Wednesday, November 15, 2023
Instructor S. Lototsky (KAP 248D; x0-2389; lototsky@usc.edu)

Instructions:

- No books, notes, or help from other people. Think twice (or more) before using a calculator.
- Turn off cell phones.
- Show your work/explain your answers.
- You have 50 minutes to complete the exam.
- There are five problems; 10 points per problem.
- Upload the solutions to GradeScope.

Problem 1. A fair die is rolled until the total sum of all rolls exceeds 350 . Compute approximately the probability that at most 100 rolls are necessary. Note that, for a single roll of the die, the expected value and variance of the outcome are $7 / 2$ and $35 / 12$, respectively. Use the continuity correction. Leave the answer in the form $P(Z<r)$ or $P(Z>r)$ (whichever applies), where Z is a standard normal random variable and r is a suitable real number.

Answer/Soluton: This is from Spring 2017. With X_{k} indicating the value of roll number k and $S_{n}=X_{1}+\ldots+X_{n}$, the goal is to approximate $P\left(S_{100} \geq 351\right)=P\left(S_{100}>350.5\right)$. By CLT, and using $35 / 12 \approx 1.7, P\left(S_{100}>350.5\right) \approx P(Z>(350.5-350) / 17)=P(Z>1 / 34)$, which is slightly less than $1 / 2$.

Problem 2. For a randomly selected group of 50 people, compute the expected number of distinct birthdays (that is, the expected number of the days of the year that are a birthday of at least one person in the group). Assume 365 days in a year.

Answer/Soluton: This is from Fall 2021; the answer is $365\left(1-(364 / 365)^{50}\right)$ by indicator method because $(364 / 365)^{50}$ is the probability that a particular day is NOT a birthday of any of the 50 people.

Problem 3. Customers arrive at a bank according to a Poisson process. Suppose that three customers arrive during the first hour. Compute the probability that at least one arrived during the first 20 minutes.

Answer/Soluton: This is from Fall 2018. We need the probability p that, out of three iid unform random variables U_{1}, U_{2}, U_{3} on $(0,1)$, at least one is less than or equal to $1 / 3$. Go by the complement: $\quad p=1-P($ all bigger than $1 / 3)=1-\left(P\left(U_{1}>1 / 3\right)\right)^{3}=1-(2 / 3)^{3}=1-(8 / 27)=$ 19/27.

Problem 4. Let X and Y be iid standard normal random variables. Determine the value of the number a so that the random variables $X+2 Y$ and $a X+Y$ are independent.

Answer/Soluton: This is from Fall 2022.
For Gaussian vector (automatic when start with iid-s), zero correlation implies independence, so need $E(X+2 Y)(a X+Y)=0$, that is, $a+2=0$ or $a=-2$.

Problem 5. The joint probability density function of two random variables X and Y

$$
f_{X Y}(x, y)= \begin{cases}C y, & \text { if } x^{2}+y^{2} \leq 1,|x| \leq 1, y \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(a) Are X and Y independent? Justify your answer.
(b) Compute $E(X \mid Y)$.

Answer/Soluton: This is from Fall 2013. For (a) the answer is ' no ', because $X^{2}+Y^{2} \leq 1$; for (b) the answer is 0 by symmetry: given Y, we have X uniform over the corresponding slice of the upper half-disk.

