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Abstract

Using asymptotic analysis of the Laplace transform, we establish almost sure diver-
gence of certain integrals and derive logarithmic asymptotic of small ball probabilities
for quadratic forms of Gaussian diffusion processes. The large time behavior of the
quadratic forms exhibits little dependence on the drift and diffusion matrices or the
initial conditions, and, if the noise driving the equation is not degenerate, then simi-
lar universality also holds for small ball probabilities. On the other hand, degenerate
noise leads to a variety of different asymptotics of small ball probabilities, including
unexpected influence of the initial conditions.
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1 Introduction

Given a Gaussian process y = y(s), 0 < s < t, with values in Rd and a non-negative-
definite symmetric matrix Q ∈ Rd×d, how large and how small can the random variable

∫ t

0
y>(s)Qy(s)ds

be? For example,

[Q1 ] Does the integral ∫ ∞

0
y>(s)Qy(s)ds

diverge with probability one? [While the expected value of the integral is easy to
study, the almost-sure divergence is non-trivial unless y is ergodic.]
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[Q2 ] What is the asymptotic of

P
(∫ t

0
y>(s)Qy(s)ds ≤ ε

)

as 0 < ε → 0?

Questions of this type arise in the analysis of various statistical estimators [12,
Chpater 17], and in the study of Gaussian measures on Hilbert spaces [10], and, while
the scalar case (d = 1) has been getting a lot of the attention, much less is known in
multi-dimensional setting.

The objective of this paper is to investigate questions [Q1] and [Q2] for a partic-
ular class of multi-dimensional Gaussian processes, namely, Gaussian diffusions. Let
(Ω,F , (Ft),P) be a stochastic basis with an m-dimensional standard Brownian motion
w, and let A ∈ Rd×d and B ∈ Rd×m be constant non-random matrices; m ≤ d. Let
y = y(t) be the solution of

dy(t) = Ay(t)dt + Bdw(t), t > 0, (1.1)

with initial condition y(0) that is independent of w and is a Gaussian vector with
mean m and covariance K ≥ 0. We refer to y as a multi-dimensional Gaussian
diffusion; a popular alternative name is a multi-dimensional Ornstein-Uhlenbeck
process.

Throughout the paper, a column vector is denoted by a lower-case bold letter
(Greek or Latin), e.g. µ or y, whereas an upper-case regular Latin letter, e.g. A,
means a matrix; the identity matrix is I. For a matrix A, A> means transposition.
The same notation > will also be used for column vectors to produce a row vector. The
notation A ≥ 0 means that A is a symmetric non-negative-definite matrix: A = A> and
x>Ax ≥ 0; for such matrices, A1/2 denotes the non-negative-definite symmetric square
root of A. The trace of a square matrix A is Tr(A) and the determinant is det(A). The
Euclidean norm of a vector and the induced matrix norm are both denoted by ‖ · ‖.
The notation ˙ , as in Ȧ, means the derivative of the function A = A(t) [scalar, vector,
or matrix] with respect to t. Zero matrix and zero number are both 0; zero vector is 0.

One way to address both [Q1] and [Q2] is to investigate the Laplace transform
function

Ψ(Q; t) = E exp
(
−

∫ t

0
y>(s)Qy(s)ds

)
(1.2)

and then to apply a suitable Tauberian theorem. This approach requires asymptotic
analysis of the function Ψ in various regimes, which, in turn, requires a workable
closed-form expression for Ψ. Fortunately, the paper [8] and the book [9] provide all
the necessary tools to carry out the asymptotic analysis of (1.2) when y satisfies (1.1)
and the noise is non-degenerate in the sense that the matrix BB> has rank d. The
resulting answers to [Q1] and [Q2] turn out rather universal in the sense that there is
minimal dependence on the drift matrix A and the initial condition y(0). In particular,

[A1 ] The integral ∫ ∞

0
y>(s)Qy(s)ds

diverges with probability one (as long as it is not identically zero, which only
happens when Tr(Q) = 0). In fact, this divergence takes place under a much
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weaker condition than non-degeneracy of BB>, namely, when the pair (A,B) is
controllable; see Theorem 4.3 below. The proof relies on the large-time asymptotic
of Ψ(Q; t), that is, analysis of Ψ(Q; t) as t →∞.

[A2 ] If B = I and the covariance matrix K of the initial condition is non-singular,
then

lim
ε→0+

ε lnP
(∫ t

0
y>(s)Qy(s)ds ≤ ε

)
= lim

ε→0+
ε lnP

(∫ t

0
w>(s)Qw(s)ds ≤ ε

)

= − t2

8

(
Tr

(
Q1/2

))2
.

(1.3)

Theorem 4.5 below provides the general result, which covers B 6= I and a singular
matrix K. The proof relies on high frequency asymptotic of Ψ(Q; t), that is,
analysis of Ψ(λQ; t) as λ →∞.

The paper is organized as follows. Section 2 presents the necessary background
on the Laplace transform and small ball probabilities. Section 3 summarizes the main
properties of the solution of (1.1), including the formula for Ψ(Q; t). Section 4 contains
the main contributions of the paper, related to items [A1] and [A2] above. Section 5
demonstrates how degenerate matrix BB> can dramatically change (1.3).

2 Background

The main challenge in answering question [Q1] is often finding a rigorous proof of
an “obvious” result. Question [Q2] presents a somewhat different challenge: getting
useful information from the general answer. Indeed, after diagonalizing the matrix Q
and expanding the process y in the eigenfunctions of its covariance operator, and under
an additional assumption that Ey(t) = 0, t ≥ 0, we get

∫ t

0
y>(s)Qy(s)ds =

∑

k≥1

λkξ
2
k

for some λk > 0 and iid standard normal ξk. Then, as shown in [16],

P
(∫ t

0
y>(s)Qy(s)ds ≤ ε2

)
∼


4π

∑

n≥1

(
λnγ(ε)

1 + 2λnγ(ε)

)2


−1/2

× exp


ε2γ(ε)− 1

2

∑

n≥1

ln
(
1 + 2λnγ(ε)

)

 ,

(2.1)

in the sense that, as ε → 0, the ratio of the expressions on the left and right sides of
(2.1) approaches 1. The function γ = γ(ε) is defined implicitly by the relation

ε2 =
∑

n≥1

λn

1 + 2λnγ(ε)
,

and this implicit dependence on ε is the main drawback of (2.1) in concrete applications.
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Sometimes (2.1) can lead to an explicit asymptotic of the probability on the left-
hand side (see [10, Section 6.1] and references therein), but when y is a multi-dimensio-
nal Gaussian diffusion, a completely different approach, based on asymptotic analysis
of the function Ψ(Q; t) from (1.2), appears to be a better option. In particular, this
approach makes it possible to handle both questions [Q1] and [Q2].

In fact, the large-time asymptotic of Ψ(Q; t) provides an immediate answer to [Q1].

Proposition 2.1 If limt→+∞Ψ(Q; t) = 0, then limt→+∞
∫ t
0 y>(s)Qy(s)ds = +∞ with

probability one.

Proof. If limt→+∞Ψ(Q; t) = 0 but

P
(

lim
t→+∞

∫ t

0
y>(s)Qy(s)ds ≤ c < ∞

)
= δ > 0,

then (1.2) implies Ψ(Q; t) ≥ δ e−c > 0 for all t > 0, a contradiction.

¤
The high frequency asymptotic of Ψ(Q; t) provides an answer to [Q2] via an ex-

ponential Tauberian theorem (Theorem 2.2 below). This theorem is a modification of
[10, Theorem 3.5] (which, in turn, is a modification of [1, Theorem 4.12.9]).

Theorem 2.2 Let ξ be a non-negative random variable. Then

lim
λ→+∞

λ−γ ln
(
Ee−λξ

)
= −α for some α > 0, 0 < γ < 1, (2.2)

holds if and only if

lim
ε→0

εγ/(1−γ) lnP(ξ ≤ ε) = −(
(1− γ)α

)1/(1−γ)
(

γ

1− γ

)γ/(1−γ)

. (2.3)

Technically, (2.3) is only logarithmic asymptotic of the probability and is not as
strong as (2.1), but, for many applications, the logarithmic asymptotic is good enough,
and, by providing an explicit dependence on ε, it is also much more useful.

We write (2.3) as

lnP(ξ ≤ ε) ∼ − ((1− γ)α)1/(1−γ)

(
γ

1− γ

)γ/(1−γ)

ε−γ/(1−γ), ε → 0, (2.4)

and say that the random variable ξ has the small ball rate

$ =
γ

1− γ

and the small ball constant

C = ((1− γ)α)1/(1−γ)

(
γ

1− γ

)γ/(1−γ)

.

The two extreme cases of (2.3), corresponding to γ = 1 (infinite small ball rate) and
γ = 0 (zero small ball rate), are a straightforward exercise in elementary probability.

Proposition 2.3 Let ξ be a non-negative random variable. Then

1. limλ→+∞ Ee−λξ = p0 > 0 is equivalent to P(ξ = 0) = p0.

2. limλ→+∞ lnEe−λξ

λ = −ε0 < 0 is equivalent to ε0 = inf
{
ε > 0 : P(ξ ≥ ε) = 1

}
> 0.
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3 Multi-Dimensional Gaussian Diffusions

The main object of study in this paper is the Rd-valued process y = y(t) defined by
(1.1). Here is a summary of the basic properties of y.

Proposition 3.1 The solution of (1.1) is a Gaussian process

y(t) = etAy(0) +
∫ t

0
e(t−s)AB dw(s) (3.1)

with mean
µ(t) = etA m (3.2)

and covariance matrix

R(t) = etAKetA> +
∫ t

0
esABB>esA> ds. (3.3)

The matrix R(t) has the following properties:

1. It is the solution of the initial value problem

Ṙ(t) = AR(t) + R(t)A> + BB>, t > 0, R(0) = K; (3.4)

2. When K = 0, it is non-degenerate for every t > 0 if and only if the pair (A,B)
is controllable: the d×md matrix

[B AB · · · Ad−1B]

has rank d;

3. If K = 0, the pair (A,B) is controllable, and the eigenvalues of the matrix A have
non-positive real parts, then, for every t◦ > 0, there exists a positive numbers c◦
such that, for all t > t◦ > 0,

cd
◦ ≤ det

(
R(t)

) ≤ ‖B>‖2d td. (3.5)

Moreover, if the pair (A, B) is controllable and all eigenvalues of A have strictly
negative real parts, then equation (1.1) is ergodic, and the stationary distribution is
Gaussian with mean zero and non-singular covariance matrix R∞ that is the unique
solution of

AR∞ + R∞A> + BB> = 0. (3.6)

Proof. Direct computations show that the solution of (1.1) is (3.1), from which
(3.2) and (3.3) immediately follow. The solution of (3.4) is unique and is indeed (3.3).
The equivalence between non-degeneracy of R(t), t > 0, and controllability of (A,B)
is well-known (e.g. [9, Corollary 4.3.2]).

To establish (3.5), note that, for every unit vector u ∈ Rd,

u>R(t)u =
∫ t

0
‖B>esA>u‖2ds.
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In particular, the smallest eigenvalue of R(t) is a non-decreasing function of t and, if
all the eigenvalues of A have non-positive real parts, then the largest eigenvalue of R(t)
is bounded above by ‖B>‖2t. Then (3.5) holds with

c◦ = min
‖u‖=1

u>R(t◦)u.

Finally, controllability of (A,B) and stability of A imply ergodicity of (1.1) [3,
Theorem 9.1.1]. Existence, uniqueness, and non-degeneracy of the solution of (3.6)
follow from [9, Theorem 5.3.1]. This solution of (3.6) is

R∞ =
∫ +∞

0
esABB>esA>ds

(cf. [9, Formula (5.3.3)]). In particular,

R∞ = lim
t→+∞R(t)

is the covariance matrix of the stationary distribution for the solutions of (1.1).
This completes the proof of Proposition 3.1.

¤
Given a symmetric non-negative definite matrix Q ∈ Rd×d, consider the function

Ψ(Q; t) from (1.2). The key to computing the function Ψ is the algebraic Riccati
equation

C>BB>C − C>A−A>C = 2Q (3.7)

for the unknown matrix C ∈ Rd×d.

Theorem 3.2 Assume that equation (3.7) has a symmetric solution C = C> and
define the process y∗ by

dy∗ = (A−BB>C)y∗dt + Bdw(t), y∗(0) = y(0).

Then

Ψ(Q; t) = e−(t/2)Tr(BB>C) E exp
(

1
2

(
y>∗ (t)Cy∗(t)− y>∗ (0)Cy∗(0)

))
. (3.8)

In particular,
1. If y(0) = m is non-random, then

Ψ(Q; t) =
exp

(
−1

2

(
t Tr(BB>C) + m>Cm− µ>∗ (t)

(
I − CR∗(t)

)−1
Cµ∗(t)

))
√

det
(
I − CR∗(t)

) , (3.9)

where

µ∗(t) = et(A−BB>C) m,

R∗(t) =
∫ t

0
es(A−BB>C)BB>es(A−BB>C)>ds. (3.10)
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2. If y(0) is a Gaussian random vector with mean m and covariance K, then

Ψ(Q; t) =
exp

(
−1

2

(
tTr(BB>C)− µ̃>∗ (t)

(
I − C̃R̃∗(t)

)−1
C̃µ̃∗(t)

))
√

det
(
I − C̃R̃∗(t)

) , (3.11)

where C̃ and R̃∗(t) are 2d-by-2d block matrices

C̃ =
( −C 0

0 C

)
, R̃∗(t) =

(
K Ket(A−BB>C)>

et(A−BB>C)K et(A−BB>C)Ket(A>−CBB>) + R∗(t)

)
,

(3.12)
and

µ̃∗(t) =
(

m
µ∗(t)

)
∈ R2d. (3.13)

Proof. Theorem 3.2 was essentially proved in [8], because the more recent results
from [9] about solvability of (3.7) made it possible to remove the additional restriction
(stability of A) used in [8]. There are two main steps in the proof: (a) getting (3.8) via
a change of measure, which an interested reader can easily do using a Girsanov-type
formula, such as [11, Formula (7.138)]; (b) evaluating the right-hand side of (3.8) using
the equality

Eeξ>Gξ =
(
det(I − 2GR)

)−1/2 exp
(
µ>(I − 2GR)−1Gµ

)
, (3.14)

where ξ is a Gaussian random vector with mean µ and covariance matrix R, and G is
a symmetric matrix.

¤

Corollary 3.3 Non-zero initial conditions do not increase the value of Ψ:

Ψ(t; Q; m,K) ≤ Ψ(t,Q;0, 0). (3.15)

Proof. We fix t,Q, C. Because

y∗(t) = et(A−BB>C)y(0) +
∫ t

0
es(A−BB>C)Bdw(s),

the Gaussian random vectors

ζ = y∗(t)− et(A−BB>C)y(0)

and
η = et(A−BB>C)y(0)

are independent and Eζ = 0. By (3.8),

Ψ(Q; t; m,K) = e−(t/2)Tr(BB>C) E exp
(

1
2

((
ζ + η

)>
C

(
ζ + η

)− η>Ctη
))

,

where
Ct = e−t(A−BB>C)>Ce−t(A−BB>C).
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We now compute the expectation by conditioning on η and using (3.14) twice. The
result is

Ψ(Q; t; m,K) = Ψ(Q; t;0, 0)Φ(t,Q, K)em>Nm

with some function Φ and a matrix N ; the matrix N depends on K and t, but the
function Φ does not depend on m. While this expression is not as explicit as (3.11), it
does establish (3.15). Indeed, by definition,

Ψ(t; Q; m,K) ≤ 1, (3.16)

so if the matrix N is not non-positive definite, then it would be possible to violate
(3.16) with a suitable scaling of m. By considering m = 0, a similar argument shows
that we also must have Φ(t,Q, K) ≤ 1.

¤
Let us summarize the basic facts about the symmetric algebraic Riccati equation

XDX −XA−A>X = Q, (3.17)

with known matrices A,D, Q in Rd×d such that D ≥ 0 and Q ≥ 0.
A standard assumption about (3.17) is that the pair (A,D) is either controllable

or stabilizable; it is also often assumed that the pair (Q, A) is either observable or
detectable. Below are practical definitions of these four concepts:

• (A,D) is controllable if the rank of the d× 2d matrix [zI −A D] is equal to d
for all complex numbers z [9, Theorem 4.3.3];

• (A,D) is stabilizable if the rank of the d× 2d matrix [zI −A D] is equal to d
for all complex numbers z with non-negative real part [9, Theorem 4.5.6(a)];

• (Q,A) is observable if (A>, Q>) is controllable [9, Proposition 4.2.2];

• (Q,A) is detectable if (A>, Q>) is stabilizable [the original definition];

In particular,

1. If D is invertible, then the pair (A,D) is controllable for every matrix A;

2. If A is stable (all eigenvalues of A have negative real parts), then the pair (A,D) is
stabilizable for every matrix D and the pair (A,Q) is detectable for every matrix
Q;

3. The pair (A,B) is controllable if and only if the pair (A,BB>) is controllable [9,
Corollary 4.1.3]; recall that the definition of controllability of (A,B) if B ∈ Rd×m,
m ≤ d, is in Proposition 3.1.

4. For every matrix C ∈ Rd×d, the pair (A + BB>C, BB>) is controllable if and
only if the pair (A,BB>) is controllable [9, Lemma 4.4.1].

The following is the summary of the main results from [9] about equation (3.17).

Proposition 3.4 Consider equation (3.17) with D ≥ 0 and Q ≥ 0.

1. If the pair (Q,A) is observable, then every symmetric solution of (3.17) is non-
singular [9, Problem 7.11.15].
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2. If the pair (A,D) is stabilizable, then there exists a symmetric solution X+ of
(3.17), such that X+ ≥ 0, the eigenvalues of A − DX+ have non-positive real
parts, and X+ −X ≥ 0 for every symmetric solution X of (3.17); X+ is called
the maximal symmetric solution of (3.17) [9, Theorems 9.1.1 and 9.1.2].

3. If (A,D) is stabilizable and (Q,A) is detectable, then the eigenvalues of A−DX+

have strictly negative real parts [9, Theorem 9.1.2].

4. If (A,D) is stabilizable, X+ is the maximal symmetric solution of (3.17), and
X1 = X>

1 satisfies
X1DX1 −X1A−A>X1 = Q1,

where Q1 ≥ 0 and Q−Q1 ≥ 0, then X+ −X1 ≥ 0 [9, Corollary 9.1.6].

Equation (3.7) can have more than one symmetric solution, and Theorem 3.2 indi-
cates that any such solution can be used to compute Ψ(Q; t). If the pair (A,BB>) is
controllable, then it is often convenient to take C = C+, so that (3.8) becomes

Ψ(Q; t) = e−(t/2)Tr(CBB>) E exp
(

1
2

(
y>+(t)C+y+(t)− y>(0)C+y(0)

))
, (3.18)

where

dy+(t) = (A−BB>C+)y+(t)dt + Bdw(t), t > 0, y+(0) = y(0). (3.19)

Indeed, Propositions 3.1 and 3.4 suggest, and the following result confirms, that rep-
resentation (3.18) can have advantages over the more general (3.8).

Proposition 3.5 Assume that the pair (A, BB>) is controllable, let C+ be the max-
imal symmetric solution of (3.7), and consider the process y+ = y+(t) from (3.19).
Define

µ+(t) = Ey+(t), R+(t) = E
((

y+(t)− µ+(t)
)(

y+(t)− µ+(t)
)>)

.

Then
lim sup
t→+∞

‖µ+(t)‖ < ∞.

If, in addition, the pair (A,Q) is detectable, then the process y+ is ergodic; the
stationary distribution of y+ is Gaussian with mean zero and covariance matrix

R+ = lim
t→+∞R+(t) =

∫ ∞

0
et(A−BB>C+)BB>et(A−BB>C+)>dt. (3.20)

Proof. Everything follows from Propositions 3.1 and 3.4. In particular, to claim
ergodicity, note that detectability of (A,Q) implies stability of A−BB>C+, and, by [9,
Lemma 4.4.1], controllability of (A,BB>) implies controllability of (A−BB>C+, B).

¤
We will also need some basic facts about the Riccati differential equation

Ẋ(t) + X(t)QX(t) = AX(t) + X(t)A> + D, t > 0, X(0) = 0, (3.21)

with constant square matrices A,D,Q.
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Proposition 3.6 Consider equation (3.21) under the assumptions that Q ≥ 0, D ≥ 0,
and the pair (A,D) is controllable.

1. There exists a unique symmetric solution X = X(t) of (3.21), and X(t) > 0 for
all t > 0 [12, Lemma 16.3].

2. If X1 = X1(t) is a symmetric solution of

Ẋ1(t) + X1(t)Q1X1(t) = AX1(t) + X1(t)A> + D, X1(0) = 0,

with Q1 − Q ≥ 0, then, for all t > 0, X(t) − X1(t) ≥ 0 and, as a consequence,
det

(
X(t)

) ≥ det
(
X1(t)

)
[14, Theorem 1] and [13, Exercise 13.5.1].

Formula (3.11) provides an expression for the function Ψ in quadratures: there
are no differential Riccati equations to solve, as, for example in [17, Corollary 1] or
[6, Section 4.1]. Still, further simplification of (3.11) or even of (3.9) is, in general,
not possible, often because of complications related to evaluation of (3.10) when the
matrices A, B, and C do not commute.

Below are two examples when the right-hand side of (3.9) can be simplified further.
Both examples can be considered multi-dimensional analogues of the one-dimensional
Ornstein-Uhlenbeck process

dx(t) = −ax(t)dt + σdw(t), t > 0, x(0) = 0, (3.22)

for which it is known [12, Lemma 17.3] that

Ee−λ
∫ t
0 x2(s)ds =

1√
e−at

(
a sinh(t

√
a2+2σ2λ)√

a2+2σ2λ
+ cosh

(
t
√

a2 + 2σ2λ
)) . (3.23)

Proposition 3.7 Assume that y(0) = 0, A = A>, B = σI, σ 6= 0, and the pair (Q,A)
is observable. Define the matrix

Λ = (A2 + 2σ2Q)1/2

as the symmetric non-negative-definite square root of A2 + 2σ2Q. Then

1. The matrix Λ is invertible;

2. The function Ψ(Q; t) has the following representation:

Ψ(Q; t) =
e−Tr(A) t/2

√
det

(
cosh(tΛ)−AΛ−1 sinh(tΛ)

) . (3.24)

Proof. With A = A>, equation (3.7) becomes C2 −AC − CA = 2σ2Q or

(C −A)2 = Λ2. (3.25)

Then
C+ = A + Λ

is the maximal symmetric solution of (3.25), and, because A−C+ = −Λ, the matrices
Λ and I −AΛ−1 are non-degenerate by Proposition 3.4.
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Next,

I − CR(t) = I − 1
2
(A + Λ)Λ−1

(
I − e−2tΛ

)

=
1
2

(
I + e−2tΛ

)− 1
2
AΛ−1

(
I − e−2tΛ

)
=

(
cosh(tΛ)−AΛ−1 sinh(tΛ)

)
e−tΛ,

and (3.24) follows because det
(
e−tΛ

)
= e−t Tr(Λ).

¤

The second example shows that, even when system (1.1) is not diagonal, the random
variable

∫ t
0 ‖y(s)‖2ds can have the same distribution as

d∑

k=1

∫ t

0
x2

k(s)ds,

where x1, . . . , xd are iid one-dimensional Ornstein-Uhlenbeck processes of the type
(3.22); cf. [12, Lemma 17.5] when d = 2.

Proposition 3.8 Assume that y(0) = 0, A = −aI + A1, B = σI, and Q = λI, where
a ∈ R, λ > 0, σ 6= 0, and A1 is a skew-symmetric matrix: A1 = −A>1 . Then

Ψ(Q; t) = (ΨOU (λ; t))d , (3.26)

where

ΨOU (λ; t) =
(

eat

cosh(%t) + (a/%) sinh(%t)

)1/2

is the right-hand side of (3.23), with

% = (a2 + 2σ2λ)1/2.

Proof. Equation (3.7) becomes

C2 + (aI + A1)C + C(aI −A1) = 2σ2λI. (3.27)

Substituting C = γI, γ ∈ R, in (3.27) and using CA1 = A1C yields

γ2 + 2aγ = 2σ2λ or γ = −a± %.

With C = (−a + %)I, equality (3.10) becomes

R∗(t) =
∫ t

0
e−2%s I ds =

1− e−2%t

2%
I,

and (3.26) follows from (3.11).

¤
In the case of non-zero initial condition, an explicit and manageable expression for

Ψ exists when d = 1: for the one-dimensional OU process (3.22) with initial condition
having mean x0 and variance σ2

0, direct computations lead to

E exp
(
−λ

∫ t

0
x2(s)ds

)
=

ΨOU (λ; t)√
1 + 2σ2

0ψ
exp

(
− ψx2

0

1 + 2σ2
0ψ

)
, (3.28)

where

ψ =
%− a

2σ2

(
1− e−%t

cosh(%t) + (a/%) sinh(%t)

)
.
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4 Asymptotic Analysis of the Laplace Trans-

form

As a first application of Theorem 3.2, let us investigate the asymptotic of the function
Ψ(Q; t) as t → +∞.

Theorem 4.1 Assume that the pair (A,BB>) is controllable and Tr(Q) > 0. Let C0

be the maximal symmetric solution of

CBB>C − CA−A>C = 0.

Denote by C+ the maximal symmetric solution of (3.7). Then Tr(C+ − C0) > 0 and

lim sup
t→+∞

lnΨ(Q; t)
t

≤ −Tr(C+ − C0)
2

. (4.1)

Proof. By (3.15), it is enough to consider only zero initial condition y(0) = 0. We
continue to use the notation

D = BB>.

Then (3.18) becomes

Ψ(Q; t) =
exp

(−1
2 (tTr(DC+))

)
√

det
(
I − C+R+(t)

) . (4.2)

By Proposition 3.4, C+−C0 ≥ 0, and therefore Tr(DC+−DC0) ≥ 0. If Tr(DC+−
DC0) = 0, then DC+ = DC0, so that y+ = y◦, where y◦ is the solution of (3.19)
with C0 instead of C+. Equality (3.18) then implies Ψ(Q; t) = 1, contradicting the
assumption that Tr(Q) > 0. In other words, Tr(Q) > 0 implies

δ = Tr(DC+ −DC0) > 0. (4.3)

By Proposition 3.1 and [9, Lemma 4.4.1], R+(t) > 0 for every t > 0 and

Ṙ+(t) = (A−DC+)R+(t) + R+(t)(A> − C+D) + D.

Similarly, the matrix

R0(t) =
∫ t

0
es(A−DC0)Des(A>−C0D)ds (4.4)

is positive-definite for every t > 0.
Define the matrices

S(t) =
(
R+(t)

)−1
, V (t) = S(t)− C+, and U(t) =

{(
V (t)

)−1
, if t > 0;

0, if t = 0.
(4.5)

Then (4.2) becomes

Ψ2(Q; t) = det
(
e−tC+U(t)

)× det
(
S(t)

)
, (4.6)

or, using (4.3) and det
(
eX

)
= eTr(X),

Ψ2(Q; t) = e−δ t det
(
S(t)

)× det
(
e−tC0U(t)

)
.
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By (3.5) and Proposition 3.4(2),

lim
t→∞

ln
(

det
(
S(t)

))

t
= 0,

and, to establish (4.1), it remains to verify that

lim sup
t→∞

ln
(

det
(
e−tC0U(t)

))

t
≤ 0. (4.7)

Let us derive the differential equation satisfied by U(t). For every invertible matrix
X = X(t), the inverse matrix Y (t) =

(
X(t)

)−1 satisfies

Ẏ (t) = −Y (t)Ẋ(t)Y (t), (4.8)

which follows after applying the product rule to X(t)Y (t) = I. Applying (4.8) with
X(t) = R+(t) we get

Ṡ(t) = −S(A−DC+)− (A> − C+D)S − SDS. (4.9)

After combining (4.5) and (4.9),

V̇ (t) = Ṡ(t) = −(V + C+)(A−DC+)− (A> −C+D)(V + C+)− (V + C+)D(V + C+);

simplifying the result using (3.7),

V̇ (t) = −V A−A>V − V DV + 2Q. (4.10)

One more application of (4.8), this time with X(t) = V (t), together with (4.10), gives
the differential equation satisfied by U :

U̇(t) + 2U(t)QU(t) = AU(t) + U(t)A> + D. (4.11)

By Proposition 3.6, U(t) > 0 for all t > 0 and

det
(
U(t)

) ≤ det
(
U0(t)

)
,

where U0(t) satisfies
U̇0(t) = AU0(t) + U0(t)A> + D.

Next, let us apply (4.6) when Q = 0:

Ψ2(0; t) = det
(
S0(t)

)× det
(
e−tC0U0(t)

)
,

where S0(t) = R−1
0 (t) and R0(t) is from (4.4). Since Ψ(0; t) = 1 for all t ≥ 0,

det
(
R0(t)

)
= det

(
e−tC0U0(t)

) ≥ det
(
e−tC0U(t)

)
.

By (3.5) and Proposition 3.4(2),

lim
t→∞

ln
(

det
(
R0(t)

))

t
= 0,

which implies (4.7).
This completes the proof of Theorem 4.3.

¤
Combining (4.1) with Proposition 2.1, we get an answer to question [Q1] originally

posed in the introduction.
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Proposition 4.2 If Q ≥ 0 with Tr(Q) > 0, y = y(t) is the solution of (1.1), and the
pair (A,B) is controllable, then

∫ +∞

0
y>(t)Qy(t)dt = +∞ (4.12)

with probability one.

Proof. Indeed, (4.1) implies that

lim
t→+∞Ψ(Q; t) = 0

as long as Q is not identically zero.

¤
While intuitively obvious, (4.12) is surprisingly difficult to prove: even the one-

dimensional case relies on the Laplace transform [12, Section 17.3]. Note also that
(4.12) is, in general, not true without the controllability assumption: consider

A =
( −1 0

0 −1

)
, B =

(
0 0
0 1

)
, Q =

(
1 0
0 0

)
,

so that, with y(0) = (y1(0) y2(0))>,

y>(t)Qy(t) = y2
1(0)e−2t

and the left-hand side of (4.12) is bounded above by y2
1(0). Further analysis of this

example shows that, without the controllability assumption, the integral in (4.12) can
either converge or diverge, depending on the initial condition y(0) and the matrix Q.

A more precise asymptotic of Ψ(Q; t) as t →∞ exists under additional assumptions,
and, even though it does not add anything as far as answering question [Q1], the result
can, for example, provide an explicit solution to some optimization problems (cf. [4,
Equation (1.10)]).

Theorem 4.3 Assume that the pair (A,B) is controllable, the pair (Q,A) is observ-
able, and the initial condition y(0) is a Gaussian vector with mean m and covariance
matrix K. Let C+ be the maximal symmetric solution of (3.7). Then

1. The matrix R+ from (3.20) is well-defined and non-singular;

2. The matrix I − C+R+ is non-singular and, as t → +∞,

Ψ(Q; t) ∼ e−(t/2)Tr(BB>C+)

√
det(I − C+R+)

× e−(1/2)m>(I+C+K)−1C+m

√
det(I + C+K)

. (4.13)

Proof. Define the Gaussian process y+ = y+(t) by (3.19). Proposition 3.5 implies
that the process y+ has a unique invariant measure, which is Gaussian with mean zero
and non-singular covariance matrix R+. Passing to the limit as t → +∞ in (3.12) and
(3.13), we find

lim
t→+∞

(
I − C̃R̃∗(t)

)
=

(
I + CK 0

0 I − CR+

)
, lim

t→+∞ µ̃∗(t) =
(

m
0

)
.
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It remains to verify that the matrix I − C+R+, or, equivalently,
(
R+

)−1 − C+, is
non-singular; then relation (4.13) will follow from (3.11).

To show that the matrix
(
R+

)−1 −C+ is non-singular, note that, by [12, Theorem
16.2], the matrix V = V (t) solving equation (4.10) has a non-singular limit as t →∞
that does not depend on the initial condition; by construction, this limit coincides with(
R+

)−1 − C+.

¤
There is an alternative form of (4.13) using the minimal symmetric solution C− of

(3.7). Indeed, consider the equation

XDX + XA + A>X = 2Q. (4.14)

Then C is solution of (3.7) if and only if X = −C is a solution of (4.14). In particular,
X− = −C+ is the minimal symmetric solution of (4.14). Applying [9, Theorem 7.5.1]
we conclude that X+ = X− +

(
R+

)−1 =
(
R+

)−1−C+ is the maximal symmetric solu-
tion of (4.14). Note that direct computations using (4.9), with limt→+∞ S(t) = R−1

+ ,
confirm that

(
R+

)−1 − C+ is a symmetric solution of (4.14), but an additional argu-
ment is still necessary to claim that it is indeed the maximal solution. By construction,
X+ −X− = C+ − C−, which leads to an equivalent form of (4.13):

Ψ(Q; t) ∼ e−(t/2)Tr(BB>C+)

(
det(C+ − C−)
(−1)d det(C−)

)1/2

× e−(1/2)m>(I+C+K)−1C+m

√
det(I + C+K)

. (4.15)

On the one hand, the assumption about observability of (Q,A) cannot, in general,
be omitted: take y(0) = 0, A = 0, B = I, and

Q =
(

1
2 0
0 0

)
.

In this case, the right-hand sides of both (4.15) and (4.13) are not defined because the
matrices C± = ±2Q are singular and the matrix R+ does not exist.

On the other hand, (4.15) can hold without the observability assumption: take
y(0) = 0,

A =
(

0 0
0 −1

)
, B = I, Q =

(
1
2 0
0 0

)
.

so that C± = A ± I. In this case, detC+ = 0 but detC− = 2, det(C+ − C−) = 4,
−Tr(C+)/2 = −1/2, and the right-hand side of (4.15) gives the correct asymptotic
Ψ(Q; t) ∼ √

2e−t/2. Incidentally, note that A − C+ = −I is stable. Further analysis
of this example shows that, if the matrices Q and A are both diagonal, then the
observability condition can be replaced by a weaker condition of detectability, which,
in this case, means that, for every zero entry on the diagonal of Q, the corresponding
diagonal entry of A must be negative.

Next, we study the high frequency asymptotic of the function Ψ(Q; t), that is,

lim
λ→+∞

Ψ(λQ; t)

for fixed t > 0 and fixed Q ≥ 0. As paper [2] demonstrates, if the matrix BB> is
not invertible, the high-frequency asymptotic can depend on the matrix Q in a rather
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complicated way even with zero initial conditions. In the next section, we will see
that, when the noise is degenerate, the non-zero initial conditions can also change the
asymptotic in a profound way. A truly universal result exists only when the matrix
BB> is invertible, which we will assume through the rest of this section.

If the matrix D = BB> is invertible, then a linear transformation reduces the
problem to the case B = I. Indeed, define

Ā = D−1/2AD1/2, Q̄ = D1/2QD1/2.

The process y has the same distribution as the solution of

dỹ(t) = Aỹ(t)dt + D1/2dv(t), t > 0, ỹ(0) = y(0),

where v is a d-dimensional standard Brownian motion, and then

Ψ(Q; t) = E exp
(
−

∫ t

0
ȳ>(s)Q̄ȳ(s)ds

)
,

where ȳ = D−1/2ỹ is the solution of

dȳ(t) = Āȳ(t)dt + dv(t), t > 0, ȳ(0) = D−1/2y(0).

Denote by Cλ the maximal symmetric solution of

C2 − Ā>C − CĀ = 2λQ̄,

and define

m̄ = (BB>)−1/2m, µλ(t) = et(Ā−Cλ)m̄, Rλ(t) =
∫ t

0
es(Ā−Cλ)es(Ā>−Cλ)ds.

By Theorem 3.2,

Ψ(λQ; t) =
exp

(
−1

2

(
t Tr(Cλ)− µ̃>λ (t)Sλµ̃λ(t)

))
√

det
(
I − C̃λR̃λ(t)

) , (4.16)

where
Sλ =

(
I − C̃λR̃λ(t)

)−1
C̃λ,

C̃λ and R̃λ(t) are 2d-by-2d block matrices

C̃λ =
( −Cλ 0

0 Cλ

)
, R̃λ(t) =

(
K Ket(Ā>−Cλ)

et(Ā−Cλ)K et(Ā−Cλ)Ket(Ā>−Cλ) + Rλ(t)

)
,

and µ̃λ(t) is a vector in R2d :

µ̃λ(t) =
(

m
µλ(t)

)
.

We will also need the matrix

QK = lim
λ→+∞

(I +
√

2λ Q̄1/2K)−1Q̄1/2. (4.17)

The limit in (4.17) exists by a monotonicity argument, and there are two obvious
particular cases:
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1. If K = 0, then QK = Q̄1/2;

2. If Q̄1/2K is invertible, then QK = 0.

Theorem 4.4 Assume that the matrix BB> is invertible. Denote by Q̄1/2 the sym-
metric non-negative square root of Q̄.

Then
lim

λ→+∞
lnΨ(λQ; t)

λ1/2
= −2−1/2

(
t Tr

(
Q̄1/2

)
+ m̄>QKm̄

)
. (4.18)

Proof. In view of (4.16), we need to verify the following:

lim
λ→+∞

(t/2)Tr(Cλ)√
λ

= 2−1/2tTr
(
Q̄1/2

)
, (4.19)

lim inf
λ→∞

ln
(

det
(
I − C̃λR̃λ(t)

))
√

λ
= 0, (4.20)

lim
λ→+∞

µ̃>λ (t)Sλµ̃λ(t)
2
√

λ
= 2−1/2m̄>QKm̄. (4.21)

If Ĉλ = Cλ/
√

λ, then

Ĉ2
λ −

Ā>√
λ

Ĉλ − Ĉλ
Ā>√

λ
= 2Q̄.

By [9, Theorem 11.2.1],
lim

λ→+∞
Ĉλ =

(
2Q̄

)1/2
, (4.22)

which implies (4.19). Then

lim
λ→+∞

λ−1/2(I + CλK)−1Cλ =
√

2 QK (4.23)

and
lim

λ→+∞
λn‖Cλet(Ā−Cλ)‖ = 0, n > 0. (4.24)

To establish (4.20) note that (4.22) and (4.24) imply

lim inf
λ→∞

ln
(

det
(
I − C̃λR̃λ(t)

))
√

λ
= lim inf

λ→∞

ln
(

det
(
I − CλRλ(t)

))
√

λ
.

Accordingly, define the matrix

Uλ(t) =





((
Rλ(t)

)−1 − Cλ

)−1
, if t > 0;

0, if t = 0.

Then

1 ≤ 1

det
((

I − CλRλ(t)
)) =

det
(
Uλ(t)

)

det
(
Rλ(t)

) , (4.25)
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and equality (4.20) will follow from

lim inf
λ→∞

ln
(

det
(
Rλ(t)

))
√

λ
= 0 and (4.26)

lim sup
λ→∞

ln
(

det
(
Uλ(t)

))
√

λ
= 0. (4.27)

To verify (4.26), denote by κ0 > 0 the largest eigenvalue of the matrix
(
2Q̄

)1/2. By
(4.22) and continuous dependence of eigenvalues on the elements of the matrix (e.g.
[15, Theorem 5.2]), the real part of every eigenvalue of Ā> − Cλ will be greater than
or equal to −2

√
λκ0 for all sufficiently large λ. Proposition 3.1 then implies existence

of a positive number δ such that, for all λ > 0,

det
(
Rλ(t)

) ≥ δ λ−d/2,

from which (4.26) follows.
To verify (4.27), note that, by (4.11),

U̇λ(t) + 2λUλ(t)Q̄Uλ(t) = ĀUλ(t) + Uλ(t)Ā> + I, Uλ(0) = 0.

By (4.25),
det

(
Uλ(t)

) ≥ det
(
Rλ(t)

)
,

whereas, by Proposition 3.6,

det
(
Uλ(t)

) ≤ νd
0 , λ > 0, (4.28)

where ν0 is the largest eigenvalue of the matrix U0(t), and then (4.27) follows from
(4.28).

Finally, (4.21) follows from (4.23) and (4.24).
This completes the proof of Theorem 4.4.

¤
With the help of Theorem 4.4, we can now answer question [Q2] posed in Introduc-

tion.

Theorem 4.5 Assume that, in equation (1.1), the matrix BB> is invertible and the
initial condition y(0) is independent of w and is a Gaussian vector with mean m and
covariance K. Then, for every Q ≥ 0,

lnP
(∫ t

0
y>(s)Qy(s)ds ≤ ε

)
∼ −1

8

(
t Tr

(
Q̄1/2

)
+ m̄>QKm̄

)2
ε−1, (4.29)

where Q̄ = (BB>)1/2Q(BB>)1/2, m̄ = (BB>)−1/2m, Q̄1/2 is the symmetric non-
negative square root of Q̄, and QK is the matrix from (4.17).

Proof. With (4.18) in mind, we use (2.4), taking γ = 1/2 and

α = 2−1/2
(
tTr

(
Q̄1/2

)
+ m̄>QKm̄

)
.
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¤
Theorem 4.5 shows that if the matrix BB> is invertible, then the random variable

ξ =
∫ t

0
y>(s)Qy(s)ds

has small ball rate $ = 1 for every initial condition y(0), every drift matrix A, and
every non-zero matrix Q ≥ 0. The small ball constant

C =
1
8

(
t Tr

(
Q̄1/2

)
+ m̄>QKm̄

)2

depends on both m and Q, but does not depend on the matrix A. If A = 0 and y(0) =
0, then y is a Brownian motion with covariance matrix BB> so that

∫ t
0 y>(s)Qy(s)ds

is equal in distribution to
∑d

k=1 σ̄2
k

∫ t
0 w2

k(s)ds, where w1, . . . , wd are independent one-
dimensional standard Brownian motions and σ̄2

1, . . . , σ̄
2
d are the eigenvalues of the ma-

trix Q̄. The corresponding small deviations bound can then be derived, for example,
from [10, Corollary 3.1], and this bound coincides with (4.29). In other words, as
ε → 0,

lnP
(∫ t

0
y>(s)Qy(s)ds ≤ ε

)
∼ lnP

(
d∑

k=1

∫ t

0
σ̄2

kw
2
k(s)ds ≤ ε

)

∼ − t2

8

(
d∑

k=1

σ̄k

)2

ε−1.

It is somewhat remarkable that the variance of the initial condition y(0) can affect
the small ball constant for

∫ t
0 y>(s)Qy(s)ds. Indeed, consider the one-dimensional OU

process (3.22) with initial condition having mean x0 and variance σ2
0. Equality (3.28)

and the asymptotic relation (2.4) imply

lnP
(∫ t

0
x2(s)ds ≤ ε

)
∼





−σ2t2

8
ε−1, if σ2

0 > 0

−(σ2t + x2
0)

2

8σ2
ε−1, if σ2

0 = 0.

More generally, if both K and Q are invertible, then QK = 0 and the small ball
constant does not depend on the initial condition:

lnP
(∫ t

0
y>(s)Qy(s)ds ≤ ε

)
∼ − t2

8

(
Tr

(
Q̄1/2

))2
ε−1.

On the other hand, consider A = 0,

B = Q =
(

1 0
0 1

)
, K =

(
1 0
0 0

)
,

so that

(I + CλK)−1 =
(

1/(1 +
√

2λ) 0
0 1

)
and QK =

(
0 0
0 1

)
.

With m = (m1 m2)>, we get

lnP
(∫ t

0
y>(s)Qy(s)ds ≤ ε

)
∼ −1

8

(
2t + m2

2

)2
ε−1.
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5 Degenerate Noise: a Two-Dimensional Exam-

ple

The objective of this section is to demonstrate how degenerate noise can destroy univer-
sality of the conclusion of Theorem 4.4. We will consider a two-dimensional example,
corresponding to (1.1) with

A =
(

0 1
−b −a

)
, B =

(
0
σ

)
. (5.1)

In other words, y> = (x ẋ), and x = x(t) satisfies

ẍ(t) + aẋ(t) + bx(t) = σẇ(t), t > 0. (5.2)

Let

Q =
(

y r
r z

)
, y ≥ 0, z ≥ 0, yz ≥ r2,

be a symmetric non-negative definite matrix; occasionally, we will write Q = (y r; r z).
We will now compute

Ψ(Q; t) = E exp
(
−

∫ t

0
y>(s)Qy(s)ds

)

using Theorem 3.2.
To this end, define the numbers p and q by

p =
√

a2 + 2σ2z + 2q − 2b, q =
√

b2 + 2σ2y.

To eliminate the trivial cases, we will always assume that p > 0 and q > 0.
Next, define the number ν =

√
|(p2/4)− q| and the functions

ϕ(t) =





sin νt
ν e−pt/2, if p2 − 4q < 0,

sinh νt
ν e−pt/2, if p2 − 4q > 0,

te−pt/2, if p2 − 4q = 0,

(5.3)

and

a(t) =
1

2pq

(
1− ϕ̇2(t)− (p2 + q)ϕ2(t)− pϕ̇(t)ϕ(t)

)
, (5.4a)

b(t) =
ϕ2(t)

2
, (5.4b)

c(t) =
1
2p

(
1− ϕ̇2(t)− qϕ2(t)

)
. (5.4c)

Direct computations show that the maximal symmetric solution of (3.7) with ma-
trices A and B from (5.1) is

C = σ−2

(
pq − 2σ2λr − ab q − b

q − b p− a

)
,
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and the matrix R∗(t) from (3.10) is

R∗(t) = σ2

(
a(t) b(t)
b(t) c(t)

)
.

If y(0) = 0, that is, x(0) = ẋ(0) = 0 in (5.2), then (3.9) implies

Ψ(Q; t) = e−(p−a)t/2 [det(I − CR∗(t))]−1/2 . (5.5)

Sometimes, formula (5.5) can be simplified further. For example, consider the
integrated Brownian motion x(t) =

∫ t
0 w(s)ds, corresponding to a = b = 0, r = z = 0,

and σ = 1. Then (5.5) becomes

Ψ(t) =
2√

cos
(
23/4ty1/4

)
+ cosh

(
23/4ty1/4

)
+ 2

,

a well-known result: cf. [7, Section 4.2.1] or [5, Theorem 3.1].
Here are two new examples.
1. Random harmonic oscillator ẍ(t) + bx(t) = ẇ(t), b > 0, corresponding to a = 0,

z = 0, and σ = 1:

Ψ(t) = 2 4
√

b2+2y√
(
√

b2+2y−b) cos(
√

2t

√√
b2+2y+b)+(

√
b2+2y+b) cosh(

√
2t

√√
b2+2y−b)+2

√
b2+2y

;

2. Joint integrated Brownian motion and Brownian motion:

Ψ(t)=





23/4
√

2y−z2
√

(−√yz+
√

2y−√2z2) cos(t
√

2
√

2
√

y−2z)+(
√

yz+
√

2y−√2z2) cosh(t
√

2
√

2
√

y+2z)+2
√

2y
,

z <
√

2y,
23/4

√
z2−2y√

(−√yz+
√

2y−√2z2) cosh(t
√

2z−2
√

2
√

y)+(
√

yz+
√

2y−√2z2) cosh(t
√

2
√

2
√

y+2z)+2
√

2y
,

z >
√

2y,
2√√

2t2
√

y+ 3
2

cosh(25/4ty1/4)+ 5
2

= 2√
t2z+ 3

2
cosh(2t

√
z)+ 5

2

, z =
√

2y.

Even when the initial conditions are zero, the hight-frequency asymptotic of the
function Ψ can depend on the matrix Q in a non-trivial way.

Theorem 5.1 Assume that x(0) = ẋ(0) = 0. If z = 0 and y > 0, then

lim
λ→+∞

lnΨ(λQ; t)
λ1/4

= −2−1/4 σ1/2 y1/4 t. (5.6)

If z > 0, then

lim
λ→+∞

lnΨ(λQ; t)
λ1/2

= −2−1/2 σ z1/2 t. (5.7)

Proof. When using (5.5), we now keep in mind that the matrix Q is re-scaled by the
factor λ, so that y, r, z must be replaced with λy, λr, λz. Throughout the proof we use
the O(·) and o(·) notations for asymptotic comparison as λ → +∞, and write f ∼ g if
limλ→+∞ f/g = 1.

Both (5.6) and (5.7) will follow from (5.5) once we show that

0 < lim inf
λ→+∞

det
(
I − CR∗(t)

) ≤ lim sup
λ→+∞

det
(
I − CR∗(t)

)
< ∞. (5.8)
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The key question becomes the asymptotic, as λ → +∞, of the function ϕ from
(5.3) for fixed t > 0. There are three cases to consider.

Case 1: y > 0, r = z = 0. As λ → +∞, we have p2 ∼ 2q ∼ 2(2σ2λy)1/2, so that
p2 − 4q < 0 for large λ and then, by (5.3),

lim
λ→+∞

λnϕ(t) = lim
λ→+∞

λnϕ̇(t) = 0 for all n > 0.

Then limλ→+∞ λnb(t) = 0 for all n > 0,

a(t) ∼ 1
2pq

, c(t) ∼ 1
2p

,
(
I − CR∗(t)

) ∼ 1
2

(
1 −1

p

− q
p 1

)
,

so that

det
(
I − CR∗(t)

) ∼ 1
4

(
1− q

p2

)
∼ 1

8
,

and (5.8) follows.
Case 2: y = r = 0, z > 0. Now q does not depend on λ and, as λ → +∞, we have

p2 ∼ 2σ2λz, so that p2 − 4q > 0 for large λ, 2ν =
√

p2 − 4q ∼ p, and

p− 2ν = p−
√

p2 − 4q =
4q

p +
√

p2 − 4q
∼ 2q

p
.

As a result, (5.3) and (5.4a)–(5.4c) lead to

e(2ν−p)t/2 ∼ 1, ϕ(t) =
sinh(νt)

ν
e−pt/2 ∼ 1

p
, ϕ̇(t) =

(
cosh(νt)− p

2ν
sinh(νt)

)
e−pt/2 ∼ − q

p2
.

Then

I − CR∗(t) =
(

1 0
0 1/2

)
+ o(1), det

(
I − CR∗(t)

)
=

1
2

+ o(1),

and (5.8) follows.
Case 3: y > 0, z > 0, r2 ≤ yz. We have p2 ∼ 2σ2λz, q ∼

√
2σ2λy so that

p2 − 4q > 0 for large λ, 2ν =
√

p2 − 4q ∼ p, and

p−
√

p2 − 4q =
4q

p +
√

p2 − 4q
∼ 2

√
y

z
.

With notations

θ =
√

y

z
, h = e−θt, β = 1− r√

yz
, (5.9)

equalities (5.3) and (5.4a)–(5.4c) lead to

q

p
∼ β, e(2ν−p)t/2 ∼ h,

ϕ(t) =
sinh(νt)

ν
e−pt/2 ∼ h

p
, ϕ̇(t) =

(
cosh(νt)− p

2ν
sinh(νt)

)
e−pt/2 ∼ −qh

p2
∼ −θh

p
,

a(t) ∼ 1− h2

2pq
, b(t) ∼ h2

2p2
, c(t) ∼ 1

2p
.
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Then

I − CR∗(t) =

(
1− β(1−h2)

2 + o(1) O(1/p)
O(1) 1

2 + o(1)

)
,

det
(
I − CR∗(t)

) ∼ 2− β(1− h2)
4

,

and (5.8) follows.
This completes the proof of Theorem 5.1.

¤
Theorems 2.2 and 5.1 lead to the logarithmic asymptotic of probability of small

deviations for the corresponding quadratic functionals. The result shows that the small
ball rate depends on whether z = 0 (cf. (5.10)) or z > 0 (cf. (5.11)). Equivalently, the
random variables

∫ t
0 x2(s)ds and

∫ t
0 ẋ2(s)ds have different small ball rates.

Theorem 5.2 Let x = x(t) be the solution of equation (5.2). For y > 0,

lnP
(

y

∫ t

0
x2(s)ds ≤ ε

)
∼ −3σ2/3y1/3t4/3

8
ε−1/3. (5.10)

If y(t) =
(
x(t), ẋ(t)

)>, Q = (y r; r z), y ≥ 0, z > 0, r2 ≤ yz, then

lnP
(∫ t

0
y>(s)Qy(s)ds ≤ ε

)
∼ −σ2zt2

8
ε−1. (5.11)

Proof. To establish (5.10), note that (5.6) is (2.2) with

γ = 1/4 and α = 2−1/4σ1/2y1/4t.

Then (5.10) follows from (2.4).
To establish (5.11), note that (5.7) is (2.2) with

γ = 1/2 and α = 2−1/2σz1/2t.

Then (5.11) follows from (2.4).

¤
Let us now consider the effects of non-zero initial conditions. As we saw in the

previous section, if the matrix BB> is non-singular, then the initial conditions can
increase the small ball constant C, but do not change the small ball rate $ (cf. Theorem
4.5). For equation (5.2), the initial conditions can change the small ball rate as well.
The most dramatic change takes place when yz > r2 ≥ 0 and the initial condition is
non-random (K = 0) with x(0) = m1 6= 0. In this case, the quadratic form becomes
uniformly bounded from below: there exists ε0 > 0 such that

P
(∫ t

0
y>(s)Qy(s)ds ≤ ε0

)
= 0. (5.12)

Informally, the small ball rate $ becomes infinite. While this might appear surprising
at first, a simple application of the Cauchy-Schwartz inequality shows that the result
is to be expected. For example, take

x(t) = m1 +
∫ t

0
w(s)ds, ẋ(t) = w(t), y = z = 1, r = 0, (5.13)
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so that ∫ t

0
y>(s)Qy(s)ds =

∫ t

0

((
m1 +

∫ s

0
w(τ)dτ

)2

+ w2(s)

)
ds.

Using

2m1

∫ s

0
w(τ)dτ ≥ −m2

1

2
− 2

(∫ s

0
w(τ)dτ

)2

,

we get

y>(s)Qy(s) ≥ m2
1

2
−

(∫ s

0
w(τ)dτ

)2

+ w2(s).

Next, by Cauchy-Schwartz,
(∫ s

0
w(τ)dτ

)2

≤ s

∫ s

0
w2(τ)dτ,

so that ∫ t

0
y>(s)Qy(s)ds ≥ m2

1t

2
+

(
1− t2

2

) ∫ t

0
w2(s)ds,

and, as long as t ≤ √
2, we get (5.12) with ε0 = m2

1t/2.
Asymptotic analysis of Ψ(λQ; t) as λ → +∞, together with Proposition 2.3, leads

to a sharper bound in a more general setting; cf. (5.14) below. In particular, for (5.13),
we actually have (5.12) for every t > 0 with ε0 = m2

1 tanh(t).

Theorem 5.3 Assume
√

yz > |r| ≥ 0, K = 0, and m1 6= 0. Then, using the notations
from (5.9),

P
(∫ t

0
y>(s)Qy(s)ds ≤ ε

)
= 0 for ε <

√
yz

β(2− β)(1− h2)
2− β(1− h2)

m2
1. (5.14)

Proof. By Proposition 2.3, we need to show that

lim
λ→+∞

ln Ψ(λQ; t)
λ

= −√yz
β(2− β)(1− h2)

2− β(1− h2)
m2

1. (5.15)

To simplify the presentation, and keeping in mind that the matrix C depends on λ, we
will write

Pλ = et(A−BB>C), µλ = Pλm, uθ =
(

1
−θ

)
,

and then (3.11) becomes

2 ln Ψ(λQ; t) = −pt− ln
(

det
(
S̃λ

))
+ µ̃>λ S̃λµ̃λ,

where

S̃λ = (I − C̃λR̃λ)−1C̃λ, C̃λ =
( −C 0

0 C

)
,

R̃λ =
(

K KP>
λ

PλK PλKP>
λ + R∗

)
, R∗(t) = σ2

(
a(t) b(t)
b(t) c(t)

)
, µ̃λ =

(
m
µλ

)
.
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By construction, det
(
S̃λ

)
= O(λn) for some n ≥ 0, and therefore

lnΨ(λQ; t) ∼ −pt

2
+

1
2
µ̃>S̃λµ̃. (5.16)

If K = 0, then, by (5.16),

lnΨ(λQ; t) ∼ 2−1/2σz1/2t λ1/2 − 1
2
m>Cm +

1
2
µ>λ (I − CR∗)−1Cµλ. (5.17)

If
√

yz > |r|, then

C =
(

2
√

yz β λ + O(λ1/2)
√

2yσ−1λ1/2 + O(1)√
2yσ−1λ1/2 + O(1)

√
2zσ−1λ1/2 + O(1)

)
,

R∗ =
(

(1− h2)41/2(yz)−1/2λ−1 + O(λ−3/2) h2(4z)−1λ−1 + O(λ−3/2)
h2(4z)−1λ−1 + O(λ−3/2) σ2−3/2z−1/2 λ−1/2 + O(λ−1)

)
,

C−1 =
(

(2β)−1(yz)−1/2 λ−1 + O(λ−3/2) −(2βz)−1 λ−1 + O(λ−3/2)
−(2βz)−1 λ−1 + O(λ−3/2) σ(2z)−1/2 λ−1/2 + O(λ−1)

)
,

(C−1 −R∗)−1 =
8
√

2y z β

σ
(
2− β(1− h2)

)

×
(

σ22−3/2z−1/2 λ + O(λ1/2) (2 + βh2)(4zβ)−1 λ1/2 + O(1)
(2 + βh2)(4zβ)−1 λ1/2 + O(1)

(
2− β(1− h2)

)
(4β)−1(yz)−1/2 λ1/2 + O(1)

)
,

µλ = m1huθ + O(λ−1/2).

If m1 6= 0, then, by (5.17),

lnΨ(λQ; t) ∼ −√yz βm2
1

(
1− 2h2

2− β(1− h2)

)
λ = −√yz m2

1

β(2− β)(1− h2)
2− β(1− h2)

λ,

and (5.15) follows. Note that the right-hand side of (5.15) vanishes when β = 0 or
β = 2, that is, exactly when the matrix Q is singular.

¤
Further inspection of (5.16) suggests the following qualitative summary of the effects

of non-zero initial conditions on small ball probabilities:

• If detK > 0, then the small ball asymptotic at logarithmic scale does not depend
on the initial conditions, that is, (5.11) holds when z > 0 and (5.10) holds when
z = 0, y > 0.

• If det(K) = 0, then the initial conditions can increase the small ball rate $ in
the following two cases: (a) y > 0, z = 0 and (b) yz > r2 ≥ 0.

• In all other cases, the initial conditions do not change the small ball rate $, but
can increase the small ball constant C.

At this point, the amount of computations necessary to derive the corresponding
quantitative results requires writing a separate paper.
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