions the interval ( , b \ the
necessary and sufficient conditions that the function

k (s, t) = 0 (s)(j> (t) <  t)

= </> 00 0 W (s - 1),

should be o f 'positive type are (1) that the discriminator o f the function should be 
positive and non-decreasing in its domain %, and (2) i f  a and j3 are the lower
and upper limits o f  2, 0 (s)should be zero in the interval a), <f> zero the
interval (/3, b), and both 6 (s)and <f> (s) zero at points o f the open interred (a, f3) which 
do not belong to %.

As a corollary of this, by supposing that (s) 1 <  <  b), the reader may
deduce the corresponding conditions for the function defined in § 13.

§ 18. Let us now investigate under what circumstances a function which
satisfies the conditions stated in the enunciation of the theorem of § 17, is definite. 
If  the domain of its discriminator is not dense everywhere, it will be possible to find
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AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 433

an interval (c, cl), lying within ( a , b ) ,  such that at each of its points the function
0 (sx) <}> (sx) is zero. We shall, therefore, have (§11)

k  (s, t )  =  0 (c <  .s- <  d ,  « <  £ <  h)

=  0  ( c  :<  £ <  d ,  a  <  ,s* <  b ) ;

in particular, k  ($, t )  will vanish everywhere in the square <  s c <  £ <  d. 
Now, if x ( s) any continuous function of s defined in the interval b), which is
zero in the intervals a <  s <  c, cl< s< b, but does not vanish everywhere in 
we shall have

I f k («, *) X (s) X  ( 0 dt  =  f f K (.9, £) x (.9) x (£) cfe
d a d a J c d c

= 0,

by the properties of y (s) and k  (,9, £). I t  follows from this that, if k (s, £) is definite, 
the domain of its discriminator must be dense everywhere in (a, b).

Again, let us suppose th a t the discriminator of k (.9, t) has a constant value 
throughout a certain interval (c, d). I t  will then be seen that within the square 
c <  .9 <  d , c < t < d

K (s, t) = p<j> (s) 4> ;

and hence, if y (s)is defined as before, that
rb rb T rd

K (s,t)x {s)x {t)ds (s)
•J a J a L J c _

It. may be proved without difficulty that there exists a function y (s) which is not 
everywhere zero, and is such that

f <Ms) x ( sM 5 =  0. . . . . . . . . . . . . . . . . . . . . . . . . . . ( 13)
J c

For, let Xi (s)and X2 ( s)he any two functions which are not mere multiples of one
another, and which satisfy the conditions imposed on y ($)• Then, if either of the 
integrals

r d r d
<t>(s)Xi{s)ds, (s) \ 2 (s) ds

J C J c

is zero, we shall have an obvious solution of (13). O11 the other hand, if their
respective values /xx, be different from zero, it is easily seen that

X(S) = X ^ ) _ X ^ )

satisfies (13); and, in virtue of our hypothesis, y 18 not zero everywhere in (a, b). 
We conclude, therefore, that we can always find a function which is such that

( f K(.9, £) y  (.9) y  (£) ds dt = 0.
J a Jfl

3 KVOL. CCIX.—
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I t  thus appears that the discriminator of a definite function of positive type cannot 
be constant throughout any interval.

§ 19. Conversely, we may show that every function of positive type, whose 
discriminator (1) has a domain which is dense everywhere in ( , b), and (2) has not a 
constant value in the whole of any interval, is definite. For, if this were not so, we 
would be able to find a continuous function (s) other than zero, such that

[ k (s, t) xjj (t) dt = 0 <?>).*
J a

Supplying in the value of k  ( s, t), this equation may be written

434 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

s) I <j) (t) xp (t) dt =  0 (a<. . . (14)

Now, as xf/ (s)is continuous, and is not zero everywhere, we can find an interval 
(c, d) of (a, h) within which it does not vanish; also, as the domain of the discrimi
nator is dense everywhere, it will be possible to find a point, and, therefore, a whole 
interval (y, 8), belonging both to (c, d) and the domain. The interval (y, 8) will thus 
be such that in it the functions i fj(s), 6 (s), (J) (s do not vanish. I t  follows that in
this interval the function of s

|  </> (t) (t) dt . (15)

has a derivative which does not vanish; and hence, by a well-known theorem of the 
differential calculus, that this function cannot be zero more than once in (y, 8). I t  is, 
therefore, evident that by contracting (y, 8) sufficiently we can ensure for it the 
additional property that (15) vanishes at no point belonging to it.

Returning now to the equation (14), and supposing that s is confined to the 
interval (y, 8), we see that

f ( s )  = — | 0 (t) xp (t) dt Îj

Hence, since both the numerator and the denominator on the right are 
differentiable, and the latter does not vanish in (y, 8), the function 
differentiable in this interval. In fact, by applying the ordinary rules, we obtain

/ '(« )  = o (r  -  5 -  §)•

But this is impossible, because by our hypothesis f ( s )  cannot be constant in any 
interval. VFe conclude, therefore, that k ( s , t) is a definite function.

§ 20. I t  may be remarked that the conditions (l) and (2) of the preceding 
paragraph may be stated in another and more convenient form. For, if a discrimi-

* Vide § 3.
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AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 435

nator satisfying these conditions had the same value at two distinct points, it would 
necessarily have tha t value at all points of its domain which lie between them (§ 15). 
Thus, since the condition (l) and the continuity of 0 (s), <f>(s) assure us of an interval 
of the domain which lies between these points, the condition (2) would be violated. 
Hence a discriminator of this kind must be a steadily increasing function; and, 
conversely, a steadily increasing discriminator satisfies (2). We may, therefore, 
combine the 'results of the two preceding paragraphs in the theoreiq :—

The necessary and sufficient condition, that a function k tfi satisfying the
requirements of the theorem of § 17, should he , is that its discriminator
should he a steadily increasing function whose domain is dense everywhere in ( , h).

As an application of this theorem we may consider the function*

k (s,t) — ( s —a)( ) (  <  t),

— {t—a)(h—s)(s>t).

The discriminator has the 
point is

open interval ( a, h) for its domain, and its value at any

( s -a ) / (h -s ) ,

which steadily increases with s. I t  follows from § 17 and the theorem just stated 
that k (s, t) is a definite function of positive type.

§21. Leaving the particular class of functions with which we have been dealing, 
let us now suppose that k (s, t)is any function of positive type defined in the square 
a < s <  h, a <  £ :< 6. Let cq, a2, ..., am be any m points of the interval ( , h) which 
are such that

. ^ 1) tq, ‘••5
\0q, a2, • .., am

Then the function
s,cq, a2, ..., am \/K(ai, (h, •••, «» 

f  tq, a2i ^mji V/Uj 2̂>

will evidently be symmetric and continuous in the square a ^ s ^ h ,  a ^ t ^ h .
Again, when the function

/ 1̂? 2̂) • • • 5 ?̂i? 2̂? * • * 5K 1\Si, s2, ..., s„, cq, ct2, ..., am

is expressed as a determinant, it is easy to see that the minor obtained by suppressing 
all but the ith of the first n rows and all hut the of the first n columns is

 ̂ tq, Cq, •••» \
K \S„ cq, a2> ..., amJ

* This is the generalised form of H ilbert ’s classical function, vide ‘Gott. Nacho/ p. 227 (1904).

3 K 2
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436 ME. J. MEECER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

The determinant of n rows and columns, whose elements are these minors, will 
therefore he

^ {^ \ i •••> /'*lj **2? • • •) '̂ "n\
\au cq, ..., a j \  ..., s j  ‘

But, by the theory of determinants, we also know that it is equal to#

/ cq, cq, .. • ? \ 71 1 K (si ..• cq, .. • ? ^m\
1-- ?

\8i, ..’•> Cq, •• • ? d'm j

Thus, equating these two values, we find

> 2̂? •••? ^ 1? 2̂? •••? 1̂? •••?
\Si, S2, ••., \Sl5 6*2, ... ,  Cq, ... ,

Now, in virtue of our hypothesis that k (s, t) is of positive type, it follows from § 10 
that the quotient on the right-hand side of this equation has a denominator which is 
positive and a numerator which is not negative. Hence we have

hh’ S» M  2: 0 ;
Wl, #2) •••>

and thus, as this is true for all values of n ,the theorem of § 10 shows that is 
o f positive type.

§ 22. In the light of this result, it appears that each function of positive type can 
be used to generate an infinite series of such functions. We might, therefore, expect 
to obtain other species of functions of positive type by taking k t) to be of the kind 
considered in §§ 14- 20.

For simplicity, let us consider the function

h (s, t) = k^  j  k (cq, cq),
where

k (cq, cq) =  0 (cq) cf) (cq) ^  0.

Confining our attention to the triangle s <  it will he seen that the variables 
6* and t can be related to the constant <q by either of the inequalities :—

(i) s< t< <q,

(ii) s ^  cq <

(iii) cq — s <

The reader may find it convenient to refer to the accompanying diagram, in which

* Fide Scott  and Mathews , op. pp. 67, 68.

• • •, cq 
..., cq • (16)91/
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the square as< b, at<  bis drawn, and the portion of the triangle .srS which
corresponds to each set of inequalities is marked with its number.

AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 437

(a,#) (&,$)

By expressing h (s, t) in terms of the functions 0 and <j>, it is easily seen that at each 
point of the region (i)

h (s, t) = (f) (s) <P (0 0 (0
(cti) (ax)_

that in (ii) h (s,t) is everywhere zero, and that in (iii)

h (s, t) — 0 (<%) <j> (t)0(0 _  (s)
_6 (ax) <j) (a1)_

In a similar way, or hy a mere interchange of the variables s and t, the values of 
h (.s, t) in the corresponding divisions of the triangle s >  t can be obtained.

Now, let 0X (s),be continuous functions defined by

0i (s) = <f> (»i) 0

4>i (0 </> M  0 M
4> («i)

0
0(«i)

(a <  .s <  b ) ; 

(a <  s <  cq), 

(«i <  s <  6);

also let (5), 4>z (s) be two others defined by

02 (s) = 0
_  0 (0  __ 4> (Q

(ax) <£ (oh )

4>2 (s) = 0 (ai)4> (s)

(a <  6' <  a x),

(«i <  6' <  6) ;

(a <  s <  6);

and, finally, let two functions hr (.s, £) (r = 1, 2) be defined in the square <  5 :f~ 6, 
a < t < l> by

/C (*, 0 = (s) <l>r (t) (s <  «),

= 4>r (0 0r (0 O'
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438 ME. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

On comparing these latter functions with h (s, it will be seen that we have

hi (*, t) = h(s, t) a< s <  <  <  cq,

=0 elsewhere;
and

h2 (s, t) = h (s, t) ax <  <  <  <

= 0 elsewhere.

I t  follows from this that we have

h ( s ,  t) =  hi  (s, +  (s, t)

at each point of the square in which these functions are defined. But it is easily seen 
that, as k ( s , t) is of positive type, the functions lir t)  satisfy the requirements of 
the theorem enunciated in § 17. Thus h t) is merely the sum of two functions of 
the same nature as k ( s, t), and hence, as it is obvious a priori  that the sum of any 
number of functions of positive type is a function of positive type, it appears that we 
do not in this way obtain any new species of these functions.

The reader may convince himself in a similar manner that the same conclusion 
holds in regard to the more general function considered in the preceding paragraph.

§ 23. Although the result of § 21 proves to be so barren in this respect, it may be 
applied to obtain an interesting property of the symmetrical minors of the deter
minant of the integral equation

f ( s )  =  (f> (s)-\\ K(s,t) d t , . . . (7)
J n

when k (s, t) is of positive type. Adopting the notation and hypothesis of the 
paragraph referred to, let A (A.) be the determinant of the above integral equation 
when h (.<?, t) replaces k  ( s, t). Then, since

A(X) =  1 —X j y  (s„ Sl) dh + £ k *’) dSl ds2 - . . .

+ V V  j ... f I h ’ *2’ M  <fo, ... ...
fl  ! J a J a J a yAL? ^2? • • • ? ^nj

it is easily seen from (16) that

A (A.) = I) A. ;

where

Gja , Go

D X; «1, ®•
ox, a.

O'i, 0 .
o,x, o 2, .

• > I  K  l  * * * ’

• 3 Omj j  \Ĉi3 , ..., OmJ (17)

< 0 )_ x h  1, «1, a2,
GmJ J a ^ 1 ?  Gj) G<2)

and is, therefore, a symmetrical mth minor of D (X), the determinant of (7), in accord
ance with Fredholm ’s definition. But, as we have shown that h (s, t) is of positive
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AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 439

type, the function A (X) has its zeros ail real and positive. I t  follows, therefore, from 
(17) tha t all the zeros of the minor

JQ / ^ . Cl\, Ctg, Cf'm \
\ ? 2̂? •• •> ®m/

are real and positive. Since the minor must be identically zero il

1̂? 2̂? •••?
2̂? •••?

(cf  § 11), we have thus proved the theorem :—
The zeros o f all symmetrical minors o f  the determinant o f  an integral equation of 

the second kind, whose characteristic function is o f  positive type, are all reed and 
positive.

In particular, as KA(s, t),the solving function of (7), is defined by

K a (s, t) = D (X ; 5, D (X),
where

D (X ; t) =  K (., t) -  x j \  ( ' ; * )  * .  +  g  O f t  f t  Z  t )  ^  +  • • • >

it appears that, when s = t, the solving function only vanishes for positive values of X.

Part  IV.—The  Expansion  of  Functions  of  Positive  and  Negative  Type .

§ 24. I t  is to be remarked that H ilbert  and Schmidt  have been able to give very 
little information about the expansion of a given symmetric characteristic function in 
a series of products of normal functions. H ilbert * has indeed shown incidentally 
that, if the number of singular values is finite,

K (s ,  t )  =  $ ; .....(18)
n=1

and Schmidt  f in his dissertation has established that this equation remains valid 
when the series on the right is uniformly convergent. The latter theorem is, of 
course, much wider than the former as regards its generality; but it has the defect 
that the uniform convergence, which it postulates, is not connected with any other of 
the properties of k ( s, t). In the present section we shall attempt to remedy this in 
some measure by proving that the equality (18) certainly holds when t) is of 
positive or negative type.

* ‘Gott. Nachr.,’ 1904, p. 73.
f Printed with additions in ‘ Math. Ann./ Band LXIII. The theorem referred to will be found on  

pp. 449, 450. From a remark made on p. 453 1 gather that it is originally due to H ilbert .
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440 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

§ 25. In the paper referred to above, Schmidt * has proved that, if k (s, t) is any 
continuous symmetric function, the solution of

/ (s) =  4> («) -   ̂ f * ('% t) <f> (0  dt
J a

is given by

4* (s) = f  (s) +  2  f f ( x ) 'Pn (x)

provided that X is not one of the singular values Xl5 \ 2, ... , X„, ... ; t  moreover, the 
convergence of the series on the right is both absolute and uniform. Now, when we 
take

/ ( S) = K (S, t),

it is known that, in virtue of one of the characteristic relations,

4> (s) = K a

I t  follows, therefore, from the above expansion and the homogeneous equations

= 4*n{x) K (x, t) dx 1,2, . . . ) ,
J a

that

K ,  (s, t) = K ( s , t ) + i  ............ ( 1 9 >
n = 1 Aw VArc —  A /

I t  should be remarked that Schmidt ’s theorem only allows us to assume that the 
series on the right of (19) is uniformly convergent with respect to <  <  ), for
each assigned value of t ; and hence, by symmetry, that it is uniformly convergent 
with respect to t (a<  t< 6), for each assigned value of s. When k (s, t) is of positive 
type, we may establish the uniform convergence of the series in the whole of the square 
a<  s<  b, a<  t<  6, as follows. If  we write in (19), it is clear that the terms

of the series on the right become functions of s, which, with the possible exception of a 
finite number, are all of the same sign as X ; accordingly, by D in i ’s theorem,J this series 
is uniformly convergent in the interval a< ,9 <  b. But, in virtue of the inequality

2 | </»* (s)xfjn (t)| <  xfjn2 (s) + rpn2

the terms of the series on the right of (19) are never greater in absolute value than 
those of

1 £ k [i/C2 (s) + rpn (Q]
2 n = l X?l(Xn —X)

* Pp. 453, 454.
t We shall always suppose this to be the case in what follows.
J D in i , “ Fondamenti per la teoria delle funzioni di variabili reali ” (Pisa, 1878), §99. See also Young , 

“ On Monotone Sequences of Continuous Functions,” ‘ Proc. Camb. Phil. Soc.,’ vol. XIV., pp. 520-3.
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Hence, as the latter converges uniformly for a <  s <  <  t <  by what has just
been said, the result follows.

§26. Let us denote the sum of the first m terms of the series on the right of (19) 
by Sm (X ; .v, t),and the remainder after these terms by Rm (X; t). We have

SVH (X ; s, t )  — 5 ^ x̂ n ^  •
n= 1 X„ X n=l X„

AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 441

and hence, keeping fixed,

L«S„(\;s ,  t )=  - S
?i — l AjoA -> •  oo

L  ̂ (X 5 s, £) *Pn (s) $n(t)
vA.

Thus, since (19) can be written

H A ('<L 0  R?» (X j S, t) — K + ibwl (X * 6\

we obtain the equations

L«[Kx(s,0-B4.(A ;*,<)]= Lt [K»(*, ,, <)] = «(»,«)- 5 (20)
A oo A G? oo n — 1 A n

This relation holds for any continuous function k  t ) ,  but we now add the further 
limitation that the function shall be of positive type. Then, since

R . e  ;* ,* )=  s An \AW A;n=m  + 1

we shall have
Rni (X ; 5, <  0, • • (21)

for each negative value of X.
Let us, in the next place, investigate the values of KA s) for negative values of X, 

it being supposed, as above, that k  (s , t )  is of positive type. If is any continuous 
function defined in the interval (a, b) , it follows from (19) and the theorem proved at 
the end of the preceding paragraph that

\pn (s) 0 (s) dsf f Kx(.s*, t) 0 ( s ) 0 (t) dsdt =( [ / <■ ( s, t) 0 (s) X — ^ -r
J a J i * a J a A?l y A n A j

Recalling H i l b e r t ’s theorem, it will be seen without difficulty that this reduces to

(  f  k , («, t)e (s) e (t) ds dt = - A -  [" ( V  (*) ds
• a J a n —1 K n A a ^

3 LVOL. CCIX.— A.
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442 ME. J. MERCEE: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

Now, when X is negative, the terms of the series on the right must be either zero 
or positive. We conclude, therefore, that for all functions of the class ®

lb tb.
| Ka (s , t) 6 (s) 6 (t) 0 (X <  0).
• a J a

In other words, K k (s, t) is of positive type for these values of X. Applying, then, 
the theorem proved above (§§ 6, 10), we see that

K x(s, s ) > 0  (X <  0)................................. (22)

§ 27. Returning to the formula (20) and writing s = t, we obtain 

L t [K„ (*, s) - R „  (X; *)] = k  (s, ,s) -  5 I 'h M l .
A->- — oo n — 1

Accordingly, from (21) and (22), it follows that

k (s, s)>5 t t M Z ..................................... (23)
n ~ l  A.n

This is true, of course, for all values of m which are sufficiently g rea t; and, further, 
when we increase m we only add positive terms to the right-hand side. By a well- 
known theorem of the elementary theory of series, we thus see that

converges for each value of s in the interval (a, ; and hence, since

a =  [ * . « ] * + [+ 40T .
that the series

V (s) 'K (t) 
n— 1 Xn

converges absolutely for each pair of values of the variables satisfying the inequalities 
a <  s 6 ,a ^ t ^ i b .  From this last result it follows that the function

/(* , ■«).= Km -  s  A M M ) .(24)
n—1 A n

has a definite finite value when the variables are restricted in the manner just 
mentioned. In the paragraphs which follow we shall consider the properties of 
f  (s, t), and eventually prove that it is everywhere zero. I t  may be remarked that 
the inequality (23) proves the relation

0 < / ( s ,  s) <  (s,
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AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 443

§ 28. I f  € is any arbitrarily assigned positive quantity, it follows from the absolute 
convergence of the series on the right of (24) that we can choose m great enough to 
ensure the inequality

£ 1 */>»(s) (t) 1
?i=m+1 X. < 3 ..................................................< ">

And, when this is done, it is easily seen that, since

I (*)$» M l >  | X^w (s) xf/n | (n > m)
K

we have
Xn(Xn- X )  (X <  0) ’

| (X; s, t)| <  |  <  0).

Again, from (20), we see that a negative number 1/ can be chosen with so great an 
absolute value that, when X <  I/,

R-a. M t) (X; s, t̂ j 

while, from (24) and (25), we deduce

I L m - s  W (t):I L n = \ An _

k ( m J < ! ;

-/(* »  o <!•

Adding the three inequalities just written, we obtain

| K x ( « . t ) - / ( M ) l < ‘ (X <  L').

In other words, we have proved the theorem

L t KA (s, t) = f ( s , t )  <  <  5, <  £ <  6).
— co

§ 29. I t  may be proved# that, if c is any constant and ax any point of the interval 
(a, b), then the solving function corresponding to the characteristic function

h(s, t) =  k (s , t ) - K(ai>s)* (a ' ’ *) 

is
H,(s, 0  = Ka(s,«)------xK O  .....................................(26)

v '  v ’ c +

whilst the corresponding determinant is easily seen to be

A(X) =  D(X) 1 +
K A M i , a x ) - K ( a u ax)

c

* Cf. Bateman , ‘Messenger of Mathematics’ (1908), p. 184. The result in question follows from 

equations (24), (25), and (26), by writing /(g) = g(t) = K(ah t) and observing that

+ {s) = El & iA , X(0 = Ka (ax, t), Xrn- ^  .

3 L 2
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444 MR. J. MERCER: FUNCTION'S OF POSITIVE AND NEGATIVE TYPE 

Now, if we write s = t  = cqin (19) and (24), it is easy to see that

K, K  a,) =  / ( « „ « , ) +  s t f e M C ,
n ~ \ A n A

and hence that KA (a1} cq)constantly increases with X, so long as the latter is negative. 
Consequently, when e is any positive quantity, and we take c to be

k  (cq, cq) — f ( a u °h) +€,

it follows from the theorem of the preceding paragraph that

K a (cq, cq) k  (cq, cq) + c

can only vanish for positive values of X. Thus, as D (X) has no negative roots, h (s, 
is of positive type,* and, therefore, in virtue of the remark at the end of § 27,

* L£ H a (,s, s) >: 0 <  s <
— qo

Using the formula (26), it will be seen that this becomes

f  (s, s) — >  o ( a <  <  6).

But, as e may be taken as small as we please, this is evidently impossible unless 
/ (« i ,  s) vanishes. I t  follows that, as cq and may each have any assigned values 
belonging to (cq b),we must have

f  ( s, t) — 0 (cl< s <  b, a

We have thus shown that, in the case of a function of positive type, the series

2  VA (s ) (t)
K=-l X„

has k  ( s, t) for its sum-function. I t  was shown in § 27 that the convergence of this 
series is absolute, and, by an application of D in i ’s theorem, it may be shown that the 
convergence is also uniform in the square <  <  Hence, xpx ( ),
\p2 (s), ..., rf>n(s), ... cire a complete system o f normal functions relating to a function
k  (s,t) o f positive type and Xl5 X2, ..., Xn, ... are the corresponding singular ,
then the series

< ^n(s)^n
*  X

n = l

converges both absolutely and uniformly, one/ its sum-function is (s, t).

* Owing to the fact that A (X) has only positive roots.
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AND THEIR CONNECTION WITH THE THEORY OF INTEGRAL EQUATIONS. 445

§ 30. From this theorem several interesting results may be deduced. For example, 
replacing k ( s , t) by the series (27) in (19), we obtain

K a ( s t) ^  ̂ (0
n=  1 A.

(28 )

where the series on the right is uniformly convergent. Again, if we write s in 
(28), and integrate with respect to s between the limits a and we obtain

f  Kx (s, s ) ds t  —..... (29)
•J a n = 1 A7l A

Provided tha t X is not positive, the terms of the series on the right are all positive 
and less than those of the series

t ± -■ \ >?z = 1 i\n

which, by writing X = 0 in (29), is seen to converge. I t  thus follows that, for X <  0, 
the former series is uniformly convergent. Integrating (29) between the limits 0 and X, 
where the latter is negative, and recollecting Fredholm ’s formula

- A p o g D(X)] = £ k x (s,

it is easily seen that
D(x) =  n  ( i - X)  M O ) ,

w=l \  AnJ

since D (0) = 1. I t  now follows that, as the right-hand member of this equation is 
an integral function of X, we may drop the restriction X 21- 0. We have thus expressed 
D (X) as an infinite product.

Finally, we may remark that if | X | is less than the least of the numbers Xl5 X2,..., Xn, ... 
the right-hand side of (29) may be expressed as a power series in which the coefficient 
of Xw is

2 ——■.\  m + 1
ix —— 1

Also, by employing N eumann ’s expansion for KA it is easily seen that the
coefficient of Xm on the left is

[b
Km+1 (s, s) ds,

where in the usual notation
rb rb rb

Km+l(s, t) = ...
J a J a J a

k  (sm, i)ds1 ds2... (m >  1),

and
Ki (S, l )  =  K (S, t).
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446 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE.

I t  follows that
rb -j

I Km s) ds — S r—- (tm =  1,2,. . .).
* a n= l  An

§ 31. In conclusion, it may be pointed out that the theorem ot § 29 holds also when 
k (s, t) is of negative type. This may be deduced from the theorem mentioned by 
employing the usual device, or it may be proved directly by commencing with the 
equation

u  [ K , ( i , «)] = * (* ,* )- 5 [AM !!
A qo  n = 1 A n

instead of that at the beginning of § 27, and proceeding by a method similar to that 
which we have used above.

I t  may also be of interest to remark that by a very slight modification of these 
proofs we may show that (27) represents * (s, t) when the latter has only a finite 
number of singular values of one sign, but an unrestricted number of the other.
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