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Abstract. The original Kelly criterion provides a strategy to maximize the long-term growth of
winnings in a sequence of simple Bernoulli bets with an edge, that is, when the expected return on
each bet is positive. The objective of this work is to consider more general models of returns and the
continuous time, or high frequency, limits of those models. The results include an explicit expression
for the optimal strategy in several models with continuous time compounding.
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1. Introduction. Consider repeatedly engaging in a game of chance where one
side has an edge and seeks to optimize the betting in a way that ensures maximal
long-term growth rate of the overall wealth. This problem was originally posed and
analyzed for some special cases by John Kelly [9] at Bell Labs in 1956; the solution
was implemented and tested in a variety of setting by a successful mathematician,
gambler, and hedge fund manager Ed Thorp over the period from the 60’s to the
early 00’s [20, 21, 23, etc.] Reference [14] provides a comprehensive survey of the
Kelly criterion and its applications.

As a motivating example, going back to Kelly [9], consider betting on a biased
coin toss where the return r is a random variable with distribution

(1.1) P(r = 1) = p, P(r = −1) = 1− p;

in what follows, we refer to this as the simple Bernoulli model. The condition to have
an edge in this setting becomes 1/2 < p ≤ 1 or, equivalently,

(1.2) E[r] = 2p− 1 > 0.

We plan on being able to make a large sequence of bets on this biased coin, resulting in
an iid sequence of returns {rk}k≥1 with the same distribution as r, and ask how much
we should bet so as to maximize long term wealth, given that we are compounding
our returns. Assume we are betting with a fixed exposure f , that is, each bet involves
a fixed fraction f of the overall wealth, and f ∈ [0, 1]. Practically, f ≥ 0 means no
shorting and f ≤ 1 means no leverage, which we refer to as the NS-NL condition.
Then, starting with the initial amount W0, the total wealth at time n = 1, 2, 3, . . . is
the following function of f :

W f
n = W0

n∏
k=1

(
1 + frk

)
.

For the long-term compounder wishing to maximize their long term wealth, a natural
and equivalent goal would be to find the strategy f = f∗ maximizing the long-term
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growth rate

(1.3) gr(f) := lim
n→∞

1

n
ln
W f
n

W0
.

By direct computation,

gr(f) = lim
n→∞

1

n

n∑
k=1

ln(1 + frk) = E ln(1 + fr) = p ln(1 + f) + (1− p) ln(1− f),

where the second equality follows by the law of large numbers, and therefore, after
solving g′r(f

∗) = 0,

(1.4) f∗ = 2p− 1, max
f∈[0,1]

gr(f) = gr(f
∗) = p ln

p

1− p
+ (2− p) ln(2− 2p);

note that the edge condition (1.2) ensures that f∗ is an admissible strategy and
gr(f

∗) > 0. For more discussions of this result see [21].
Our objective in this paper is to derive analogues of (1.4) in the following situa-

tions:
1. the distribution of returns is a more general random variable (Section 2);
2. the compounding is continuous in time (Section 3);
3. the compounding is high frequency, leading to a continuous-time limit (Sec-

tions 4 and 5).
In particular,

1. We show that, for a large class of returns, the optimal strategy in the high-
frequency limit only depends on the mean µ and the variance σ2 of the return:

(1.5) f∗ =
µ

σ2
.

In fact, as we show in Section 5, relation (1.5) holds even in some models
with random time horizon. These results contribute to the exiting literature
on the subject, such as [2] and [21].

2. We show in Section 3 that, for a non-random long-term growth rate to exist in
continuous time, the corresponding return process, up to a small correction,
must be a semi-martingale with independent increments; the result also leads
to a non-trivial generalization of (1.5).

3. We derive in Section 4 a completely new version of (1.5) when the returns
are described by infinitely divisible distributions other than normal, and thus
address some of Thorp’s questions regarding fat-tailed distributions in finance
[23].

To illustrate (1.5), consider a classical problem in portfolio theory asking for an
optimal mix of equities and risk-free assets. For simplicity, assume that the portfolio
has only two components, a risky asset and cash. If the annual rate of return on
the risky asset has mean 30% and the standard deviation 65%, and if the investor
is frequently re-balancing the portfolio with the goal of maximizing the long-term
wealth, then, according to (1.5), the optimal portfolio should be

f∗ =
0.3

(0.65)2
≈ 0.7 or 70%

the risky asset and 100 − 70 = 30% cash. Note that the Markowitz portfolio theory
can lead to the same result, but using a different argument; we compare and contrast
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the two approaches in Section 6. This classical problem has been re-branded by
the asset management industry as goal-based investing which seeks to build multi-
asset, or model, portfolios with a mix of assets to achieve a particular goal, such
as maximizing income or minimizing shortfall risk of reaching a particular target.
Another possible goal is a growth-optimal portfolio [13, Ch. 15], which is the subject
of our investigation. More precisely, the goal is to maximize long term growth (1.3),
and then, according to (1.5), the optimal portfolio should use a mix prescribed by
(1− f∗, f∗) in cash and equities, respectively.

It has been well documented [3, 4, 18, etc.] that many financial time series, espe-
cially at a higher frequency, exhibit heavy tails and skewness, both at the statistical
and risk-neutral levels. Formula (1.5) does not account for risky assets with heavy-
tailed or skewed distributions, and therefore any portfolio based on (1.5) is likely to be
sub-optimal in many situations. In the current work, we take a more realistic view of
financial markets by allowing non-normally distributed returns. This approach leads
us to several new formulas expressing the long-term growth rate and the correspond-
ing optimal allocation (see, for example, (3.7) and (3.28) below). Not surprisingly,
these new formulas contain known results, such as (1.5), as a particular case.

The Kelly criterion, such as (1.4) or (1.5), is also related to expected utility theory
when the utility function is logarithmic, even though this relation is not an easy one.
While the idea of logarithmic utility goes back to Daniel Bernoulli’s resolution of
the St. Petersburg paradox, there are many other choices of the utility function in
modern economic and financial literature. Moreover, Kelly’s use of the logarithm
function should be interpreted as a prescriptive goal-based utility function coming
from the need to maximize long term growth rate of an investment, as opposed to
a (more traditional) descriptive utility function characterizing preferences. For more
details on this part of the story, see [22].

In what follows, we write ξ
d
= η to indicate equality in distribution for two random

variables, and X
L
= Y to indicate equality in law (as function-valued random elements)

for two random processes. For x > 0, bxc denotes the largest integer less than or equal
to x. To simplify the notations, we always assume that W0 = 1.

2. Discrete Compounding: General Distribution of Returns. Assume
that the returns on each bet are independent random variables rk, k ≥ 1, with the
same distribution as a given random variable r, and let

(2.1) W f
n =

n∏
k=1

(
1 + frk

)
, n = 1, 2, . . . ,

denote the corresponding wealth process. We also keep the NS-NL condition on
admissible strategies: f ∈ [0, 1].

For the wealth process W f to be a non-trivial object worthy of investigation, we
need the random variable r to have the following properties:

P(r ≥ −1) = 1;(2.2)

P(r > 0) > 0, P(r < 0) > 0;(2.3)

E| ln(1 + r)| <∞.(2.4)

Condition (2.2) quantifies the idea that a loss in a bet should not be more than
100%. Condition (2.3) is basic non-degeneracy: both gains and losses are possible.
Condition (2.4) is a minimal requirement to define the long-term growth rate of the
wealth process.
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The key object in this section will be the function

(2.5) gr(f) = E ln(1 + fr).

In particular, the following result shows that gr(f) is the long term growth rate of
the wealth process W f .

Proposition 2.1. If (2.2) and (2.4) hold and gr(f) 6= 0, then, for every f ∈
[0, 1], the wealth process W f has an asymptotic representation

(2.6) W f
n = exp

(
ngr(f)

(
1 + εn

))
,

where

(2.7) lim
n→∞

εn = 0

with probability one.

Proof. By (2.1), we have (2.6) with

(2.8) εn =
1

ngr(f)

n∑
k=1

(
ln(1 + frk)− gr(f)

)
,

and then (2.7) follows by (2.4) and the strong law of large numbers.

A stronger version of (2.4) leads to a more detailed asymptotic of W f
n .

Theorem 2.2. Assume that (2.2) holds and

(2.9) E| ln(1 + r)|2 <∞.

Then then, for every f ∈ [0, 1], the wealth process W f has an asymptotic representa-
tion

(2.10) W f
n = exp

(
ngr(f) +

√
n
(
σr(f)ζn + εn

))
,

where ζn, n ≥ 1, are standard Gaussian random variables,

σr(f) =
(
E
[

ln2(1 + fr)
]
− g2

r(f)
)1/2

,

and

lim
n→∞

εn = 0

in probability.

Proof. With εn from (2.8), the result follows by the Central Limit Theorem:

ngr(f) εn =
√
n

(
1√
n

n∑
k=1

(
ln(1 + frk)− gr(f)

))
=
√
n
(
σr(f)ζn + εn

)
.

Because the Central Limit Theorem gives convergence in distribution, the random
variables ζn in (2.10) can indeed depend on n. Additional assumptions about the
distribution of r, such as existence of higher-order moments, lead to higher-order
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asymptotic expansions and a possibility to have limn→∞ εn = 0 with probability one
[24, Theorem 1]. We do not pursue this direction: our goal is to keep the conditions
on the distribution of r as general as possible.

The following properties of the function gr are immediate consequences of the
definition and the assumptions (2.2)–(2.4):

Proposition 2.3. The function f 7→ gr(f) is continuous on the closed interval
[0, 1] and infinitely differentiable in (0, 1). In particular,

(2.11)
dgr
df

(f) = E
[

r

1 + fr

]
,
d2gr
df2

(f) = −E
[

r2

(1 + fr)2

]
< 0.

Corollary 2.4. The function gr achieves its maximal value on [0, 1] at a unique
point f∗ ∈ [0, 1] and gr(f

∗) ≥ 0.

Proof. Note that gr(0) = 0 and, by (2.11), the function gr is strictly concave on
[0, 1].

While concavity of gr implies that gr achieves a unique global maximal value at a
point f∗∗, it is possible that the domain of the function gr is bigger than the interval
[0, 1] and f∗∗ /∈ [0, 1]. A simple way to exclude the possibility f∗∗ < 0 is to consider
returns r that are not bounded from above: P(r > c) > 0 for all c > 0: in this case, the
function gr(f) = E ln(1 + fr) is not defined for f < 0. Similarly, if P(r < −1 + δ) > 0
for all δ > 0, then the function gr is not defined for f > 1, excluding the possibility
f∗∗ > 1.

Below are more general sufficient conditions to ensure that the point f∗ ∈ [0, 1]
from Corollary 2.4 is the point of global maximum of gr: f

∗ = f∗∗.

Proposition 2.5. If

lim
f→0+

E
[

r

1 + fr

]
> 0 and(2.12)

lim
f→1−

E
[

r

1 + fr

]
< 0,(2.13)

then there is a unique f∗ ∈ (0, 1) such that

gr(f) < gr(f
∗)

for all f in the domain of gr.

Proof. Together with the intermediate value theorem, conditions (2.12) and (2.13)
imply that there is a unique f∗ ∈ (0, 1) such that

dgr
df

(f∗) = 0.

It remains to use strong concavity of gr.

Because r ≥ −1, the expected value E[r] is always defined, although E[r] = +∞
is a possibility. Thus, by (2.11), condition (2.12) is equivalent to the intuitive idea of
an edge:

E[r] > 0,

which, similar to (1.2), guarantees that gr(f) > 0 for some f ∈ (0, 1). Condition
(2.13) can be written as

E
[

r

1 + r

]
< 0,
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with the convention that the left-hand side can be −∞. This condition does not
appear in the simple Bernoulli model, but is necessary in general, to ensure that the
edge is not too big and leveraged gambling (f∗ > 1) does not lead to an optimal
strategy.

As an example, consider the general Bernoulli model with

(2.14) P(r = −a) = 1− p, P(r = b) = p, 0 < a ≤ 1, b > 0, 0 < p < 1.

The function
gr(f) = p ln(1 + fb) + (1− p) ln(1− fa)

is defined on (−1/b, 1/a), achieves the global maximum at

f∗ =
p

a
− 1− p

b
,

and

gr(f
∗) = p ln

p(a+ b)

a
+ (1− p) ln

(1− p)(a+ b)

b
.

Note that gr(f
∗) is equal to the Kullback-Leibler Divergence DKL(P ‖ Q), where

P is the Bernoulli distribution with probability of success p and Q is the Bernoulli
distribution with probability of success a/(a + b). This observation confirms that
gr(f

∗) ≥ 0 and provides another example of an information-theoretic interpretation
of the optimal rate of return; cf. [9].

The NS-NL condition f∗ ∈ [0, 1] becomes

a

a+ b
≤ p ≤ min

(
ab

a+ b

(
1 +

1

b

)
, 1

)
,

and it is now easy to come up with a model in which f∗ > 1: for example, take

a = 0.1, b = 0.5, p = 0.5

so that f∗ = 4. Given that a gain and a loss in each bet are equally likely, but
the amount of a gain is five times as much as that of a loss, a large value of f∗ is
not surprising, although economical and financial implications of this type of lever-
aged betting are potentially very interesting and should be a subject of a separate
investigation.

Because of the logarithmic function in the definition of gr, the distribution of r
can have a rather heavy right tail and still satisfy (2.4). For example, consider

(2.15) r = η2 − 1,

where η has standard Cauchy distribution with probability density function

hη(x) =
1

π(1 + x2)
, −∞ < x < +∞.

Then

gr(f) =
2

π

∫ +∞

0

ln
(
(1− f) + fx2

)
1 + x2

dx = 2 ln
(√

f +
√

1− f
)
,

where the second equality follows from [7, Formula (4.295.7)]. As a result, we get a
closed-form answer

f∗ =
1

2
, gr(f

∗) = ln 2.
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A general way to ensure (2.2)–(2.4) is to consider

(2.16) r = eξ − 1

for some random variable ξ such that P(ξ > 0) > 0, P(ξ < 0) > 0, and E|ξ| < ∞;
note that (2.15) is a particular case, with ξ = ln η2. Then (2.12) and (2.13) become,
respectively,

Eeξ > 1 and(2.17)

Ee−ξ > 1.(2.18)

For example, if ξ is normal with mean µ ∈ R and variance σ2 > 0, then

Eeξ = eµ+(σ2/2), Ee−ξ = e−µ+(σ2/2),

and (2.17), (2.18) are equivalent to

(2.19) − σ2

2
< µ <

σ2

2
,

which, when interpreted in terms of returns, can indeed be considered as a “reason-
able” edge condition: large values of |µ| do create a bias in one direction. For this
and many other models of the form (2.16), the corresponding f∗ is not available in
closed form but can be evaluated numerically by approximating the function gr(f)
for several values of f using (2.5) and Monte Carlo simulations.

Except for Theorem 2.2, all other results in this section continue to hold when the
sequence {rk, k ≥ 1} of returns is strictly stationary and ergodic [10, Section 20.2].

3. Continuous Compounding and a Case for Lévy Processes. Continuous
time compounding includes discrete compounding as a particular case and makes it
possible to consider more general types of return processes. The objective of this
section is to show that continuous time compounding that leads to a non-trivial and
non-random long-term growth rate of the resulting wealth process effectively forces
the return process to have independent increments. The two main examples of such
process are sums of iid random variables from the previous section and the Lévy
processes.

Writing (2.1) as

(3.1) W f
n+1 −W f

n =
(
fW f

n

)
rn+1,

we see that a natural continuous time version of (3.1) is

(3.2) dW f
t = fW f

t dRt

for a suitable process R = Rt, t ≥ 0 on a stochastic basis

F =
(

Ω,F , {Ft}t≥1,P
)

satisfying the usual conditions [17, Section I.1]. We interpret (3.2) as an integral
equation

(3.3) W f
t = 1 + f

∫ t

0

W f
s dRs;
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recall that W f
0 = 1 is the standing assumption. Then the Bichteler-Dellacherie theo-

rem [17, Theorem III.47] implies that the process R must be a semi-martingale (a sum
of a martingale and a process of bounded variation) with trajectories that, at every
point, are continuous from the right and have limits from the left. Furthermore, if we
allow the process R to have discontinuities, then, by [17, Theorem II.36], we need to
modify (3.3) further:

W f
t = 1 + f

∫ t

0

W f
s−dRs,

where
Ws− = lim

ε→0,ε>0
Ws−ε,

and, assuming R0 = 0, the process W f becomes the Doléans-Dade exponential

(3.4) W f
t = exp

(
fRt −

f2〈Rc〉t
2

) ∏
0<s≤t

(1 + f4Rs) e−f4Rs ;

cf. [12, Theorem 2.4.1]. In (3.4), 〈Rc〉 is the quadratic variation process of the
continuous martingale component of R and 4Rs = Rs −Rs−.

A natural analog of (2.2) is

(3.5) 4Rs ≥ −1,

and then (3.4) becomes

(3.6) W f
t = exp

fRt − f2〈Rc〉t
2

+
∑

0<s≤t

(
ln(1 + f4Rs)− f4Rs

) .

To proceed, let us assume that the trajectories of R are continuous: 4Rs = 0 for
all s so that

W f
t = exp

(
fRt − f2〈Rc〉t

)
.

If, similar to (1.3), we define the long-term growth rate gR(f) by

(3.7) gR(f) = lim
t→∞

lnW f
t

t
,

then we need the limits

(3.8) µ := lim
t→∞

Rt
t
, σ2 := lim

t→∞

〈Rc〉t
t

to exist with probability one and with non-random numbers µ, σ2. Being a semi-
martingale without jumps, the process R has a representation

(3.9) Rt = At +Rct ,

where A is process of bounded variation; cf. [8, Theorem II.2.34]. Then (3.8) imply
that, as t→ +∞,

(3.10) At = µt
(
1 + o(1)

)
, 〈Rc〉t = σ2t

(
1 + o(1)

)
,
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A natural way to achieve (3.8) is to ignore the o(1) terms in (3.10), and then, by the
Lévy characterization of the Brownian motion, the process R becomes

Rt = µt+ σ Bt,

where σ > 0 and B = Bt is a standard Brownian motion. Then

(3.11) W f
t = exp

(
fµt+ fσ Bt −

f2σ2t

2

)
is a geometric Brownian motion.

The long-term growth rate (3.7) becomes

(3.12) gR(f) = fµ− f2σ2

2
,

so that

f∗ =
µ

σ2
, gR(f∗) =

µ2

2σ2
,

and the NS-NL condition is

0 < µ < σ2.

Even though these results are not especially sophisticated, we will see in the next
section (Theorem 4.1) that the process (3.11) naturally appears as the continuous-
time, or high frequency, limit of discrete-time compounding for a large class of returns.

On the other hand, if we assume that the process R is purely discontinuous, with
jumps 4Rk = rk at times s = k ∈ {1, 2, 3, . . .}, then

Rt = 0, t ∈ (0, 1), Rt =

btc∑
k=1

rk =
∑

0<s≤t

4Rs, t ≥ 1,

and (3.4) becomes (2.1). Accordingly, we will now investigate the general case (3.4)
when the process R has both a continuous component and jumps. To this end, we
use [8, Proposition II.1.16] and introduce the jump measure µR = µR(dx, ds) of the
process R by putting a point mass at every point in space-time where the process R
has a jump:

(3.13) µR(dx, ds) =
∑
s>0

δ(4Rs,s)(dx, ds);

note that both the time s and size 4Rs of the jump can be random. In particular,
with (3.5) in mind,

(3.14)
∑

0<s≤t

(
ln(1 + f4Rs)− f4Rs

)
=

∫ t

0

−
∫ +∞

−1

(
ln(1 + fx)− fx

)
µR(dx, ds);

here and below,

(3.15) −
∫ b

a

, a < 0 < b,
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stands for ∫
(a,0)

⋃
(0,b)

.

By [8, Proposition II.2.9 and Theorem II.2.34], and keeping in mind (3.5), we get
the following generalization of (3.9):

Rt = At +Rct +

∫ t

0

∫ +∞

1

xµR(dx, ds)

+

∫ t

0

−
∫ 1

−1

x
(
µR(dx, ds)− ν(dx, s)das

)
,

(3.16)

where a = at is a predictable non-decreasing process and ν = ν(dx, t) is the non-
negative random time-dependent measure on (−1, 0)

⋃
(0,+∞) with the property

−
∫ +∞

−1

min(1, x2)ν(dx, t) ≤ 1

for all t ≥ 0 and ω ∈ Ω. Moreover

At =

∫ t

0

µs das for some predictable process µ = µt,(3.17)

〈Rc〉t =

∫ t

0

σ2
s das for some predictable process σ = σt,(3.18)

and the process

t 7→
∫ t

0

−
∫ +∞

−1

h(x)
(
µR(dx, ds)− ν(dx, s)das

)
is a martingale for every bounded measurable function h such that lim sup

x→0

|h(x)|
|x| <∞.

To proceed, we assume that

E
∫ t

0

−
∫ +∞

−1

| ln(1 + x)| ν(dx, s) das <∞, t > 0,

which is a generalization of condition (2.4). Then, by [8, Theorem II.1.8], the process

t 7→
∫ t

0

−
∫ +∞

−1

ln(1 + x)
(
µR(dx, ds)− ν(dx, s)das

)
is a martingale.

Next, we combine (3.6), (3.14), and (3.16), and re-arrange the terms so that the
logarithm of the wealth process becomes

lnW f
t = fAt + fRct −

f2

2
〈Rct〉 − f

∫ t

0

−
∫ 1

−1

xν(dx, s)das

+

∫ t

0

−
∫ +∞

−1

ln(1 + fx)ν(dx, s)das +Mf
t ,

(3.19)

where

Mf
t =

∫ t

0

−
∫ +∞

−1

ln(1 + fx)
(
µR(dx, ds)− ν(dx, s)das

)
.
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In general, for equality (3.19) to hold, we need to make an additional assumption

(3.20) −
∫ 1

−1

xν(dx, t) <∞

for all t ≥ 0 and ω ∈ Ω.
In the particular case (2.1),
• as = bsc is the step function, with unit jumps at positive integers, so that
das is the collection of point masses at positive integers;

• ν(dx, s) = FR(dx), where FR is the cumulative distribution function of the
random variable r, so that (3.20) holds automatically;

• µt = gf (r) +
∫ 1

−1
xFR(dx), Rct = 0, σt = 0;

• Mf
t =

∑
0<k≤t

(
ln(1 + frk)− gr(f)

)
;

• condition (3.25) is (2.9).
A natural way to reconcile (3.10) with (3.17), (3.18) is to take µt = µ, σt = σ for

some non-random numbers µ ∈ R, σ ≥ 0, and a non-random non-decreasing function
a = at with the property

(3.21) lim
t→+∞

at
t

= 1.

Then, to have a non-random almost-sure limit

lim
t→∞

1

t

∫ t

0

∫ +∞

−1

ϕ(x)ν(dx, s)das

for a sufficiently rich class of non-random test functions ϕ, we have to assume that
there exists a non-random non-negative measure FR = FR(dx) on (−1, 0)

⋃
(0,+∞)

such that

(3.22) −
∫ +∞

−1

min(|x|, 1)FR(dx) <∞

and, for large s,
ν(dx, s) ≈ FR(dx).

As a result, if

(3.23) ν(dx, s) = FR(dx)

for all s, then

(3.24) At = µat, 〈Rc〉t = σ2at, ν(dx, t) = FR(dx)at

are all non-random, and [8, Theorem II.4.15] implies that R is a process with inde-
pendent increments. Furthermore, (3.24) and the strong law of large numbers for
martingales imply

P
(

lim
t→∞

Rct
t

= 0

)
= 1;

cf. [12, Corollary 1 to Theorem II.6.10]. Similarly, if

(3.25) −
∫ +∞

−1

ln2(1 + x)FR(dx) <∞,
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then Mf is a square-integrable martingale and

P

(
lim
t→∞

Mf
t

t
= 0

)
= 1.

Writing

µ̄ = µ−
∫ 1

−1

xFR(dx)

the long-term growth rate (3.7) becomes

(3.26) gR(f) = fµ̄− f2σ2

2
+−
∫ ∞
−1

ln(1 + fx)FR(dx),

which does include both (2.5) and (3.12) as particular cases. By direct computation,
the function f 7→ gR(f) is concave and the domain of the function contains [0, 1].

Similar to Proposition 2.5, we have the following result.

Theorem 3.1. Consider continuous-time compounding with return process

Rt = At +Rct +

∫ t

0

∫ +∞

1

xµR(dx, ds)

+

∫ t

0

−
∫ 1

−1

x
(
µR(dx, ds)− ν(dx, s)das

)
,

(3.27)

where the random measure µR is from (3.13), and assume that equalities (3.21) and
(3.24) hold. If FR satisfies (3.22), (3.25), and

lim
f→0+

−
∫ ∞
−1

x

1 + fx
FR(dx) > −µ̄,

lim
f→1−

−
∫ ∞
−1

x

1 + fx
FR(dx) < σ2 − µ̄,

then the long-term growth rate is given by (3.26), and there exists a unique f∗ ∈ (0, 1)
such that

gR(f) < gR(f∗)

for all f in the domain of gR. The number f∗ is the unique solution of the equation
g′R(f) = 0, that is,

(3.28) µ̄− f∗σ2 +−
∫ ∞
−1

x

1 + xf∗
FR(dx) = 0.

By the Lebesgue decomposition theorem, the measure corresponding to the func-
tion a = at has a discrete, absolutely continuous, and singular components. With
(3.21) in mind, a natural choice of the discrete component is at = btc, which, as we
saw, corresponds to discrete compounding discussed in the previous section. A natu-
ral choice of the absolutely continuous component is at = t. Then At = µt, Rct =
σBt, ν(dx, t)dat = FR(dx) dt, where B is a standard Brownian motion. By [8,
Corollary II.4.19], we conclude that the process R has independent and stationary
increments, that is, R is a Lévy process. In this case, equality (3.27) is known as the
Lévy-Itô decomposition of the process R; cf. [19, Theorem 19.2].

We do not consider the singular case in this paper and leave it for future investi-
gation.



KELLY CRITERION 13

4. Continuous Limit of Discrete Compounding.

4.1. A (Simple) Random Walk Model. Following the methodology in [2]
and [21, Section 7.1], we assume compounding a sufficiently large number n of bets
in a time period [0, T ]. The returns rn,1, rn,2, . . . of the bets are

(4.1) rn,k =
µ

n
+

σ√
n
ξn,k

for some µ > 0, σ > 0 and independent identically distributed random variables
ξn,k, k = 1, 2, . . . , with mean 0 and variance 1. The classical simple random walk
corresponds to P(ξn,k = ±1) = 1/2 and can be considered a high frequency version of
(1.1). Similar to (2.2), we need rn,k ≥ −1, which, in general, can only be achieved
with uniform boundedness of ξn,k:

(4.2) |ξn,k| ≤ C0,

and then, with no loss of generality, we assume that n is large enough so that

(4.3) |rn,k| ≤
1

2
.

Similar to (1.2), a condition to have an edge is

E[rn,k] =
µ

n
> 0,

and, similar to (2.1), given n bets per unit time period, with exposure f ∈ [0, 1] in

each bet, we get the following formula for the total wealth Wn,f
t at time t ∈ (0, T ]

assuming W0 = 1:

(4.4) Wn,f
t =

bntc∏
k=1

(
1 + frn,k

)
;

bntc denotes the largest integer less than nt. Denote by gn(f) the corresponding
long-term growth rate:

gn(f) = lim
t→∞

1

t

bntc∑
k=1

ln
(
1 + frn,k

)
.

Using the law of large numbers, and with notation (2.5) in mind,

(4.5) gn(f) = nE ln(1 + frn,1) = ngrn,1(f).

Let

(4.6) f∗n = arg max
f∈[0,1]

gn(f)

be the value of f maximizing gn. What can we say about f∗n as n→∞?
As a motivation, consider the high-frequency version of the simple Bernoulli model

(1.1):

(4.7) P
(
rn,k =

µ

n
± σ√

n

)
=

1

2
,
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which, for fixed n, is is a particular case of the general Bernoulli model (2.14) with
p = q = 1/2,

a =
σ√
n
− µ

n
, b =

σ√
n

+
µ

n
.

Then, by direct computation,

f∗n =
µ

σ2 − (µ2/n)
→ µ

σ2
, n→∞,

and

lim
n→∞

gn(f∗n) =
µ2

2σ2
.

We will now show that all models of the form (4.1) behave this way in the high
frequency limit.

Let B = Bt, t ≥ 0, be a standard Brownian motion on a stochastic basis
(Ω,F , {Ft}t≥0,P) satisfying the usual conditions, and define the process

(4.8) W f
t = exp

((
fµ− f2σ2

2

)
t+ fσBt

)
.

Note that (4.8) is the same as (3.11).
Similar to (1.3), we define the long-term continuous time growth rate

g(f) = lim
t→∞

1

t
lnW f

t .

Then a simple computation show that

g(f) = fµ− f2σ2

2
,

and so

(4.9) f∗ =
µ

σ2

achieves the maximal long-term continuous time growth rate

(4.10) g(f∗) =
µ2

2σ2
.

The NS-NL condition f∗ ∈ (0, 1) holds if 0 < µ < σ2, which, to the order 1/n, is
consistent with (2.12) and (2.13), when applied to (4.1):

E[rn,k] =
µ

n
, E

[
rn,k

1 + rn,k

]
=
µ− σ2

n
+ o(n−1).

The wealth process (4.8) is that of someone who is “continuously” placing bets,
that is, adjusts the positions instantaneously, and, for large n, turns out to be a good
approximation of high frequency betting (4.4).

Theorem 4.1. For every T > 0 and every f ∈ [0, 1], the sequence of processes(
Wn,f
t , n ≥ 1, t ∈ [0, T ]

)
converges in law to the process W f = W f

t , t ∈ [0, T ], and
the convergence is uniform in f on compact subsets of (0, 1). In particular, with f∗n
defined in (4.6), if 0 < µ < σ2, then

(4.11) lim
n→∞

f∗n =
µ

σ2
, lim

n→∞
gn(f∗n) =

µ2

2σ2
.
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Proof. Writing
Y n,ft = lnWn,f

t ,

the objective is to show weak convergence, as n→∞, of Y n,f to the process

Y ft =

(
fµ− f2σ2

2

)
t+ fσBt, t ∈ [0, T ],

and that the convergence is uniform in f over compact subsets of (0, 1). The proof
relies on the method of predictable characteristics for semimartingales from [8]. More
specifically, we make suitable changes in the proof of Corollary VII.3.11.

By (4.8)

Y n,ft =

bntc∑
k=1

ln(1 + frn,k).

Then (4.1) and (4.2) imply

E
(
Y n,ft − EY n,ft

)4

≤ C4
0σ

4

n2

(
nT + 3nT (nT − 1)

)
≤ 3C4

0σ
4T 2,

from which uniform integrability of the family {Y n,ft , n ≥ 1, t ∈ [0, T ]} follows.
Then, by [8, Theorem VII.3.7], it suffices to confirm that the following results

hold uniformly in f over compact subsets of (0, 1):

lim
n→∞

sup
t≤T

∣∣∣∣bntcE[ ln(1 + frn,1)
]
−
(
fµ− f2σ2

2

)
t

∣∣∣∣ = 0,(4.12)

lim
n→∞

bntc

(
E
(

ln(1 + frn,1)
)2 − (E[ ln(1 + frn,1)

])2
)

= f2σ2t, t ∈ [0, T ],(4.13)

lim
n→∞

bntcE
[
φ
(

ln(1 + frn,1)
)]

= 0, t ∈ [0, T ].(4.14)

Equality (4.14) must hold for all functions φ = φ(x), x ∈ R, that are continuous and
bounded on R and satisfy φ(x) = o(x2), x→ 0, that is,

(4.15) lim
x→0

φ(x)

x2
= 0.

Equalities (4.12) and (4.13) follow from

r2
n,1 =

σ2

n
ξ2
n,1 +

2µσξn,1
n3/2

+
µ2

n2
,

together with (4.3) and an elementary inequality∣∣∣∣ln(1 + x)− x− x2

2

∣∣∣∣ ≤ |x|3, |x| ≤ 1

2
.

In particular,

E
[(

ln(1 + frn,1)
)2]

=
f2σ2

n
+ o(1/n), n→ +∞.

To establish (4.14), note that (4.15) and (4.1) imply

φ
(

ln(1 + frn,1)
)

= o(1/n), n→ +∞.
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Now both equalities in (4.11) follow because gn(f) = EY n,f1 by (4.5), whereas g(f) =

EY f1 and so limn→∞ gn(f) = g(f) uniformly in f on compact subsets of (0, 1).

With natural modifications, Theorem 4.1 extends to the setting (2.16).

Theorem 4.2. Assume that

(4.16) rn,k + 1 = exp

(
b

n
+

σ√
n
ξn,k

)
,

where b ∈ R, σ > 0, and, for each n ≥ 1, k ≤ n, the random variables ξn,k are
independent and identically distributed, with zero mean, unit variance, and, for every
a > 0,

(4.17) lim
n→∞

nE
[
|ξn,1|2I(|ξn,1| > a

√
n)
]

= 0.

Define

µ = b+
σ2

2
.

Then the conclusions of Theorem 4.1 hold.

Proof. Even though a formal Taylor expansion suggests

rn,k =
µ

n
+

σ√
n
ξn,k + o(1/n),

we cannot apply Theorem 4.1 directly because the random variables ξn,k are not
necessarily uniformly bounded. Still, condition (4.17) makes it possible to verify
conditions (4.12)–(4.14).

Comparing Theorems 4.1 and 4.2, we see at least two reasons why Theorem 4.2
could be more useful in the study of high-frequency compounding: (a) an analytic
expression for gn(f) using (4.5) can often exist for rn,k from (4.1) but not for rn,k
from (4.16); (b) The class of admissible random variables ξn,k is bigger in the case
(4.16).

Condition (4.17) is clearly satisfied when ξn,k, k = 1, 2, . . . , are iid standard
normal, which corresponds to

(4.18) rn,k =
Pk/n − P(k−1)/n

P(k−1)/n

and

(4.19) Pt = ebt+σBt .

Thus, while the exponential model (2.16) with log-normal returns is not solvable in
closed form, the high-frequency version leads to the (approximately) optimal strategy

(4.20) f∗ =
b

σ2
+

1

2
,

and, under (2.19), the NS-NL condition holds: f∗ ∈ (0, 1). Monte Carlo simulations
with σ = 1 and n = 10 show that the values of the corresponding optimal f∗10 are
very close to those given by (4.20) for all b ∈ (−1/2, 1/2).
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Informally, both Theorems 4.1 and 4.2 can be considered as particular cases of
the delta method for the Donsker theorem with drift: if the sequence of processes

t 7→
bntc∑
k=1

ξn,k

converges, as n → ∞, to the processes t 7→ bt + σBt and ϕ = ϕ(x) is a suitable
function with ϕ(0) = 0, then one would expect the sequence of processes

t 7→
bntc∑
k=1

ϕ
(
ξn,k

)
to converge to the process

t 7→
(
ϕ′(0)b+

ϕ′′(0)σ2

2

)
t+ |ϕ′(0)|σBt.

4.2. Beyond the Log-Normal Limit. With the results of Section 3 in mind,
we consider the following generalization of (4.18): (4.19):

rn,k =
Pk/n − P(k−1)/n

P(k−1)/n
, k = 1, 2, . . . ,

where the process P = Pt, t ≥ 0, has the form Pt = eRt , and R = Rt is a Lévy
process. In other words,

(4.21) rn,k = eRk/n−R(k−1)/n − 1.

As in (3.27), the process R = Rt can be decomposed into a drift, diffusion/small
jump, and large jump components according to the Lévy-Itô decomposition [19, The-
orem 19.2]:

(4.22) Rt = µt+ σ Bt +

∫ t

0

−
∫ 1

−1

x
(
µR(dx, ds)− FR(dx)ds

)
+

∫ t

0

∫
|x|>1

xµR(dx, ds);

we continue to use the notation −
∫

first introduced in (3.15).
The function FR in (4.22) is a non-random non-negative measure on (−∞, 0) ∪

(0,+∞) such that

−
∫ +∞

−∞
min(x2, 1)FR(dx) <∞.

Now that the process Rt is exponentiated,
• there is no need to assume that 4Rt ≥ −1 ;
• the analog of (3.25) becomes E|R1| <∞, that is∫

|x|>1

|x|FR(dx) <∞.

Equality (4.22) has a natural interpretation in terms of financial risks [20]: the
drift represents the edge (“guaranteed” return), diffusion and small jumps represent
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small fluctuations of returns, and the large jump component represents (sudden) large
changes in returns. Similar to (4.4), the corresponding wealth process is

(4.23) Wn,f
t =

bntc∏
k=1

(
1 + frn,k

)
.

Denote by D((0, T )) the Skorohod space on (0, T ) [12, Section 6.1]. We have the
following generalization of Theorem 4.2.

Theorem 4.3. Consider the family of processes Wn,f = Wn,f
t , t ∈ [0, T ], n ≥ 1,

f ∈ [0, 1], defined by (4.23). If rn,k is given by (4.21), with Pt = eRt , and R = Rt is
a Lévy process with representation (4.22) and E|R1| < ∞, then, for every f ∈ [0, 1]
and T > 0,

lim
n→∞

Wn,f L= W f

in D((0, T )), where

W f
t = exp

(
fRt +

f(1− f)σ2

2
t

+

∫ t

0

−
∫ +∞

−∞

[
ln
(
1 + f(ex − 1)

)
− fx

]
µR(dx, ds)

)
.

(4.24)

The convergence is uniform in f on compact subsets of (0, 1).

Proof. By (4.21) and (4.23),

lnWn,f
t =

bntc∑
k=1

ln

(
1 + f

(
eRk/n−R(k−1)/n − 1

))
.

Step 1: For s ∈
(
k−1
n , kn

]
, let

(4.25) rn,ks = eRs−R(k−1)/n − 1,

and apply the Itô’s formula [17, Theorem II.32] to the process

s 7→ ln
(
1 + frn,ks

)
, s ∈

(
k − 1

n
,
k

n

]
.

The result is

ln
(
1 + frn,ks

)
=

∫ s

k−1
n

f(1 + rn,ku− )

1 + frn,ku−
dRu +

σ2

2

∫ s

k−1
n

f(1− f)(1 + rn,ku− )(
1 + frn,ku−

)2 du

+

∫ s

k−1
n

−
∫ +∞

−∞

[
ln
(
1− f + fex(rn,ku− + 1)

)
− ln(1 + frn,ku− )− x

f(1 + rn,ku− )

1 + frn,ku−

]
µR(dx, du).

Step 2: Putting s = k
n in the above equality and summing over k, we derive the
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following expression for lnWn,f
t :

lnWn,f
t =

bntc∑
k=1

(∫ k
n

k−1
n

h
(1)
n,k(s) dRs +

∫ k
n

k−1
n

h
(2)
n,k(s) ds

+

∫ k
n

k−1
n

−
∫ +∞

−∞
h

(3)
n,k(s, x)µR(dx, du)

)
=

∫ t

0

H
(1)
n,t (s) dRs +

∫ t

0

H
(2)
n,t (s) ds+

∫ t

0

−
∫ +∞

−∞
H

(3)
n,t (s, x)µR(dx, ds) ,(4.26)

where

h
(1)
n,k(s) =

f(1 + rn,ks− )

1 + frn,ks−
, h

(2)
n,k(s) =

σf(1− f)

2

1 + rn,ks−

(1 + frn,ks− )2
,

h
(3)
n,k(s, x) = ln

(
1− f + fex(rn,ks− + 1)

)
− ln(1 + frn,ks− )− fx

1 + rn,ks−

1 + frn,ks−
;

H
(i)
n,t(s) =

bntc∑
k=1

h
(i)
n,k(s)1( k−1

n , kn ](s), i = 1, 2; H
(3)
n,t (s, x) =

bntc∑
k=1

h
(3)
n,k(s, x)1( k−1

n , kn ](s).

Step 3: Because
lim

n→∞, k/n→s
R(k−1)/n = Rs−,

equality (4.25) implies

lim
n→+∞, k/n→s

rn,ks− = 0

for all s. Consequently, we have the following convergence in probability:

lim
n→+∞

H
(1)
n,t (s) = f, lim

n→+∞
H

(2)
n,t (s) =

σ2f(1− f)

2
,

lim
n→+∞

H
(2)
n,t (s, x) = ln

(
1 + f(ex − 1)

)
− fx.

To pass to the corresponding limits in (4.26), we need suitable bounds on the
functions H(i), i = 1, 2, 3.

Using the inequalities

0 <
1 + y

1 + ay
≤ 1

a
, 0 <

1 + y

(1 + ay)2
≤ 1

4a(1− a)
, y > −1, a ∈ (0, 1),

we conclude that
0 < h

(1)
n,k(s) ≤ 1, 0 < h

(2)
n,k(s) ≤ σ2,

and therefore

(4.27) 0 < H
(1)
n,t (s) ≤ 1, 0 < H

(2)
n,t (s) ≤ σ2.

Similarly, for f ∈ (0, 1) and y > −1,

(4.28)

∣∣∣∣ln 1− f + fex(y + 1)

1 + fy
− fx 1 + y

1 + fy

∣∣∣∣ ≤ 2
(
|x| ∧ |x|2

)
,
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so that

|h(3)
n,k(s, x)| ≤ 2

(
|x| ∧ |x|2

)
and

(4.29)
∣∣H(3)

n,t (s)
∣∣ ≤ 2

(
|x| ∧ |x|2

)
.

To verify (4.28), fix f ∈ (0, 1) and y > −1, and define the function

z(x) = ln
1− f + fex(y + 1)

1 + fy
, x ∈ R.

By direct computation,

z(0) = 0,

z′(x) =
fex(y + 1)

1− f + fex(y + 1)
= 1− 1− f

1− f + fex(y + 1)
,

z′(0) =
f(y + 1)

1 + fy
,

so that, using the Taylor formula,

(4.30) ln
1− f + fex(y + 1)

1 + fy
−fx 1 + y

1 + fy
= z(x)−z(0)−xz′(0) =

∫ x

0

(x−u)z′′(u)du.

It remains to notice that

0 ≤ z′(x) ≤ 1, 0 ≤ z′′(x) ≤ 1,

and then (4.28) follows from (4.30).
With (4.27) and (4.29) in mind, the dominated convergence theorem [17, Theorem

IV.32] makes it possible to pass to the limit in probability in (4.26); the convergence
in the space D then follows from the general results of [8, Section IX.5.12].

The following is a representation of the long-term growth rate of the limiting
wealth process W f .

Theorem 4.4. Let R = Rt be a Lévy process with representation (4.22). If

E|R1| <∞, then the process W f = W f
t defined in (4.24) satisfies

lim
t→+∞

lnW f
t

t
= f

(
µ+

∫
|x|>1

xFR(dx)

)
+
f(1− f)σ2

2

+−
∫ +∞

−∞

[
ln
(
1 + f(ex − 1)

)
− fx

]
FR(dx).

(4.31)

Proof. By (4.24),

lnW f
t

t
= f

Rt
t

+
f(1− f)σ2

2
+

1

t

∫ t

0

−
∫ +∞

−∞

[
ln
(
1 + f(ex − 1)

)
− fx

]
µR(dx, ds).

It remains to apply the law of large numbers for Lévy processes [19, Theorem 36.5].

Similar to Proposition 2.5, we also have the following result.
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Theorem 4.5. In the setting of Theorem 4.4, denote the right-hand side of (4.31)
by gR(f) and assume that

lim
f→0+

−
∫ +∞

−∞

(
ex − 1

1 + f(ex − 1)
− x
)
FR(dx) > −

(
µ+

σ2

2
+

∫
|x|>1

xFR(dx)

)
,

lim
f→1−

−
∫ +∞

−∞

(
ex − 1

1 + f(ex − 1)
− x
)
FR(dx) < −

(
µ+

∫
|x|>1

xFR(dx)

)
,

Then there exists a unique f∗ ∈ (0, 1) such that

gR(f) < gR(f∗)

for all f in the domain of gR. The number f∗ is the unique solution of the equation

(4.32) µ+

∫
|x|>1

xdFR(x) +
σ2

2
− σ2f∗ +−

∫ +∞

−∞

(
ex − 1

1 + f∗(ex − 1)
− x
)
dFR(x) = 0.

In particular, if σ > 0 and

f∗0 =
µ

σ2
+

1

2
,

then (4.32) becomes a generalization of (4.20):

(4.33) f∗ = f∗0 +
1

σ2

∫
|x|>1

xdFR(x) +
1

σ2
−
∫ +∞

−∞

(
ex − 1

1 + f∗(ex − 1)
− x
)
dFR(x).

To conclude the section, let us compare and contrast Theorems 3.1 and 4.4. In
Theorem 3.1, the process R is a semimartingale with independent but not necessarily
stationary increments, that is, more general than a Lévy process. The key techni-
cal assumption (3.22) means that the jump component of R has bounded variation,
something that is not required in Theorem 4.4. If, in the setting of Theorem 4.4, we
additionally assume that the (small-jump) component of R has bounded variation:

−
∫ 1

−1

|x|FR(dx) <∞,

then, after a logarithmic substitution and re-arrangement of terms, (4.31) becomes
(3.26); in particular, the finite moment condition in Theorem 4.4 becomes equivalent
to (3.25). On the other hand, equality (3.26) is derived for a wider class of return
processes that includes Lévy processes as a particular case. To summarize, Theorem
4.4 provides a stronger result in the case of Lévy processes, whereas Theorems 3.1
covers a bigger class of processes under an additional integrabililty condition.

5. Continuous Limit of Random Discrete Compounding. The objective
of this section is to analyze high frequency limits for betting in business time. In
other words, the number of bets is not known a priori, so that a natural model of the
corresponding wealth process is

(5.1) Wn,f
t =

bΛn,tc∏
k=1

(1 + frn,k)

where, for each n, the process t 7→ Λn,t is a subordinator, that is, a non-decreasing
Lévy process, independent of all rn,k. In a typical application, for example, investment
for retirement, Λn,t represents an uncertain time horizon.
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To study (5.1), we will follow the methodology in [11], where convergence of
processes is derived after assuming a suitable convergence of the random variables.
The main result in this connection is as follows.

Theorem 5.1. Consider the following objects:
• random variables Xn,k, n, k ≥ 1 such that {Xn,k, k ≥ 1} are iid for each n,

with mean zero and, for some β ∈ [0, 1], mn :=
(
E|Xn,1|β

)1/β

<∞;

• random processes Λn = Λn,t, n ≥ 1, t ≥ 0, such that, for each n, Λn is a
subordinator independent of {Xn,k, k ≥ 1} with the properties Λn,0 = 0, and

for some numbers 0 < δ, δ1 ≤ 1 and Cn > 0,
(
EΛδn,t

)1/δ

≤ Cntδ1/δ.
Assume that there exist infinitely divisible random variables Y and U such that

lim
n→∞

n∑
k=1

Xn,k
d
= Ȳ , lim

n→∞

Λn,1
n

d
= Ū .

If

(5.2) sup
n

(
Cnm

β
n

)
<∞,

then, as n→∞, the sequence of processes

t 7→
bΛn,tc∑
k=1

Xn,k, t ∈ [0, T ],

converges, in the Skorokhod topology, to the process Z = Zt such that Zt = YUt , where

Y and U are independent Lévy processes satisfying Y1
d
= Ȳ and U1

d
= Ū .

The proof is a word-for-word repetition of the arguments leading to [11, Theorem
1]: the result of [6], together with the assumptions of the theorem, implies

lim
n→∞

bΛn,1c∑
k=1

Xn,k
d
= Z1,

and therefore the convergence of finite-dimensional distributions for the corresponding
processes; together with condition (5.2), this implies the convergence in the Skorokhod
space. Because we deal exclusively with Lévy processes, it is possible to avoid the
heavy machinery from [8].

We now consider the wealth process (5.1) and apply Theorem 5.1 with

Xn,k = ln(1 + frn,k)− E ln(1 + frn,k).

On the one hand, convergence to infinitely divisible distributions other than nor-
mal is a very diverse area, with a variety of conditions and conclusions; cf. [5, Chapter
XVII, Section 5] or a summary in [10, Section 16.2]. On the other hand, optimal strat-
egy (4.9) seems to persist.

For example, assume that the returns rn,k are as in (4.1), and let Λn,t = Snαt,
where α ∈ (0, 1] and S = St is the Lévy process such that S1 has the α-stable
distribution with both scale and skewness parameters equal to 1. Recall that an
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α-stable Lévy process Lα = Lαt satisfies the following equality in distribution (as
processes):

(5.3) Lαγt
L
= γ1/αLαt , γ > 0.

Then
Λn,t

L
= nSt

and, in the notations of Theorem 5.1, Ȳ is normal with mean zero and variance σ2.
Keeping in mind that

E ln(1 + frn,k) = E ln(1 + frn,1) =
(
fµ− f2σ2

2

)
n−1 + o(n−1),

we repeat the arguments from [11, Example 1] to conclude that

lim
n→∞

lnWn,f
t

L
=
(
fµ− f2σ2

2

)
St + Zt,

where Z1 has symmetric 2α-stable distribution. By (5.3),

St
d
= t1/αS1, lim

t→+∞
t−1/αZt

d
= lim
t→+∞

t−1/(2α)Z1
d
= 0,

and the “natural” long term growth rate becomes

lim
t→∞

t−1/α
(

lim
n→∞

lnWn,f
t

)
d
=
(
fµ− f2σ2

2

)
S1,

which is random, but, for each realization of S, is still maximized by f∗ from (4.9).
Therefore, if the time interval over which we compound our wealth is random, then
the growth rate is also random as we do not know when compounding stops, yet, in
the high frequency limit, this rate is still maximized by a deterministic fraction. Note
that, for the purpose of this computation, the (stochastic) dependence between the
processes S and Z is not important.

6. Conclusions And Further Directions. In the classical Markowitz portfolio
theory [15], risk is formalized as the standard deviation σ of portfolio’s return and
reward is formalized as the mean of a portfolio’s return µ. Through the construction
of the Markowitz set of efficient portfolios, one can see a trade-off between risk and
reward, namely, more risk implies more reward. A refinement of this idea is provided
by the utility score

U = µ− A

2
σ2,

with parameter A ≥ 0 representing the degree of risk-aversion. Direct computations
then show that, for a portfolio with fraction f invested in the risky asset, the corre-
sponding utility score is maximized by

f∗ =
µ

Aσ2
,

which, for A = 1 [a moderately risk-averse investor] coincides with (1.5). The same
utility score, when combined with the original Kelly criterion, leads to optimization
of the function

gA(f) = lim
t→+∞

(
1

t

(
lnWn,f

t − A

2
Var
(

lnWn,f
t

)))
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and a formalization of the fractional Kelly criterion [21, Section 7.3]. In particular,
when the wealth process is geometric Brownian motion (4.8), the maximum of the
corresponding function gA is achieved at the point

(6.1) f∗A =
µ

(1 +A)σ2
.

Still, the traditional Markowitz formalization of risk versus reward is a static
theory, as it only applies to a single bet with no consideration of compounding. The
Kelly criterion is an example of a dynamic theory that takes into account compounding
of returns and losses. Compared to straightforward optimization of the long-term
growth [16], the parameter f in the Kelly criterion and the NS-NL condition f∗ ∈ [0, 1]
ensure that the corresponding strategy avoids ruin and the total wealth never reaches
zero. Reference [1, Ch 5] provides a detailed, if somewhat informal, comparison
between Markotitz and Kelly-type approaches to investment.

The NS-NL condition can fail in many situations. Even in the simple Bernoulli
model, if p < 1/2, then the short position f∗ = 2p − 1 achieves positive long-time
wealth growth:

gr(f
∗) = p ln

p

1− p
+ (2− p) ln(2− 2p) = ln 2 + p ln p+ (1− p) ln(1− p) > 0.

Note that −p ln p−(1−p) ln(1−p) is the Shannon entropy of the Bernoulli distribution,
and the largest value of the entropy is ln 2, corresponding to p = 1/2. When the edge is
too big (cf. (2.14)), then f∗ > 1, that is, leveraged gambling leads to bigger long-time
wealth growth than any NS-NL strategy. The economical and financial implications
of f∗ /∈ [0, 1] are beyond the scope of our investigation and must be studied in a
broader context of risk tolerance: even when f∗ ∈ (0, 1), some investors might prefer
the strategy based on a certain fraction of f∗, such as (6.1); cf. [21, Section 7.3].

A related observation, to be further studied in the future, is that high-frequency
betting can lead to a more aggressive strategy than the “low frequency” counterpart.
For example, comparing (1.1) and (4.7), we see that µ = 2p−1 and σ2 = 4p(1−p) < 1
when p 6= 1/2. As a result, by (4.9), the optimal strategy for (4.7) with large n is
f∗ ≈ (2p− 1)/(4p(1− p)) > 2p− 1; recall that f∗ = 2p− 1 is the optimal strategy for
the simple Bernoulli model (1.1). On the other hand, numerical simulations suggest
that, in the log-normal model (4.18), (4.19), high-frequency compounding does not
always lead to larger f∗.

Other problems warranting further investigation to build a theory which is also a
practical guide to investment include

1. A dynamic strategy f = f(t) with a predictable process f ;
2. A portfolio of bets, with a vector of strategies f = (f1, . . . , fN );
3. Convergence rates, both in the approximation as n→∞, and in the long run

as t→∞.

7. Acknowledgements. The authors are grateful to the referees for numerous
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