A Summary of Counting Methods ${ }^{1}$

Multiplication principle. With n_{k} choices for option $k, k=1, \ldots, N$, the total number of choices is

$$
\prod_{k=1}^{N} n_{k}=n_{1} \cdot n_{2} \cdots n_{N}
$$

Examples

- CA Lic plate of the type 4MLG145 (with $1-8$ for the first number, no other restrictions) gives $8 \cdot 26^{3} \cdot 10^{3}=140,608,000$ possibilities.
- all 4-digit numbers: from $0=0000$ to 9999 , that is, 10^{4} total.
- Given a factorization $N=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{k}^{n_{k}}$ of an integer N into k distinct prime factors, the total number of the divisors of N (including 1 and N) is

$$
d(N)=\left(n_{1}+1\right)\left(n_{2}+1\right) \cdots\left(n_{k}+1\right)
$$

For example, if $N=45=3^{2} \cdot 5$, then, with $p_{1}=3, n_{1}=2 ; p_{2}=5, n_{2}=1$, we get $d(N)=$ $(2+1) \cdot(1+1)=3 \cdot 2=6$. Indeed, the divisors of 45 are $1,3,5,9,15,45$. The number
$278914005382139703576000=2^{6} \cdot 3^{5} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \cdot 43 \cdot 47$
has $7 \cdot 6 \cdot 4 \cdot 3 \cdot 2^{11}=1032192$ divisors; it is the smallest number with at least one million divisors; for more, see https://oeis.org/A002182

- occupancy problem with m (different) balls and n (different) boxes, gives

$$
n^{m}=(\# \text { of boxes })^{\# \text { of balls }}
$$

as the total number of configurations. Counting 4-digit numbers is an example, with boxes representing digits and balls selecting those digits, so that the number $155=0155$ corresponds to one ball in box 0 , one ball in box 1 and two balls in box 5 .
Permutations. The number of ways to order n objects is, by multiplication principle, $n \cdot(n-$ 1) $\cdots 2 \cdot 1=\prod_{k=1}^{n} k=n$! The convention is $0!=1$. The basic Stirling formula is

$$
n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}
$$

in the sense that the ratio of the left and right goes to 1 as $n \rightarrow \infty$.
Examples

- The number of different "anagrams" (not all of them are actual words) of the word representation is $\frac{14!}{3!(2!)^{3}}$, where 14 is the total number of letters, of which there are three "e" and three more letters ($\mathrm{r}, \mathrm{t}, \mathrm{n}$) come in pairs.

Combinations n choose k, or binomial coefficients, for non-negative integers n, k :

$$
\binom{n}{k}= \begin{cases}\frac{n!}{k!(n-k)!}, & n \geq k \\ 0, & n<k\end{cases}
$$

One of the main relations is the binomial formula

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Pascal's triangle is one way to compute $\binom{n}{k}$ for fixed n and all k.

Partitions.

(1) By default, partition refers to an unordered partition of a positive integer; $p(n)$ denotes the total number of such partitions. For example, $p(3)=3: 3,2+1,1+1+1$. Similarly, $p(5)=7$. There is no simple formula for $p(n)$, but we have a generating function and an asymptotic relation:

$$
\sum_{n=0}^{\infty} p(n) z^{n}=1+z+2 z^{2}+\ldots=\prod_{k=1}^{\infty} \frac{1}{1-z^{k}}, \quad p(n) \sim \frac{1}{4 \sqrt{3} n} e^{\pi \sqrt{2 n / 3}}
$$

[^0](2) An ordered partition of a positive integer n is a positive integer solution of the equation $x_{1}+\ldots+x_{k}=n$ with $1 \leq k \leq n$. The number of such solutions is $\binom{n-1}{k-1}$, meaning that the total number of ordered partitions of n is $\sum_{k=1}^{n}\binom{n-1}{k-1}=2^{n-1}$. For example, the four ordered partitions of the number 3 are $3,2+1,1+2,1+1+1$.

More generally, for two positive integers k, N, the number of non-negative integer solutions of the equation $x_{1}+\ldots+x_{k}=N$ is $\binom{N+k-1}{k-1}$. Equivalently, the number of strictly positive integer solutions is $\binom{N-1}{k-1}$.
(3) Ordered partitions of a set with n elements are counted by the ordered Bell numbers $a(n)$, also known as the Fubini numbers, with convention $a(0)=1$. Each partition represents a possible outcome in a race with n participants when ties are allowed, or a way to group n iterated integrals [whence the Fubini connection]. For example, for a set $\{1,2,3\}$ with three elements, $a(3)=13$, as there are 6 ways to order $\{\{1\},\{2\},\{3\}\}$ [corresponding to no ties in a race], another 6 ways coming from $\{\{1,2\},\{3\}\}$ [corresponding to a two-way tie in the race], and one more, $\{\{1,2,3\}\}$, corresponding to a tree-way tie. There is no simple formula for $a(n)$, but we have an exponential generating function and an asymptotic relation:

$$
\sum_{n=0}^{\infty} \frac{a(n)}{n!} z^{n}=\frac{1}{2-e^{z}}, \quad a(n) \sim \frac{n!}{2(\ln 2)^{n+1}}
$$

(4) Unordered partitions of a set with n elements are counted by the (usual) Bell numbers B_{n}, with convention $B_{0}=1$. For example, for a set $\{1,2,3\}$ with three elements, $B_{3}=5$, as there is one partition into single elements $\{\{1\},\{2\},\{3\}\}$, three partitions of the form $\{\{1,2\},\{3\}\}$, and the "trivial" partition $\{\{1,2,3\}\}$. We have anexponential generating function, a recursion (by partitioning sub-sets of size k), and an asymptotic expansion:

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \frac{B_{n}}{n!} z^{n}=e^{e^{z}-1}, \quad B_{n+1}=\sum_{k=0}^{n}\binom{n}{k} B_{k} \\
& \frac{\ln B_{n}}{n}=\ln n-\ln (\ln n)-1+\frac{\ln (\ln n)}{\ln n}+\frac{1}{\ln n}+o(1 / \ln n), n \rightarrow \infty
\end{aligned}
$$

In particular, $B_{n}=e^{-1} \sum_{k=0}^{\infty} k^{n} / k!$, and, as $n \rightarrow+\infty$,

$$
B(n) \sim n^{-1 / 2}(\lambda(n))^{n+(1 / 2)} e^{\lambda(n)-n-1}
$$

where $\lambda=\lambda(x)$ is the function inverse to $f(x)=x \ln x, x>1: \lambda(n) \ln \lambda(n)=n$.
Because $\ln 2<1$ and $\frac{\ln n!}{n}=\ln n-1+\frac{\ln n}{n}+O(1 / n)$, we have, for all sufficiently large positive integer n, $p(n)<2^{n}<B_{n}<n!<a(n)<n^{n}$.

Bijections. A bijection is a function that is both one-to-one and onto. Given two finite sets A and B, a bijection from A to B exists if and only if the sets A and B have the same number of elements.

Examples

- Given a set $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ with n elements, there is bijection from the set of all subsets of Ω to binary strings of length n : given a sub-set $A \subseteq \Omega$, a string $\left(x_{1}, \ldots, x_{n}\right)$, with $x_{k}=1$ if $\omega_{k} \in A$ and $x_{k}=0$ if $\omega_{k} \notin A$, represents A. With this representation, \emptyset corresponds to $(0, \ldots, 0)$ and Ω corresponds to $(1, \ldots, 1)$, and we conclude that there are 2^{n} subsets of Ω.
Inclusion-Exclusion Principle: If $A_{1}, A_{2}, \ldots, A_{n}$ are finite sets, then, with $|B|$ denoting the number of elements in the set B,

$$
\begin{aligned}
\left|A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right| & =\sum_{k=1}^{n}\left|A_{k}\right|-\sum_{k_{1}<k_{2}}\left|A_{k_{1}} \cap A_{k_{2}}\right|+\sum_{k_{1}<k_{2}<k_{3}}\left|A_{k_{1}} \cap A_{k_{2}} \cap A_{k_{3}}\right|-\ldots \\
& +(-1)^{n+1}\left|A_{1} \cap \ldots \cap A_{n}\right| .
\end{aligned}
$$

Examples

- The number of ways to distribute 20 different gifts among 7 (different) children so that each child gets at least one gift is the total number of ways to distribute 20 gifts among 7 children minus the number of cases in which somebody get no gifts:

$$
7^{20}-\left(\binom{7}{1} 6^{20}-\binom{7}{2} 5^{20}+\binom{7}{3} 4^{20}-\binom{7}{4} 3^{20}+\binom{7}{5} 2^{20}-\binom{7}{6}\right) \approx 5.6 \cdot 10^{16}
$$

[^0]: ${ }^{1}$ Sergey Lototsky, USC; updated November 19, 2023

