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1. Introduction

Kronecker product reduces a matrix–matrix equation to an equivalent matrix–vector 
form ([1] or [4, Chapter 4]). For example, consider a matrix equation BXA� = C with 
known n-by-n matrices A, B, C, and the unknown n-by-n matrix X. To cover the 
most general setting, all matrices are assumed to have complex-valued entries. Introduce 
a column vector vec(X) = X ∈ C

n2 by stacking together the columns of X, left-to-right:
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vec(X) = X = (X11, . . . , Xn1, X12, . . . , Xn2, . . . , X1n, . . . , Xnn)�. (1.1)

Then direct computations show that the matrix equation AXB� = C can be written in 
the matrix-vector form for the unknown vector X as

(A⊗B)X = C, C = vec(C), (1.2)

where A ⊗B is the Kronecker product of matrices A and B, that is, an n2-by-n2 block 
matrix with blocks AijB. In other words, (1.2) means

vec
(
BXA�) = (A⊗B) vec(X), (1.3)

with vec(·) operation defined in (1.1).
In what follows, an n-dimensional column vector will be denoted by a lower-case bold 

Latin letter, e.g. h, whereas upper-case regular Latin letter, e.g. A, will mean an n-by-n
matrix. Then |h| is the Euclidean norm of h and |A| is the induced matrix norm

|A| = max
{
|Ah| : |h| = 1

}
.

For a matrix A ∈ C
n×n, A is the matrix with complex conjugate entries, A� means 

transposition, and A∗ denotes the conjugate transpose: A∗ = A� = A
�. The same 

notations, , �, and ∗, will also be used for column vectors in Cn. The identity matrix 
is I.

For a square matrix A, define the following numbers:

ρ(A) = max
{∣∣λ(A)

∣∣ : λ(A) is an eigenvalue of A
}

(spectral radius of A);

α(A) = max
{
�λ(A) : λ(A) is an eigenvalue of A

}
(spectral abscissa of A);

�(A) = min
{
�λ(A) : λ(A) is an eigenvalue of A

}
.

If H is a Hermitian matrix, then

�(H) = λmin(H), α(H) = ρ(H) = λmax(H), (1.4)

�(H)|x|2 ≤ x∗Hx ≤ α(H)|x|2. (1.5)

While eigenvalues of the matrices A ⊗B and A ⊗ I + I ⊗B can be easily expressed in 
terms of the eigenvalues of the matrices A and B [4, Theorems 4.2.12 and 4.4.5], there is, 
in general, no easy way to bound the eigenvalues of the matrices

CA,B = A⊗ I + I ⊗A +
m∑

k=1

Bk ⊗Bk and (1.6)

DA,B = A⊗A +
m∑

Bk ⊗Bk. (1.7)

k=1
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Matrices CA,B and DA,B appear, for example, in the study of bi-linear stochastic systems, 
both finite-dimensional [2] and infinite-dimensional [6]. Paper [3] presents one of the first 
investigations of the spectral properties of (1.7) and (1.6). The main result of the current 
paper provides another contribution to the subject by establishing explicit upper and 
lower bounds on α(CA,B) and ρ(DA,B) in terms of the eigenvalues of other matrices 
that are Hermitian and of smaller size.

The matrix expressions A ⊗B and A ⊗ I + I ⊗B have designated names (Kronecker 
product and Kronecker sum), but there is no established terminology for (1.6) and (1.7). 
In what follows, (1.6) will be referred to as the continuous-time stochastic Kronecker sum 
and (1.7) will be referred to as the discrete-time stochastic Kronecker sum. The reason 
for this choice of names is motivated by the type of problems in which the corresponding 
matrix expressions appear.

The paper is organized as follows. Section 2 outlines the well-known approach to the 
analysis of matrices CA,B and DA,B using, respectively, the generalized Lyapunov and 
Stein operators, and illustrates the reasons why an alternative approach, based on the 
analysis of the covariance structure of a suitable stochastic system, is necessary. Section 3
explains how matrices of the type (1.6) appear in the analysis of continuous-time bi-linear 
stochastic systems and establishes upper and lower bounds on the spectral abscissa of the 
matrix CA,B (Theorem 3.3). Section 4 explains how matrices of the type (1.7) appear in 
the analysis of discrete-time bi-linear stochastic systems and establishes upper and lower 
bounds on the spectral radius of the matrix DA,B (Theorem 4.2). Theorems 3.3 and 4.2
are the main results of the paper. The connection with stochastic systems also illustrates 
why it is indeed natural to bound spectral abscissa for matrices of the type (1.6) and the 
spectral radius for matrices of the type (1.7). Section 5 provides several examples illus-
trating Theorems 3.3 and 4.2 and discusses the particular case when all the matrices A

and Bk are Hermitian.

2. General background

Given matrices A, B1, . . . , Bm in Cn×n, define the generalized Lyapunov opera-
tor LA,B and the generalized Stein operator S0;A,B , each acting from Cn×n to Cn×n, 
by

LA,B(X) = A∗X + XA +
m∑

k=1

B∗
kXBk,

S0;A,B(X) = A∗XA +
m∑

k=1

B∗
kXBk, X ∈ C

n×n.

The adjoint operators L∗
A,B and S∗

0;A,B are defined using the matrix inner product

〈X,Y 〉 = tr
(
Y ∗X

)
=

(
vec(X)

)∗ vec(Y ), X, Y ∈ C
n×n,
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so that

〈
Y,LA,B(X)

〉
=

〈
L∗
A,B(Y ), X

〉
,

〈
Y,S0;A,B(X)

〉
=

〈
S∗

0;A,B(Y ), X
〉
.

The following equalities are verified by direct computation (cf. [2, Chapter 3]):

(
LA,B(X)

)∗ = LA,B

(
X∗), (

S0;A,B(X)
)∗ = S0;A,B

(
X∗); (2.1)

L∗
A,B = LA∗,B∗ , S∗

0;A,B = S0;A∗,B∗ ; (2.2)

CA,B vec(X) = vec
(
L∗
A,B(X)

)
, DA,B vec(X) = vec

(
S∗

0;A,B(X)
)
. (2.3)

Equalities (2.3) imply that the matrix CA,B has the same eigenvalues as the opera-
tor L∗

A,B , and the matrix DA,B has the same eigenvalues as the operator S∗
0;A,B. If the 

operators LA,B and S0;A,B are Hermitian (which, by (2.2), happens if A, B1, . . . , Bm are 
all Hermitian matrices), then one can use variational characterization of the eigenvalues 
of LA,B (resp. S0;A,B) to bound eigenvalues of CA,B (resp. DA,B). For example,

λmax(CA,B) = sup
X �=0

〈X,LA,B(X)〉
tr(X∗X) ≥ 〈I,LA,B(I)〉

tr(I∗I) = tr(MA,B)
n

, (2.4)

where

MA,B = LA,B(I) = A + A∗ +
m∑

k=1

B∗
kBk. (2.5)

Similarly,

λmax(DA,B) = sup
X �=0

〈X,S0;A,B(X)〉
tr(X∗X) ≥ 〈I,S0;A,B(I)〉

tr(I∗I) = tr(NA,B)
n

, (2.6)

where

NA,B = S0;A,B(I) = A∗A +
m∑

k=1

B∗
kBk. (2.7)

The matrices MA,B and NA,B will be of central importance in the following sections, and 
this is why these matrices are written in the general form; when A, Bk are Hermitian, 
then, of course, MA,B = 2A +

∑m
k=1 B

2
k and NA,B = A2 +

∑m
k=1 B

2
k.

If A, B1, . . . , Bm are all Hermitian, then both CA,B and DA,B are sums of Hermitian 
matrices, and the eigenvalues of each matrix in the sums are explicitly expressed in terms 
of the eigenvalues of A and Bk. This leads to other bounds on the eigenvalues of CA,B

and DA,B , such as Weyl’s inequality, and Section 5 discusses some of those bounds.
In the general case, when A and Bk are not Hermitian, equalities (2.1)–(2.3) can con-

nect various properties of the spectra of CA,B and DA,B with those of LA,B and S0;A,B
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(see [3]), but there are no analogues of (2.4) or (2.6). Indeed, for a non-Hermitian ma-
trix Y , the number r(Y ) = sup|x|=1 |x∗Y x| provides an upper bound on both the spectral 
radius ρ(Y ) (cf. [4, Property 1.2.6]) and the spectral abscissa α(Y ) ≤ ρ(Y ). Because of 
that, a lower bound on r provides no information about either α or ρ.

Nonetheless, with an alternative approach, it is still possible to derive upper and lower 
bounds on α(CA,B) (resp. ρ(DA,B)) using the matrix MA,B from (2.5) (resp. NA,B

from (2.7)) when the matrices A, B1, . . . , Bm are not necessarily Hermitian. This al-
ternative approach is based on the analysis of the covariance structure of a suitably 
constructed stochastic system.

Given two Cn-valued random column-vectors

x = (x1, . . . , xn)� and y = (y1, . . . , yn)�,

define the matrix Ux,y = E(xy∗), where E denotes the expected value. If Ex = Ey = 0, 
then Ux,y is the covariance matrix of x and y. With the notation Ux,y = vec(Ux,y), 
we find |Ux,y|2 =

∑n
i,j=1 |Exiy

∗
j |2, and the Cauchy–Schwarz inequality |Exiy

∗
j |2 ≤

E|xi|2E|yj |2 leads to an upper bound on |Ux,y|:

|Ux,y|2 ≤ rxry, (2.8)

where rx =
∑n

i=1 E|xi|2. In the particular case x = y,

n|Ux,x|2 = n

n∑
i,j=1

∣∣Exix
∗
j

∣∣2 = n

n∑
i=1

(
E|xi|2

)2 + n
∑
i�=j

∣∣Exix
∗
j

∣∣2

≥ n
n∑

i=1

(
E|xi|2

)2 ≥
(

n∑
i=1

E|xi|2
)2

,

leading to a lower bound:

|Ux,x| ≥ n−1/2rx. (2.9)

In Section 3, we construct a continuous-time stochastic system for which the ma-
trix CA,B describes time evolution of Ux,y and the matrix MA,B describes time evolution 
of rx; then (2.8) and (2.9) will lead to upper and lower bounds on α(CA,B).

In Section 4, we construct a discrete-time stochastic system for which the matrix DA,B

describes time evolution of Ux,y and the matrix NA,B describes time evolution of rx; 
then (2.8) and (2.9) will lead to upper and lower bounds on ρ(DA,B).

3. Continuous-time stochastic Kronecker sum

Given matrices A, B1, . . . , Bm ∈ C
n×n, consider two Cn-valued stochastic processes 

x(t) = (x1(t), . . . , xn(t))� and y(t) = (y1(t), . . . , yn(t))�, t ≥ 0, defined by the Itô 
integral equations



S.V. Lototsky / Linear Algebra and its Applications 469 (2015) 114–129 119
x(t) = u +
t∫

0

Ax(s)ds +
m∑

k=1

t∫
0

Bkx(s)dwk(s),

y(t) = v +
t∫

0

Ay(s)ds +
m∑

k=1

t∫
0

Bky(s)dwk(s). (3.1)

Both equations in (3.1) are driven by independent standard Brownian motions 
w1, . . . , wm. The initial conditions u, v ∈ C

n are non-random. The processes x(t)
and y(t) satisfy the same equation and differ only in the initial conditions. Existence 
and uniqueness of solution of (3.1) are well-known [7, Theorem 5.2.1], and then u = v

implies x(t) = y(t) for all t > 0. The terms dwk(t) can be considered as continuous-
time analogues of a discrete-time white noise sequence. The term bi-linear in connection 
with (3.1) reflects the fact that the noise process enters the system in a multiplicative, 
as opposed to additive, way.

The differential form

dx(t) = Ax(t)dt +
m∑

k=1

Bkx(t)dwk(t), dy(t) = Ay(t)dt +
m∑

k=1

Bky(t)dwk(t)

is a more compact, and less formal, way to write (3.1).
The peculiar behavior of white noise in continuous time, often written informally as 

(dw(t))2 = dt, makes it necessary to modify the usual product rule for the derivatives. 
The result is known as the Itô formula; its one-dimensional version is presented below 
for reader’s convenience.

Proposition 3.1. If a, b, σ, and μ are globally Lipschits continuous functions and x, y
are non-random numbers, then

(a) There are unique continuous random processes f and g such that

f(t) = x +
t∫

0

a
(
f(s)

)
ds +

t∫
0

σ
(
f(s)

)
dw(s),

g(t) = y +
t∫

0

b
(
g(s)

)
ds +

t∫
0

μ
(
g(s)

)
dw(s);

(b) The following equality holds:

E
(
f(t)g(t)

)
= xy +

t∫
0

E
(
f(s)b

(
g(s)

)
+ g(s)a

(
f(s)

)
+ σ

(
f(s)

)
μ
(
g(s)

))
ds. (3.2)
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Proof. In differential form,

d(fg) = fdg + gdf + σμ dt,

where the first two terms on the right come from the usual product rule and the third 
term, known as the Itô correction, is a consequence of (dw(t))2 = dt. The expected value 
of the Itô stochastic integral is zero:

E

t∫
0

f(s)μ
(
g(s)

)
dw(s) = E

t∫
0

g(s)σ
(
f(s)

)
dw(s) = 0,

and then (3.2) follows. See [7, Chapter 4] for more details and [2, Sections 1.1–1.3] for a 
more detailed summary. �
Proposition 3.2. Given the random vectors x(t) and y(t) from (3.1), define the matrix 
V (t) = E(x(t)y∗(t)) and the number rx(t) = E(x∗(t)x(t)). Then

(1) The vector

U(t) = vec
(
V (t)

)
satisfies

U(t) = etCA,BU(0), (3.3)

with the matrix CA,B from (1.6);
(2) The number rx(t) satisfies

|u|2eγt ≤ rx(t) ≤ |u|2eβt, (3.4)

where γ = λmin(MA,B), β = λmax(MA,B), and MA,B is defined in (2.5).

Proof. While equality (3.3) is well-known (see, for example, [2, Theorem 1.4.3]), there is 
no standard reference for inequality (3.4). For reader’s convenience, below is an outline 
of the computations leading to (3.3) and (3.4).

In differential form,

dx(t) = Ax(t)dt +
m∑

k=1

Bkx(t)dwk(t), dy∗(t) = y∗(t)A∗dt +
m∑

k=1

y∗(t)B∗
kdwk(t).

By the Itô formula,
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V (t) = V (0) +
t∫

0

(
AV (s) + V (s)A∗ +

m∑
k=1

BkV (s)B∗
k

)
ds,

and (3.3) follows from (1.3).
Similarly,

rx(t) = rx(0) +
t∫

0

E
(
x∗(s)MA,Bx(s)

)
ds,

and then, for every real number a,

rx(t) = rx(0) +
t∫

0

arx(s)ds +
t∫

0

fa(s)ds,

where

fa(s) =
t∫

0

E
(
x∗(s)MA,Bx(s) − ax∗(s)x(s)

)
ds.

In other words,

rx(t) = |u|2eat +
t∫

0

ea(t−s)fa(s)ds.

If a = γ (the smallest eigenvalue of MA,B), then fa(s) ≥ 0 and the lower bound in (3.4)
follows; if a = β (the largest eigenvalue of MA,B), then fa(s) ≤ 0, and the upper bound 
in (3.4) follows. �

Given the origin of Eq. (3.3), the matrix CA,B is natural to call the continuous-time 
stochastic Kronecker sum of the matrices A and Bk.

It is known [8, Theorem 15.3] that the spectral abscissa α(A) of a matrix A ∈ C
n×n

satisfies

α(A) = lim
t→+∞

1
t

ln
∣∣etA∣∣. (3.5)

Together with Proposition 3.2, equality (3.5) leads to a two-sided bound on the spec-
tral abscissa of CA,B , which is the main result of this section.

Theorem 3.3. For every matrices A, B1, . . . , Bm ∈ C
n×n,

λmin(MA,B) ≤ α(CA,B) ≤ λmax(MA,B). (3.6)
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Proof. As in Proposition 3.2, we write β = λmax(MA,B), γ = λmin(MA,B). It follows 
from (3.3) that |U(t)| = |etCA,BU(0)|. By (2.8), |U (t)| ≤

√
rx(t)ry(t), and then (3.4)

implies

∣∣etCA,BU(0)
∣∣ ≤ |u||v|eβt. (3.7)

Recall that U(0) = vec(uv∗) = v ⊗ u. Let ui, i = 1, . . . , n, be a unit basis in Cn. 
Then, for every U ∈ C

n2 , U =
∑n

i,j=1 cijui ⊗uj with cij ∈ C, and |U |2 =
∑n

i,j=1 |cij |2. 
By (3.7), followed by the triangle and Cauchy–Schwarz inequalities,

∣∣etCA,BU
∣∣ ≤

(
n∑

i,j=1
|cij |

)
eβt ≤ n|U |eβt,

that is,

∣∣etCA,B
∣∣ ≤ neβt. (3.8)

Then the upper bound in (3.6) follows from (3.8) and (3.5).
To derive the lower bound, take u = v with |u| = 1, so that x(t) = y(t) for all t ≥ 0. 

Then (2.9) and (4.11) imply

n−1/2eγt ≤
∣∣U(n)

∣∣ ≤ ∣∣etCA,B
∣∣,

and the lower bound in (3.6) follows from (3.5). �
Examples of applications of (3.6) are in Section 5.

4. Discrete-time stochastic Kronecker sum

Given matrices A, B1, . . . , Bm ∈ C
n×n, consider two Cn-valued random sequences 

x(�) = (x1(�), . . . , xn(�))� and y(�) = (y1(�), . . . , yn(�))�, � = 0, 1, 2, . . . , defined by

x(� + 1) = Ax(�) +
m∑

k=1

Bkx(�)ξ�+1,k, x(0) = u,

y(� + 1) = Ay(�) +
m∑

k=1

Bky(�)ξ�+1,k, y(0) = v. (4.1)

Both equations in (3.1) are driven by a white noise sequence ξ�,k, � ≥ 1, k = 1, . . . , m
of independent, for all � and k, random variables, all with zero mean and unit variance:

Eξ�,k = 0, Eξ2
�,k = 1, E(ξ�,kξp,q) = 0 if � 	= p or k 	= q. (4.2)
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The initial conditions u, v ∈ C
n are non-random. Note that the sequences x(�) and y(�)

satisfy the same equation and differ only in the initial conditions. In particular, u = v

implies x(�) = y(�) for all � ≥ 0. The term bi-linear in connection with (4.1) reflects the 
fact that the noise sequence enters the system in a multiplicative, as opposed to additive, 
way.

Proposition 4.1. Given the random vectors x(�) and y(�) from (4.1), define the matrix 
V (�) = E(x(�)y∗(�)) and the number rx(�) = E(x∗(�)x(�)) = E|x(�)|2. Then

(1) The vector U(�) = vec(V (�)) satisfies

U(�) = (DA,B)�U(0), (4.3)

with the matrix DA,B from (1.7);
(2) The number rx(�) satisfies

|u|2γ� ≤ rx(�) ≤ |u|2β�, (4.4)

where γ = λmax(NA,B), β = λmin(NA,B), and the matrix NA,B is defined in (2.7).

Proof. By (4.1),

x(� + 1) = Ax(�) +
m∑

k=1

Bkx(�)ξ�+1,k, y∗(� + 1) = y∗(�)A∗ +
m∑

k=1

y∗(�)B∗
kξ�+1,k,

so that

x(� + 1)y∗(� + 1) = Ax(�)y∗(�)A∗ +
m∑

k,p=1

Bkx(�)y∗(�)B∗
pξ�+1,kξ�+1,p (4.5)

+
m∑

k=1

Ax(�)y∗(�)B∗
kξ�+1,k +

m∑
k=1

Bkx(�)y∗(�)A∗ξ�+1,k. (4.6)

The vectors x(�) and y(�) are independent of every ξ�+1,k. Therefore, using (4.2),

E
(
Ax(�)y∗(�)B∗

kξ�+1,k
)

= E
(
Ax(�)y∗(�)B∗

k

)
Eξ�+1,k = 0, (4.7)

m∑
k,p=1

E
(
Bkx(�)y∗(�)B∗

pξ�+1,kξ�+1,p
)

=
m∑

k,p=1

E
(
Bkx(�)y∗(�)B∗

p

)
E(ξ�+1,kξ�+1,p)

=
m∑

BkE
(
x(�)y∗(�)

)
B∗

k =
m∑

BkV (�)B∗
k . (4.8)
k=1 k=1
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As a result,

V (� + 1) = AV (�)A∗ +
m∑

k=1

BkV (�)B∗
k ,

and (4.3) follows from (1.3).
Similarly,

rx(� + 1) = Ex∗(�)
(
A∗A +

m∑
k=1

B∗
kBk

)
x(�) = E

(
x∗(�)NA,Bx(�)

)
.

Then (1.5) implies γrx(�) ≤ rx(� + 1) ≤ βrx(�), and (4.4) follows. �
Given the origin of Eq. (4.3), the matrix DA,B from (1.7) is natural to call the

discrete-time stochastic Kronecker sum of the matrices A and Bk.
It is really very well known that the spectral radius ρ(A) of a matrix A ∈ C

n×n

satisfies

ρ(A) = lim
�→+∞

∣∣A�
∣∣1/�. (4.9)

Together with Proposition 4.1, equality (4.9) leads to a two-sided bound on the spec-
tral radius of DA,B , which is the main result of this section.

Theorem 4.2. For every matrices A, B1, . . . , Bm ∈ C
n×n,

λmin(NA,B) ≤ ρ(DA,B) ≤ λmax(NA,B). (4.10)

Proof. Similar to Proposition 4.1, write γ = λmin(NA,B) and β = λmax(NA,B). To derive 
the upper bound in (4.10), note that (2.8) and (4.4) imply

∣∣U(�)
∣∣ ≤ √

rx(�)ry(�) ≤ |u||v|β�. (4.11)

Combining (4.3) and (4.11) leads to

∣∣(DA,B)�U(0)
∣∣ ≤ |u||v|β�. (4.12)

Since U(0) = vec(uv∗) = v ⊗ u, and u and v are arbitrary vectors in Cn, the same 
arguments as in the continuous-time case show that (4.12) implies

∣∣(DA,B)�
∣∣ ≤ nβ�. (4.13)

Then the upper bound in (4.10) follows from (4.13) and (4.9).
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To derive the lower bound, take u = v with |u| = 1 so that x(�) = y(�) for all � ≥ 0. 
Then (2.9) and (4.3) imply

n−1/2γ� ≤
∣∣U(�)

∣∣ ≤ ∣∣(DA,B)�
∣∣,

and the lower bound in (4.10) follows from (4.9). �
Examples of applications of (4.10) are in Section 5.

5. Examples and further discussions

One reason (3.6) and (4.10) are potentially useful is that the matrices MA,B and NA,B

are Hermitian and have size n-by-n, whereas the matrices CA,B and DA,B are in general 
not Hermitian or even normal and have a much bigger size n2-by-n2. In particular, if 
the matrix MA,B is scalar, that is, MA,B = βI, then α(CA,B) = β; if NA,B = βI, then 
ρ(CA,B) = β.

For example, with m = 1,

(1) If A = aI + S for a real number a and a skew-symmetric matrix S, and B is 
orthogonal, then MA,B = (2a + 1)I and α(CA,B) = 2a + 1;

(2) If matrices A and B are orthogonal, then NA,B = 2I and ρ(DA,B) = 2.

Without additional information about the matrices A and B, it is not possible to 
know how tight the bounds in (3.6) and (4.10) will be. As an example, consider two real 
matrices

A =
(
a 0
0 b

)
, B =

(
0 0
σ 0

)
.

The corresponding stochastic systems are

dx1(t) = ax1(t)dt, dx2(t) = bx2(t)dt + σx1(t)dw(t)

in continuous time and

x1(� + 1) = ax1(�), x2(� + 1) = bx2(�) + σx1(�)ξ�+1

in discrete time. Then

CA,B = A⊗ I + I ⊗A + B ⊗B =

⎛
⎜⎜⎝

2a 0 0 0
0 a + b 0 0
0 0 a + b 0
2

⎞
⎟⎟⎠ ,
σ 0 0 2b
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MA,B = A� + A + B�B =
(

2a + σ2 0
0 2b

)
,

DA,B = A⊗A + B ⊗B =

⎛
⎜⎜⎝

a2 0 0 0
0 ab 0 0
0 0 ab 0
σ2 0 0 b2

⎞
⎟⎟⎠ ,

NA,B = A�A + B�B =
(
a2 + σ2 0

0 b2

)
.

In particular, both α(CA,B) and ρ(DA,B) do not depend on σ:

α(CA,B) = max(2a, 2b), ρ(DA,B) = max
(
a2, b2

)
whereas

λmax(MA,B) = max
(
2a + σ2, 2b

)
and λmax(NA,B) = max

(
a2 + σ2, b2

)
can be arbitrarily large.

An important question in the study of stochastic systems is whether the matrices CA,B

and DA,B are stable, that is, α(CA,B) < 0 and ρ(DA,B) < 1. One consequence of Propo-
sitions 3.2 and 4.1 is that stability of the stochastic Kronecker sum matrix is equivalent 
to the mean-square asymptotic stability of the corresponding stochastic system (see also 
[2, Theorem 1.5.3]):

α(CA,B) < 1 ⇔ lim
t→+∞

E
∣∣x(t)

∣∣2 = 0,

ρ(DA,B) < 1 ⇔ lim
�→∞

E
∣∣x(�)

∣∣2 = 0.

The example shows that it is possible to have this stability even when the matri-
ces MA,B and NA,B are not stable: CA,B is stable if (and only if) max(a, b) < 0, and DA,B

is stable if (and only if) max(|a|, |b|) < 1; this is also clear by looking directly at the 
corresponding stochastic system.

One can always use the lower bounds in (3.6) and (4.10) to check if the matrices CA,B

and DA,B (and hence the corresponding systems) are not stable. In the above example, 
if

λmin(MA,B) = min
(
2a + σ2, 2b

)
> 0,

then b > 0 and CA,B is certainly not stable. Similarly, if

λmin(NA,B) = min
(
a2 + σ2, b2

)
> 1,

then |b| > 1 and DA,B is certainly not stable.
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To conclude this section, assume that the matrices A, B1, . . . , Bm are all Hermitian. 
Then CA,B and DA,B are also Hermitian, and, with (1.4) in mind, inequalities (3.6)
and (4.10) become, respectively,

λmin(MA,B) ≤ λmax(CA,B) ≤ λmax(MA,B), (5.1)

λmin(NA,B) ≤ λmax(DA,B) ≤ λmax(NA,B). (5.2)

Let us compare (5.1) and (5.2) with some other bounds that can be derived in this 
Hermitian case using the following approaches:

(1) Variation characterization of the eigenvalues of the operators LA,B and S0;A,B

(cf. (2.4) and (2.6));
(2) Weyl’s inequality for the eigenvalues of the sum of two Hermitian matrices [5, The-

orem 4.3.1].

Both approaches provide bounds on individual eigenvalues of CA,B and DA,B . To stay 
within the scope of the paper, let us restrict our discussion to the bounds on the largest 
eigenvalues.

Inequality (2.4) is an improvement of the lower bound in (5.1). Indeed, (a) (2.4) is 
sharper because the average of the eigenvalues of MA,B is bigger than or equal to the 
smallest eigenvalue; (b) (2.4) is explicit in terms of the entries of the matrices A = (Aij)
and B = (Bij):

λmax(CA,B) ≥
2
∑n

i=1 Aii +
∑n

i,j=1 |Bij |2

n
. (5.3)

Similarly, (2.6) is an improvement of the lower bound in (5.2):

λmax(DA,B) ≥
∑n

i,j=1(|Aij |2 + |Bij |2)
n

. (5.4)

Upper bounds on λmax(CA,B) and λmax(DA,B) are not readily available with this ap-
proach.

Next, let us bound λmax(CA,B) and λmax(DA,B) directly from (1.6) and (1.7) using 
Weyl’s inequality for the eigenvalues of the sum H + J of two Hermitian matrices:

λmin(H) + λmin(J) ≤ λmin(H + J) ≤ λmax(H) + λmin(J)

≤ λmax(H + J) ≤ λmax(H) + λmax(J); (5.5)

also, recall that eigenvalues of A ⊗ B are of the form λ(A)λ(B) [4, Theorem 4.2.12], 
whereas the eigenvalues of A ⊗ I + I⊗B are of the form λ(A) +λ(B) [4, Theorem 4.4.5]. 
Combining (5.5) with (1.6) yields
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max
(
2λmax(A) + λ2

min(B), 2λmin(A) + λ2
max(B)

)
≤ λmax(CA,B)

≤ 2λmax(A) + λ2
max(B). (5.6)

For the matrix MA,B = 2A + B2, Weyl’s inequality yields

λmin(MA,B) ≤ max
(
2λmax(A) + λ2

min(B), 2λmin(A) + λ2
max(B)

)
≤ λmax(MA,B) ≤ 2λmax(A) + λ2

max(B),

leading to the following comparison of (5.1) and (5.6):

(1) (5.6) is more explicit than (5.1);
(2) (5.6) provides a sharper lower bound;
(3) (5.1) provides a sharper upper bound.

Comparison between (5.3) and the lower bound in (5.6) depends on the particular ma-
trices A and B.

In the case of the matrix DA,B , the same analysis produces the following upper and 
lower bounds:

max
(
λ2

max(A) + λ2
min(B), λ2

min(A) + λ2
max(B)

)
≤ λmax(DA,B)

≤ λ2
max(A) + λ2

max(B), (5.7)

and we conclude that

(1) (5.7) is more explicit than (5.2);
(2) (5.7) provides a sharper lower bound;
(3) (5.2) provides a sharper upper bound.

Comparison between (5.4) and the lower bound in (5.7) depends on the particular ma-
trices A and B.

To conclude, in Hermitian case, there are several immediate ways to improve the lower 
bounds in (5.1) and (5.2), but no immediate ways to improve the upper bounds.
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