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STOCHASTIC EVOLUTION SYSTEMS WITH CONSTANT

COEFFICIENTS

S. V. LOTOTSKY AND J. ZHONG

Abstract. While solvability of a single stochastic hyperbolic or parabolic equation
is well known, the problem remains mostly open for stochastic evolution systems.
The paper investigates well-posedness and stability in Sobolev spaces on Rd of the
initial value problem for systems of stochastic evolution equations with constant co-
efficients and multiplicative time-only Gaussian white noise. A general criterion for
well-posedness is derived in terms of sums of certain Kronecker products of the sys-
tem matrices, and a stochastic analogue of the Petrowski parabolicity condition is
proposed.

1. Introduction

What is a natural extension of the Petrowski1 parabolicity condition to stochastic
systems? Can we solve a system if it is neither hyperbolic nor parabolic? The answers
are non-trivial even for simple examples.

As an example of a parabolic system, consider

(1.1) du = uxxdt; dv = 2vxxdt+ σuxdw(t), t > 0, x ∈ R, σ > 0.

On the one hand, if u0, v0 ∈ L2(R), then standard results for parabolic equations
imply that u ∈ L2(Ω × (0, T );H1), so that σux ∈ L2(Ω × (0, T ) × R), and therefore
v ∈ L2(Ω × (0, T );H1), that is, the system is reasonable to call parabolic for every
σ > 0. On the other hand, if we ignore the lower-triangular structure of the system
and try to estimate |ux|2 + |vx|2 using the Itô formula and integration by parts, then
the usual parabolic-type estimate will be possible only when σ2 < 2 — a condition
consistent with [12, Assumptioin 2.2].

As far as equations that are neither hyperbolic nor parabolic, let us start with a
deterministic example

(1.2) utt − autxx = c2uxx, a > 0, c > 0.

Even though it is a damped wave equation, it is not hyperbolic because its order in
space-time (three) is different from its order in time (two); cf. [14, Theorem 2.7].
Similarly, even though the function v = ut satisfies what looks like an inhomogeneous
heat equation, (1.2) is not parabolic: there are several equivalent conditions that can be
checked and turn out not to hold; see, for example [5, Section 1.3.3] or [7, Section 9.1].
Still, direct computations, either using integration by parts or the Fourier transform,
show that (1.2) is well-posed for every a > 0 in a way similar to the usual wave equation.
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Now consider a stochastic version of (1.2),

(1.3) utt − autxx = c2uxx + σuxxẇ, a > 0.

While integration by parts no longer works, the Fourier transform approach shows that
the equation is well-posed for every σ ∈ R, and if 2ac2 > σ2, then the zero solution is
asymptotically stable; see Section 4 for details.

To state the main result of the paper, consider two matrix partial differential op-
erators A and B with constant coefficients and corresponding symbols A(y), B(y); a
symbol in this case is a square matrix and the entries of the matrix are polynomials in y
with complex coefficients. Let w = w(t) be a standard Brownian motion and consider
the system of stochastic Itô equations for the unknown vector function u(t, x) ∈ RN :

u(t, x) = u0(x) +

∫ t

0

(
Au(s, x) + f(s, x)

)
ds

+

∫ T

0

(
Bu(s, x) + g(s, x)

)
dw(s), 0 ≤ t ≤ T, x ∈ R

d.

(1.4)

We say that system is well-posed if, for every collection of input u0, f , g in some Sobolev
spaces, there exists a unique solution u(t, x) with values in some Sobolev space, and
the norm of the solution continuously depends on the norm of the input.

Define the matrix MA,B(y) = A(y) ⊗ I + I ⊗ A + B(y) ⊗ B(y), where means
complex conjugation, I is the N -by-N identity matrix, and ⊗ denotes the Kronecker
product of two matrices.

Theorem 1.1. System (1.4) is well-posed on a fixed time interval [0, T ] if and only if

the real parts of the eigenvalues of MA,B(y) are uniformly bounded in |y| : there exists

a number C0 ∈ R such that, for every eigenvalue λMA,B
(y) of the matrix MA,B(y) and

all y ∈ Rd,

(1.5) ℜλMA,B
(y) ≤ C0.

In Section 4 we show that, according to this theorem, equation (1.1) is well-posed
for all σ ∈ R, and equation (1.2) is well-posed for a > 0 and all σ, c ∈ R.

Denote by B∗ the complex conjugate of the matrix B and denote by ‖ · ‖ any matrix
norm. The stochastic parabolicity condition is as follows.

Definition 1.2. System (1.4) is called parabolic of order 2p if ‖A(y)‖+ ‖B∗(y)B(y)‖
is a polynomial of degree 2p, and, for some ε > 0 and L ∈ R, all eigenvalues of the

matrix MA,B(y) satisfy

ℜλ
(
MA,B(y)

)
≤ −ε|y|2p + L.

The rest of the paper is organized as follows. Section 2 introduces the main notations
and notions, including the Kronecker product, necessary to state and prove the main
result. The main result is in Section 3. Section 4 presents various ramifications of the
main result for special types of systems, including parabolic ones. Section 5 discusses
alternative approaches and possible generalizations of the main result. The overall
summary is in Section 6.
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2. Function spaces, operators, and matrices

Our main object is a function of a d-dimensional real variable x = (x1, . . . , xd),
taking values in the real N -dimensional space RN or in the complex N -dimensional
space CN . Such a function will usually be denoted by a lower-case bold Latin letter,
e.g. h, whereas upper-case regular Latin letter, e.g. A, will usually mean an N -by-N
matrix. Then |h| is the Euclidean norm of h and ‖A‖ is the induced matrix norm

‖A‖ = max
{
|Ah| : |h| = 1

}
.

For a matrix A ∈ CN×N , A is the matrix with complex conjugate entries, A⊤ means

transposition, and A∗ denotes the conjugate transpose: A∗ = A⊤ = A
⊤
. The same

notations, , ⊤, and ∗, will also be used for vectors in CN .
The Sobolev space Hγ = Hγ(Rd;RN) of RN -valued functions on Rd is the collection

of generalized functions h ∈ S ′ = S ′(Rd;RN) such that

‖h‖2γ =
∫

Rd

(1 + |y|2)γ|ĥ(y)|2dy <∞,

where ĥ is the Fourier transform of h; for h ∈ L1(R
d;RN),

ĥ(y) =
1

(2π)d/2

∫

Rd

eixyh(x)dx, i =
√
−1.

Clearly, Hγ2 ⊂ Hγ1, γ2 > γ1. If H∞ =
⋂
γ>0H

γ, H∞ =
⋃
γ<0H

γ, and S = S(Rd;RN)
is the space of rapidly decreasing test functions, then

S ⊂ H∞ ⊂ H∞ ⊂ S ′,

with all inclusions strict: for example, in the case N = d = 1, the function h(x) =
1/(1 + x2) is in H∞ but not in S. For h ∈ H∞ and z ∈ H∞, define

(2.1) 〈h, z〉 =
∫

Rd

ĥ
∗
(y)ẑ(y)dy.

By the Cauchy-Schwarz inequality,

|〈h, z〉| ≤ ‖h‖−γ ‖z‖γ
with sufficiently large γ > 0.

Definition 2.1. An operator A on H∞ is called pseudo-differential operator

with constant coefficients if there exists a matrix-valued function A = A(y) ∈
CN×N , y ∈ Rd, such that,

(1) the entries of A have at most polynomial growth:

(2.2) ‖A(y)‖ ≤ CA(1 + |y|)a

for some CA > 0 and a ≥ 0;
(2) for every h ∈ H∞,

(2.3) Âh(y) = A(y)ĥ(y),

(3) all entries of A are continuous functions of y.

The matrix A is called the symbol of the operator A.
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In the above definition, the polynomial growth condition (2.2) is standard (without
it, the operator might not map H∞ to itself), while both (2.3) and the “constant
coefficients” part of the name come from the observation that if A is a partial differential
operator

Ah(x) =
∑

|α|≤m

Aα
∂|α|h(x)

∂xα1

1 · · ·xαd

d

, Aα ∈ R
N×N , |α| = α1 + · · ·+ αd,

then

A(y) =
∑

|α|≤m

i
|α|yα1

1 · · · yαd

d Aα, i =
√
−1.

Our definition makes it possible to consider more general operators such as (−∇2)r,
r > 0, with symbol |y|2r. The continuity requirement is for purely technical reasons,
to avoid unnecessary complications in the future; it is still much weaker than the usual
C∞ requirement if the operator is to act on S ′ instead of H∞.

Proposition 2.2. Under (2.2), the operator A is bounded from Hγ to Hγ−a for every

γ ∈ R.

Proof. This follows directly from (2.3) and the definition of the norm ‖ · ‖γ . �

Next, we present a brief summary of the Kronecker product and related topics;
possible references are [4] or [10, Chapter 4].

Kronecker product is a construction allowing a product of three matrices to be
written in an equivalent matrix-vector form. Consider a matrix equation BXA⊤ = C
with known matrices A,B,C, and the unknown matrix X ; given the nature of our
applications, we assume that all matrices are in CN×N . Introduce a column vector
vec(X) = X ∈ CN2

by stacking together the columns of X , left-to-right:

(2.4) vec(X) = X = (X11, . . . , Xn1, X12, . . . , Xn2, . . . , X1n, . . . , Xnn)
⊤.

Then direct computations show that the matrix equation AXB⊤ = C can be written
in the matrix-vector form for the unknown vector X as

(2.5) (A⊗B)X = C, C = vec(C),

where A ⊗ B is the Kronecker product of matrices A and B, that is, an N2-by-N2

block matrix with blocks AijB. For example,

(
1 2
3 4

)
⊗
(
a b
c d

)
=




a b 2a 2b
c d 2c 2d

3a 3b 4a 4b
3c 3d 4c 4d


 .

In other words, (2.5) means

(2.6) vec
(
BXA⊤) = (A⊗B)vec(X),

with vec(·) operation defined in (2.4). The point is that, at least for theoretical pur-
poses, the matrix-vector equation (2.5) is a more familiar, and hence convenient, object
than the corresponding matrix-matrix equation.
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3. The main result

Let A and B be pseudo-differential operators with constant coefficients; denote by
A(y), B(y) the corresponding symbols. Let (Ω,F , (Ft)T ≥ 0, P) be a stochastic basis
with the usual assumptions and with a standard Brownian motion w = w(t). Consider
the system of stochastic Itô equations for the unknown vector function u ∈ RN :

(3.1) u(t) = u0 +

∫ t

0

(
Au(s) + f(s)

)
ds+

∫ t

0

(
Bu(s) + g(s)

)
dw(s), 0 ≤ t ≤ T.

To simplify the presentation, we assume that there is only one Brownian motion and it
is the only source of randomness in the system: the initial condition u0, the free terms
f , g, and the operators A, B are all non-random. Many of these restrictions can be
removed, and we will discuss this in Section 5.

Sometimes it is convenient to write (3.1) in a less formal differential way

(3.2) u̇ = Au+ f + (Bu+ g)ẇ.

Definition 3.1. Given

(3.3) u0 ∈ Hr, f , g ∈ L2((0, T );H
r) for some r ∈ R,

a solution of (3.1) is an Ft-adapted process u ∈ L2(Ω × [0, T ];Hγ) for some γ ≤ r
with the following property: there is a set Ω′ ⊆ Ω with P(Ω′) = 1 such that, for every

ω ∈ Ω′, every t ∈ [0, T ], and every z ∈ H∞,

(3.4) 〈u(t), z〉 = 〈u0, z〉+
∫ t

0

〈Au(s) + f(s), z〉ds+
∫ t

0

〈Bu(s) + g(s), z〉dw(s).

Equation (3.1) is called well-posed on [0, T ] if

• for every r ∈ R and input satisfying (3.3), there exists a unique solution u, and

• there exists a C > 0 such that

(3.5) E‖u(t)‖2γ ≤ C
(
‖u0‖2r +

∫ t

0

‖f (s)‖2rds+
∫ t

0

‖g(s)‖2rds
)
, 0 ≤ t ≤ T.

Remark 3.2. (1) The definition allows both γ and C in (3.5) to depend on T .
(2) While it is possible that (3.5) can hold for t > 0 with γ > r, we need to assume

γ ≤ r if (3.5) is to hold for t = 0.
(3) Since (3.1) is linear with constant coefficients, it is enough to establish (3.5)

for r = 0.

Using (2.1) and the notation

(ĥ, ẑ) =

∫

Rd

ĥ
∗
(y)ẑ(y)dy,

we can re-write (3.4) as

(3.6)
(
û(t), ẑ

)
=
(
û0, ẑ

)
+

∫ t

0

(
A(y)û(s)+f̂(s), ẑ

)
ds+

∫ t

0

(
B(y)û(s)+ĝ(s), ẑ

)
dw(s).

Consider the linear system of stochastic ordinary differential equations depending
on the parameter y:

(3.7) v(t, y) = û0(y)+

∫ t

0

(
A(y)v(s, y)+f̂(s, y)

)
ds+

∫ t

0

(
B(y)v(s, y)+ ĝ(s, y)

)
dw(s).
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Of course, (3.7) is equivalent to (3.6) if a solution of (3.1) exists. The precise connection
between the two systems is as follows.

Proposition 3.3. Assume (3.3) holds. Then

(1) For every y ∈ Rd, system (3.7) has a unique Ft-adapted solution, and the

fundamental solution of the system is a continuous function of y;
(2) If v = v(t, y) is the solution of (3.7) and

(3.8) E

∫

Rd

(1 + |y|2)γ|v(t, y)|2dy <∞

for some γ ∈ R and all t ∈ [0, T ], then u(t) = v̌(t) is the solution of (3.1),
where ˇ denotes the inverse Fourier transform;

(3) If u is a solution of (3.1), then v = û is a solution of (3.7). In particular,

(3.1) has at most one solution.

Proof. Recall that the fundamental solution of (3.7) is the matrix Φ(t, s, y), t ≥ s ≥ 0,
such that

Φ(t, s, y) = I +

∫ t

s

A(y)Φ(τ, s, y)dτ +

∫ t

s

B(y)Φ(τ, s, y)dw(τ);

I ∈ RN×N is the identity matrix. Existence and uniqueness of Φ is standard, and
continuity of Φ with respect to y follows from continuity of A(y) and B(y); see [8,
Corollary 2.7.1]. While existence and uniqueness of solution of (3.7) are also standard
for every fixed y, representation

(3.9) v(t, y) = Φ(t, 0, y)û0(y) +

∫ t

0

Φ(t, s)f̂ (s, y)ds+

∫ t

0

Φ(t, s)ĝ(s, y)dw(s)

and continuity of Φ with respect to y ensure that the exceptional set involved in the
construction of v does not depend on y. In particular, if (3.8) holds, then v̌ is well
defined. The rest of the proposition now follows from (3.6).

This completes the proof of Proposition 3.3 �

Proposition 3.3 reduces analysis of (3.1) to analysis of (3.7), and more specifically,
to verification of (3.8). Let us look at the homogeneous version of (3.7):

(3.10) v(t, y) = û0(y) +

∫ t

0

A(y)v(s, y)ds+

∫ t

0

B(y)v(s, y)dw(s).

By the Itô formula, the scalar quantity v(t, y) = Ev∗(t, y)v(t, y) = E|v(t, y)|2 satisfies

v(t, y) = û
∗
0û0 + 2ℜ

∫ t

0

Ev∗(s, y)A(y)v(s, y)ds

+

∫ t

0

Ev∗(s, y)B∗(y)B(y)v(s, y)ds,

(3.11)

which is not an equation2 for v. While one can still proceed with this approach and
derive some sufficient conditions for solvability of (3.1), we temporarily abandon (3.11)
in favor of a different approach. We will re-examine (3.11) in Section 5.

2ℜ denotes the real part of a complex number
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Instead of looking at the norm of the solution, let us look at the covariance matrix

U(t, y) = Ev(t, y)v∗(t, y). With U = vec(U), the Cauchy-Schwartz inequality implies

|U |2 =
N2∑

i,j=1

∣∣Eviv̄j
∣∣2 ≥

N2∑

i=1

(
E|vi|2

)2 ≥ 1

N2

(
E|v|2

)2
,

that is,

(3.12) E|v|2 ≤ N |U |.

By the Itô formula,

(3.13) U(t, y) = û0û
∗
0 +

∫ t

0

(
A(y)U(s, y) + U(s, y)A∗(y) +B(y)U(s, y)B∗(y)

)
ds,

which is a matrix ordinary differential equation for U . We use the Kronecker product
and equality (2.6) to re-write (3.13) as

(3.14) U(t, y) = U 0 +

∫ t

0

MA,B(y)U(s, y)ds,

where U 0 = vec(û0û
∗
0),

(3.15) MA,B(y) = A(y)⊗ I + I ⊗ A(y) +B(y)⊗ B(y),

and I ∈ RN×N is the identity matrix. In other words, equation (3.14) and Proposi-
tion 3.3 imply that the properties of the solution of the stochastic system (3.1) are
determined by the exponential matrix

exp
(
tMA,B(y)

)
,

with MA,B defined in (3.15). More precisely, if f = g = 0, then, according to (3.14),

(3.16) U(t, y) = exp
(
tMA,B(y)

)
U 0

and therefore (3.8) holds if and only if

(3.17) ‖ exp
(
tMA,B(y)

)
‖ ≤ R(1 + |y|2)β, 0 ≤ t ≤ T,

for some R > 0 and β ≥ 0.

Theorem 3.4. System (3.1) is well-posed if and only if (3.17) holds.

Proof. Necessity follows from the analysis of the homogeneous case. To establish suf-
ficiency, we need an analogue of (3.16) for the inhomogeneous equation (3.7).

In a more compact differential form (c.f. (3.2)), (3.7) becomes

(3.18) v̇ = Av + f̂ + (Bv + ĝ)ẇ,
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so that, with V = V (t, y) = vv∗, V = V (t, y) = vec(V ), U = U(t, y) = EV , and ˙
denoting derivative with respect to time,

v̇∗ = v∗A∗ + f̂
∗
+ (v∗B∗ + ĝ

∗)ẇ,

V̇ = AV + V A∗ + f̂v∗ + vf̂
∗
+ (Bv + ĝ)(v∗B∗ + ĝ

∗)

+ (BV + V B∗ + ĝv∗ + v̂g∗)ẇ,

V̇ = MA,BV + vec
(
f̂v∗ + vf̂

∗
+ ĝv∗B∗ +Bvĝ

∗ + ĝĝ
∗
)

(3.19)

+ vec
(
BV + V B∗ + ĝv∗ + vĝ

∗
)
ẇ,

U̇ = MA,BU + vec
(
E

(
f̂v∗ + vf̂

∗
+ ĝv∗B∗ +Bvĝ

∗ + ĝĝ
∗
))
.(3.20)

Using the notation

(3.21) Ψ(t, y) = exp
(
tMA,B(y)

)
,

U(t, y) = Ψ(t, y)vec
(
û0û

∗
0

)
+

∫ t

0

Ψ(t− s, y)vec
(
E(f̂v∗ + vf̂

∗

+ ĝv∗B∗ +Bvĝ
∗ + ĝĝ

∗)
)
ds.

(3.22)

For every (column) vectors h, z ∈ CN ,

|vec(hz∗)|2 =
N∑

i,j=1

|hizj|2 = |h|2 |z|2.

Then

(3.23) |U(t, y)| ≤ ‖Ψ(t, y)‖ |û0|2 +
∫ t

0

‖Ψ(t− s, y)‖E
(
2|f̂ | |v|+ 2|ĝ| |Bv|+ |ĝ|2

)
ds.

To proceed, re-write (3.17) as

(3.24) ‖Ψ(t, y)‖ ≤ ρβ(y), ρβ(y) = R(1 + |y|2)β, R ≥ 1,

use (3.12), and recall that 2|pq| ≤ ǫ|p|2 + ǫ−1|q|2, ǫ > 0. Then

2ρβ

∫ T

0

E
(
|f̂ | |v|

)
ds ≤ 2N1/2ρβ

∫ T

0

|U(s, y)|1/2 |f̂ |ds

≤ 2N1/2ρβ sup
0<t<T

|U(s, y)|1/2
∫ T

0

|f̂ |ds

≤ N1/2ρβ ǫ sup
0<t<T

|U(s, y)|+N1/2ρβ ǫ
−1

(∫ T

0

|f̂ |ds
)2

≤ N1/2ρβ ǫ sup
0<t<T

|U(s, y)|+N1/2T ǫ−1

∫ T

0

ρβ |f̂(s, y)|2ds.

(3.25)

Similarly, since (2.2) implies

(3.26) |B(y)v| ≤ CB(1 + |y|2)b/2 |v|, b ≥ 0, CB > 0,
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we find

2ρβ

∫ T

0

E
(
|ĝ| |Bv|

)
ds ≤ N1/2ρβ ǫ sup

0<t<T
|U(s, y)|

+ C2
BN

1/2ρβ ǫ
−1T

∫ T

0

ρb(y)|ĝ(s, y)|2ds.
(3.27)

Now take ǫ = (4N1/2ρβ(y))
−1. Inequality (3.23) becomes

sup
0<t<T

|U(t, y)| ≤ 2ρβ(y)|û0(y)|2

+ 8NTR

∫ T

0

ρ2β(y)|f̂(t, y)|2dt

+ 8(C2
BNTR

2 + 1)

∫ T

0

ρ2β+b(y)|ĝ(t, y)|2dt;

(3.28)

recall that we assume u0, f , and g to be deterministic, but the above computations
show that this assumption, while making the presentation easier, does not affect the
final result.

The desired inequality (3.8) now follows from (3.28) and (3.12). In fact, keeping in
mind that (3.8) implies v = û, (3.28) also establishes continuous dependence of the
solution on the input:

(3.29) E‖u‖2r(t) ≤ C

(
‖u0‖2r+β +

∫ t

0

‖f(s)‖2r+2βds+

∫ t

0

‖g(s)‖2r+2β+bds

)
, t ∈ [0, T ],

which is more informative than (3.5).
This completes the proof of Theorem 3.4.

�

To state condition (3.17) directly in terms of the matrix MA,B(y), we need some
constructions and facts from linear algebra.

Definition 3.5. The spectral abscissa α(A) of a square matrix A is the largest

real part of the eigenvalue of A:

α(A) = max{ℜλ : λ is an eigenvalue of A}
The following lemma connects the norm of the exponential of a matrix with the

spectral abscissa of the matrix.

Lemma 3.6. If A ∈ Cn×n then

(3.30) etα(A) ≤ ‖etA‖ ≤
(
n−1∑

k=1

(2‖A‖t)k
k!

)
etα(A).

If α(A) = −δ < 0, then an alternative upper bound in (3.30) is

(3.31) ‖etA‖ ≤ C(n)

(‖A‖
δ

)n−1

e−tδ/2.
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If A has a complete system of eigenvectors, arranged in a matrix V , then there is a yet

another upper bound

(3.32) ‖etA‖ ≤ ‖V ‖ · ‖V −1‖ etα(A).

Proof. For (3.31) and the upper bound in (3.30), see [9, Proposisions 1.3.2 and 1.3.3].
Analysis of the proof shows that the size n of the matrix in both (3.30) and (3.31) can
be replaced with the degree of the minimal polynomial for A, which is always at most
n. For the lower bound in (3.31), see [21, Theorem 15.3]. Inequality (3.32) follows
from the equality

exp(tA) = V
[
diag

(
exp(tλi(A))

)]
V −1.

�

Proposition 3.7. Condition (3.17) is equivalent to

(3.33) α
(
MA,B(y)

)
≤ C0 ln(2 + |y|).

Proof. If (3.17) holds, then the first inequality in (3.30) with t = T implies (3.33) with

C0 =
2β

T
+

lnR

T ln 2
.

If (3.33) holds, then (2.2) and the second inequality in (3.30) imply
∥∥∥exp

(
tMA,B(y)

)∥∥∥ ≤ C1(T )(1 + |y|)C2 · (2 + |y|)C0T

and (3.17) follows with R = C1(T )2
C0T and β = C2 + C0T .

�

The most natural way to satisfy (3.33) is by having

(3.34) sup
y

α
(
MA,B(y)

)
≤ C0.

A condition similar to (3.33) appears in the analysis of deterministic hyperbolic systems
[14, Theorem 2.7]. If all elements of A(y) and B(y) are polynomials in y, then (3.33)
and (3.34) are equivalent.

4. Regularity of solution

Theorem 3.4 provides the most basic information about system (3.1): if the input
is in some Sobolev space, then the solution will be in some other Sobolev space, and
condition (3.33) is necessary and sufficient for this to happen. Further information
about the solution can be obtained with a more careful analysis of (3.19) and (3.20).

Our basic analysis of solvability of (3.1) assumes a fixed time interval [0, T ]. If we
allow T to change, then (3.17) becomes

(4.1)
∥∥∥exp

(
TMA,B(y)

)∥∥∥ ≤ R(T )(1 + |y|2)β(T ).

In (4.1) and below, R = R(t) is a positive continuous function.
To begin, we define several classes of stochastic systems, depending on the behavior

of the function
∥∥∥exp

(
TMA,B(y)

)∥∥∥ for large T and |y|.

Definition 4.1. System (3.1) is called
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(1) pseudo-hyperbolic of order (β, b) if (3.26) holds and (4.1) holds with β in-

dependent of T ;
(2) neutrally stable pseudo-hyperbolic of order (β, b) if (4.1) holds with β

independent of T and with a continuous uniformly bounded function R = R(T ):

(4.2) sup
T≥0

R(T ) ≤ R0;

(3) stable pseudo-hyperbolic of order (β, b) if (4.1) holds with β independent

of T and with a continuous exponentially decaying function R = R(T ):

(4.3) R(T ) ≤ R0e
−φT , φ > 0;

(4) parabolic of order 2p if there exists a positive number p such that

0 < lim
|y|→∞

‖A(y)‖+ ‖B∗(y)B(y)‖
|y|2p <∞;(4.4)

α
(
MA,B(y)

)
≤ −ε|y|2p + L, ε > 0, L ∈ R;(4.5)

(5) (q, β, b)-dissipative, if (3.26) holds and

(4.6)
∥∥exp

(
tMA,B(y)

)∥∥ ≤ R(t)(1 + |y|2)βe−tε|y|2q , q > 0, β ≥ 0.

A parabolic system of order 2p is (p, 0, p)-dissipative. Indeed, (4.4) implies (3.26)
with b = p. Also, if (4.4) and (4.5) hold, then

‖MA,B(y)‖ ≤ CM(1 + |y|2)p,

and (3.31) with n = N2 becomes

(4.7)
∥∥exp

(
tMA,B(y)

)∥∥ ≤ e(L+ε)t(CM/ε)
N2−1C(N2)e−t(ε/2)|y|

2p

.

The reason for the name “pseudo-hyperbolic” is that certain hyperbolic systems
satisfy a condition similar to (3.33), even though system (3.1) is usually not hyperbolic.
If the matrices A(y) and B(y) are real, then conditions for stability can be derived
using the results from [11, Section 6.10]: stability of the PDE (3.1) is equivalent to the
mean-square stability of the ODE (3.7) uniformly in y.

Conditions (4.4) and (4.5) can be considered a stochastic analogue of parabolicity
in the sense of Petrowski, as defined, for example, in [7, Section 9.1]. This connection
with the classical deterministic setting is the reason for using 2p rather than p in (4.4)
and (4.5), even though p no longer has to be an integer: equation (3.14) describes the
square of the solution rather than solution itself. For the same reason, in (4.6) we have
2q and β rather than q and β/2.

Consider the equation

(4.8) utt − autxx − c2uxx = σuxxẇ, x ∈ R,

first encountered in Introduction. The equivalent system formulation is

(4.9) ut = v, vt = c2uxx + avxx + σuxxẇ.
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We have d = 1, N = 2, and

A(y) =

(
0 1

−c2y2 −ay2
)
, B(y) =

(
0 0
σy2 0

)
,(4.10)

MA,B(y) =




0 1 1 0
−c2y2 −ay2 0 1
−c2y2 0 −ay2 1
σ2y4 −c2y2 −c2y2 −2ay2


 .(4.11)

Analysis of the matrix MA,B(y) can be simplified by observing that there is an eigen-
vector (0 1 − 1 0)⊤ with eigenvalue λ0 = −ay2. All other eigenvectors of the matrix
have the form (h1 h2 h2 h3)

⊤, and the vector (h1 h2 h3)
⊤ is an eigenvector of the matrix

(4.12) M̃A,B(y) =




0 2 0
−c2y2 −ay2 1
σ2y4 −2c2y2 −2ay2


 ,

corresponding to the same eigenvalue. We will see in Section 5 that transition from
(4.11) to (4.12) is a particular case of the reduction possible for many second-order
systems.

We conclude that the remaining three eigenvalues λ1, λ2, λ3 of MA,B(y) are the roots
of

λ3 + 3ay2λ2 + (4c2y2 + 2a2y4)λ+ 2(2ac2 − σ2)y4 = 0.

Straightforward perturbation analysis shows that, as |y| → ∞, these eigenvalues satisfy

λ1 = −2ac2 − σ2

a2
+ o(1), λ2 = −ay2 − 2σ2

a2
+ o(1),

λ3 = −2ay2 +
2ac2 + σ2

a2
+ o(1).

Similar computations provide asymptotic of the eigenvectors, and we conclude that, as
long as a > 0,

∥∥∥exp
(
tMA,B

)∥∥∥ ≤ C(1 + |y|2)e−φt, φ =
2ac2 − σ2

a2
.

Then system (4.9) is

• pseudo-hyperbolic of order (1,2) if a > 0;
• stable pseudo-hyperbolic of order (1,2) if 2ac2 > σ2 (cf. [11, Section 6.10]);
• neutrally stable pseudo-hyperbolic of order (1,2) if 2ac2 = σ2.

To illustrate the difference between parabolic and dissipative systems, consider

(4.13) ut = uxx, vt = 2vxx + σ(−∇2)β/2uẇ, x ∈ R, β ≥ 0, σ > 0.
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We have d = 1, N = 2, and

A(y) =

(
−y2 0
0 −2y2

)
, B(y) =

(
0 0

σ|y|β 0

)
,(4.14)

MA,B(y) =




−2y2 0 0 0
0 −3y2 0 0
0 0 −3y2 0

σ2|y|2β 0 0 −4y2


 .(4.15)

For equation (1.1) in the introduction, the matrix MA,B(y) corresponds to (4.15) with
β = 1. The matrix exp

(
tMA,B(y)

)
can be easily computed, and it follows that system

(4.13) is

• parabolic of order 2 if β ≤ 1;
• (1, β − 1, β)-dissipative if β > 1.

In this example, the coefficient σ has no influence on the type of the system. The
possibility to have β > 1 illustrates the importance of (4.4) as part of the stochastic
parabolicity condition; it also shows that, unlike a single equation, the order of the
operator B in a well-posed system can be arbitrarily larger than the order of A.

The following definition refines Definition 3.1.

Definition 4.2. System (3.1) is called (ℓ, p, q)-well posed, with ℓ, p, q ∈ R, if, for every

r ∈ R, T > 0, and the input data satisfying

(4.16) u0 ∈ Hr+ℓ, f ∈ L2((0, T ), H
r+p), g ∈ L2((0, T );H

r+q),

there exists a unique solution u such that u(t) ∈ L2(Ω;H
r), t ∈ (0, T ) and

(4.17) E‖u(t)‖2r ≤ C(t)

(
‖u0‖2r+ℓ +

∫ t

0

‖f(s)‖2r+pds+
∫ t

0

‖g(s)‖2r+qds
)
.

If, in addition, supt>0C(t) <∞, then (3.1) is called (ℓ, p, q)-stable.

The two theorems below connect Definitions 4.1 and 4.2.

Theorem 4.3. A pseudo-hyperbolic system of order (β, b) is (β, 2β, 2β+ b)-well posed;
a stable pseudo-hyperbolic system of order (β, b) is (β, 2β, 2β + b)-stable.

Proof. Well-posedness follows from (3.29).
To establish stability, we need a more delicate analysis of the right-hand-side of

(3.23). Accordingly, we write

(4.18) ‖Ψ(t, y)‖ ≤ R(t)ρβ(y), ρβ(y) = (1 + |y|2)β
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(not to be confused with (3.24)), and then modify (3.25) to

ρβ

∫ T

0

2R(T − s)E
(
|f̂ | |v|

)
ds ≤ 2N1/2ρβ

∫ T

0

R(T − s)|U(s, y)|1/2 |f̂ |ds

≤ 2N1/2ρβ sup
0<t<T

|U(s, y)|1/2
∫ T

0

R(T − s)|f̂ |ds

≤ ρβN
1/2 ǫ sup

0<t<T
|U(s, y)|+N1/2 ǫ−1

(∫ T

0

R(T − s)ρβ |f̂ |ds
)2

≤ ρβN
1/2 ǫ sup

0<t<T
|U(s, y)|+N1/2 ǫ−1

∫ T

0

R(s)ds

∫ T

0

ρβR(T − s)|f̂ (s, y)|2ds.

(4.19)

After a similar modification of (3.27), (3.28) becomes

sup
0<t<T

|U(t, y)| ≤ 2R0ρβ(y)|û0(y)|2

+ 2

(∫ T

0

R(t)dt

)(
4N

∫ T

0

ρ2β(y)R(T − s)|f̂(t, y)|2dt

+ 4(C2
BN + 1)

∫ T

0

R(T − s)ρ2β+b(y)|ĝ(t, y)|2dt
)
;

(4.20)

Condition (4.3) implies ∫ ∞

0

R(t)dt ≤ R0/φ,

and then the number C = C(t) in (3.29) satisfies C(t) ≤ 8N(CB + 1)max(R0, R0/φ).
This completes the proof of Theorem 4.3. �

Remark 4.4. If (3.1) is neutrally stable pseudo-hyperbolic of order (β, b) and if f =
g = 0, then (3.28) implies

E‖u(t)‖2r ≤ 2R0‖u0‖2r+β.
While a (q, β, b)-dissipative system is pseudo-hyperbolic of order (β, b), the additional

exponentially decaying factor in (4.6) leads to additional regularity of the solution.

Theorem 4.5. A (q, β, b)-dissipative equation is (0, 2β − q, 2β + b− q)-well posed.

Proof. Combining (4.6) and (4.18) results in

‖Ψ(t, y)‖ ≤ R(t)ρβ(y)e
−tε(1+|y|2)q .

Since

ρβ(y)

∫ T

0

e−εt(1+|y|2)qdt ≤ C(T, ε, β, q)ρβ−q(y),

the result follows from a computation similar to (4.20). �

Corollary 4.6. A parabolic system of order 2p is (0,−p, 0)-well posed.
Proof. By (4.4) and (4.7), a parabolic system of order 2p is (p, 0, p)-dissipative. �
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A single stochastic parabolic equation of order 2p is certainly (0,−p, 0)-well posed,
but also has additional regularity properties. It is natural to expect this additional
regularity for parabolic systems as well.

Theorem 4.7. If system (3.1) is parabolic of order 2p, then, for every r ∈ R, T > 0,
and the input data satisfying

(4.21) u0 ∈ Hr, f ∈ L2((0, T ), H
r−p), g ∈ L2((0, T );H

r),

the solution is an element of L2

(
Ω× (0, T );Hr+p

)⋂
L2

(
Ω; C((0, T );Hr)

)
and

E sup
0<t<T

‖u(t)‖2r +
∫ T

0

E‖u(t)‖2r+pdt ≤ C(t)

(
‖u0‖2r +

∫ t

0

‖f(s)‖2r−pds

+

∫ t

0

‖g(s)‖2rds
)
.

(4.22)

Proof. Since the operators in (3.1) have constant coefficients, it is enough to establish
(4.22) for r = 0. Continuity follows in the usual way by showing weak continuity and
continuity of the norm. It remains to show that (4.7) implies

∫ T

0

(1 + |y|2)p|U(t, y)|dt ≤ C(T )

(
|û0(y)|2 +

∫ T

0

(1 + |y|2)−p|f̂(s, y)|2ds

+

∫ T

0

|ĝ(s, y)|2ds
)(4.23)

and

sup
0<t<T

∫

Rd

|U(t, y)|dy ≤ C(T )

∫

Rd

(
|û0(y)|2 +

∫ T

0

(1 + |y|2)−p|f̂ (s, y)|2ds

+

∫ T

0

|ĝ(s, y)|2ds
)
dy.

(4.24)

While the arguments are identical to the Fourier-analytic proof of the similar results
for the one-dimensional heat equation, some explanations might be necessary because,
for the single equation, the proof is usually carried out directly in the physical space
using integration by parts.

With the notations from the proof of Theorem 4.3, and with a suitable function R(t),
(4.7) becomes

(4.25) ‖Ψ(t, y)‖ ≤ R(t)e−(tε/2)(1+|y|2)p .

Define

ψ(y) =
ε(1 + |y|2)p

2
.
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To establish (4.23), we re-write (4.20) [taking β = 0, b = p, and replacing R(t) with
Ce−tψ(y)] as

|U(t, y)| ≤ 2Ce−tψ(y)|û0|2 +
2C

ψ(y)

∫ t

0

e−(t−s)ψ(y)|f̂(s, y)|2dt

+
2C(1 + C2

B)

ψ(y)

∫ t

0

ψ(y)e−(t−s)ψ(y)|ĝ(t, y)|2dt.
(4.26)

Inequality (4.23) now follows after multiplying both sides of (4.26) by ψ(y), integrating
both sides in time from 0 to T and changing the order of integration on the right-hand
side. Note that ∫ T

s

e−(t−s)ψ(y)dt =
1− e−(T−s)ψ(y)

ψ(y)
≤ 1

ψ(y)
.

To establish (4.24), we go back to (3.19) and estimate the stochastic integral using
the Burkholder-Davis-Gundy inequality. The argument is identical to the derivation
of (3.28). An interested reader should be able to fill in the details.

This completes the proof of Theorem 4.7. �

Remark 4.8. Analysis of the proof shows that a version of (4.22) can be derived for

a (q, β, b) dissipative equation:

E sup
0<t<T

‖u(t)‖2r +
∫ T

0

E‖u(t)‖2r+qdt ≤ C(t)

(
‖u0‖2r+β +

∫ t

0

‖f(s)‖2r+2β−qds

+

∫ t

0

‖g(s)‖2r+2β+b−qds

)
.

Again, an interested reader can fill in the details.

5. Further developments

To begin, let us discuss connections between the results of this paper and some of
the existing results.

A single equation. If N = 1, then (3.17) becomes

et(2A(y)−B
2(y)) ≤ R(1 + |y|2)β, t ∈ [0, T ].

In particular, for partial differential operators A, B, the condition on the corresponding
symbols is

2ℜ
(
A(y)

)
− B2(y) ≤ C0;

equations satisfying this condition are called degenerate parabolic (although terminol-
ogy can vary) and indeed form the largest class of well-posed equations [19, Section
IV.2].

A system of deterministic equations. By taking B(y) = 0, we should be able to
recover the results for the deterministic equations, for example, the Petrowski parabol-
icity. In the deterministic case, the conditions do not involve the Kronecker product
and are stated in terms of α(A(y)). The reason is that, when B(y) = 0, the matrix

MA,0(y) = A(y)⊗ I + I ⊗ A(y),
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known as the Kronecker sum of A and A, is much easier to study. In particular, it is
known [10, Theorem 4.4.5] that all eigenvalues ofMA,0(y) are of the form λi(A)+λj(A),
i, j = 1, . . . , N , where λi(A) is an eigenvalue of A(y). In particular, α(MA,0(y)) =
2α(A(y)). In the deterministic setting, the Petrowski parabolicity condition is

α(A(y)) ≤ −ε|y|2p + L,

which is equivalent to (4.5) with B = 0.

A sufficient condition for parabolicity. Let us return to (3.11). Define the
matrix

NA,B(y) = A∗(y) + A(y) +B∗(y)B(y).

Since NA,B is Hermitian,

v∗(t, y)NA,B(y)v(t, y) ≤ α
(
NA,B(y)

)
v∗(t, y)v(t, y).

If we assume that

(5.1) α(NA,B(y)) ≤ −ε|y|2p + L, ε > 0,

then (3.11) and the Gronwall inequality imply

v(t, y) ≤ |û0(y)|2 eLte−tε|y|
2p

, v(t, y) = v∗(t, y)v(t, y).

By Proposition 3.3, this is enough to establish well-posedness of (3.1), and in fact,
implies that the system is parabolic of order 2p. Indeed, for systems of second-order
stochastic parabolic equations (p = 1), condition (5.1) is a slightly weaker version of
the parabolicity condition from [12]. Our analysis shows that (5.1) is too restrictive
and can be replaced with a weaker condition (4.5) (to have parabolicity) or even with
(3.33) (to have well-posedness). In fact, it is known [18] that

2α(A) ≤ α(A+ A∗)

for every matrix A; equality holds if AA∗ = A∗A; for more on the subject, see [20]. In
other words,

α(MA,0(y)) ≤ α(NA,0(y)),

meaning that condition (5.1) is not optimal even in the deterministic case.

Next, let us take a closer look at our results.
Verification of condition (3.33). The location of eigenvalues of a matrix can

be analyzed using the Routh-Hurwitz criterion, a necessary and sufficient condition,
in terms of the coefficients of a real polynomial, for the roots of the polynomial to
have negative real parts. Although a classical result, its application to (3.33) requires
two modifications: (a) The region of interest is not exactly the left half-plane; this is
resolved with a suitable shift of the variable in the polynomial; (b) The coefficients of
the polynomial are complex rather than real; a suitable modification of the criterion
exists for this case as well [15, Theorem 40.1].

A complete description of the procedure is rather long, technical, and mostly irrele-
vant to the main subject of this paper. Below are the main ideas.
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Suppose that P (λ) is the characteristic polynomial of the matrix MA,B; it is a
polynomial of order N2 with coefficients depending on the parameter y. Then (3.33)
means that there exists a C > 0 such that, for all y ∈ Rd, all roots of the equation

P (λ+ C ln(2 + |y|)) = 0

have negative real parts.
If the coefficients of P are real, then Routh-Hurwitz criterion requires analysis of N2

determinants of orders 1, 2, 3, . . .N2, each constructed using the coefficients of P . If the
coefficients of P are complex, then the Routh-Hurwitz criterion requires analysis of N2

determinants of orders 2, 4, 6, . . . 2N2, each constructed using the real and imaginary
parts of the coefficients of P . Presence of the parameter y makes the complexity of the
computations formidable indeed.

On the one hand, for a general polynomial, the Routh-Hurwitz criterion is, in a
certain sense, optimal [2, Theorem 1].

On the other hand, the special structure of the matrix MA,B does allow for certain
simplifications. The general result is as follows: the matrix MA,B has N(N + 1)/2
eigenvectors of the form vec(H) for a Hermitian matrix H , and (N−1)N/2 eigenvectors
of the form vec(S) for a skew-Hermitian matrix S [6, Section 3]. Let us see how this
result can indeed simplify the analysis of second-order systems with real matrices A,B.
Direct [straightforward and not especially insightful] computations show that, for real
2-by-2 matrices A,B, the matrix MA,B has an eigenvector (0 1 −1 0)⊤ corresponding
to the eigenvalue trace(A) + det(B). All other eigenvectors of MA,B are of the form
(h1 h2, h2 h3)

⊤, so that (h1 h2 h3)
⊤ is an eigenvector of the matrix




2A11 +B2
11 2(A12 +B11B12) B2

12

A21 +B11B21 A11 + A22 +B11B22 +B12B21 B12B22 + A12

B2
21 2(A21 +B21B22) 2A22 +B2

22


 .

Reduction of a 4-by-4 matrix (4.11) to a 3-by-3 matrix (4.12) during the analysis of
(4.8) provides an illustration of this idea.

Optimality of the results. While condition (3.17) is necessary and sufficient for
solvability of the (3.1), a regularity result such as (3.29) is only as good as the estimate
(3.17). Lemma 3.6 provides some information, but the resulting bounds are not always
optimal. For example, for the (relatively simple) matrix (4.15) in the case β > 1, (3.30)
gives ∥∥etMA,B(y)

∥∥ ≤ C
(
(1 + |y|2)β−1

)3
e−2y2 ,

(3.32) gives ∥∥etMA,B(y)
∥∥ ≤ C

(
(1 + |y|2)β−1

)2
e−2y2 ,

and a direct computation gives
∥∥etMA,B(y)

∥∥ ≤ C
(
(1 + |y|2)β−1

)
e−2y2 .

One reason parabolic systems are of special interest is that (4.7) all but eliminates the
need to bound the exponential matrix, leading to essentially optimal regularity result
(4.22).

In general, getting optimal bounds on the exponential of a non-normal matrix is a
difficult problem [16, 17, 21, etc.]. For a normal matrix A (that is, A∗A = AA∗), the
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corresponding bound is very simple:

‖etA‖ = etα(A);

see [21, Theorem 15.3]. As a result, majority of the current research on the subject is
about efficient computation of etA for normal (in fact, Hermitian) matrices A [3, 22,
etc.] In this connection, note that if matrices A and B are Hermitian, then so is MA,B.

A related question is possibility of considering truly vector Sobolev space, with an
option of having different regularity for different components of the vector function.
At this point, the answer is not clear, but equation (4.13) provides a motivation: if
β 6= 1, then it is possible to take u0 ∈ Hr+β−1 and v0 ∈ Hr so that

u ∈ C((0, T );Hr+β−1)
⋂
L2((0, T );H

r+β),

and then Bu ∈ L2((0, T );H
r), so that

v ∈ L2(Ω; C((0, T );Hr)
⋂

L2((0, T );H
r+1).

According to Remark 4.8, if u0, v0 ∈ Hr+1, then

u, v ∈ L2(Ω; C((0, T );Hr)
⋂
L2((0, T );H

r+1),

which is, technically, neither weaker nor stronger, but just different.

Generality of the results. System (3.1) was intentionally chosen the simplest
possible, to make sure that the key ideas are not lost in the computations. Analysis of
the proof of Theorem 3.4 suggests immediate generalizations of (3.29) in the following
directions:

(1) Number of Brownian motions. The term
∑

k≥1Bkudwk(t) can replace the

term Budw(t) as long as
∑

k ‖Bk(y)‖2 ≤ CB(1 + |y|2)b/2. The matrix MA,B

becomes

MA,B(y) = A(y)⊗ I + A(y)⊗ I +
∑

k

Bk(y)⊗ Bk(y);

the infinite sum of Kronecker products is well-defined, because ‖Bk(y)⊗Bk(y)‖ ≤
C(N)‖Bk(y)‖2.

(2) Input data. There are no significant difficulties extending the results to

u0 ∈ L2(Ω,F0;H
r+β), f ∈ L2(Ω× (0, T ),Ft;H

r+2β),

gk ∈ L2(Ω× (0, T ),Ft;H
r+2β+b),

∑

k

E

∫ T

0

‖gk(t)‖2r+2β+bdt <∞.

Some technical issues arise in connection with (3.9), which can now contain an
anticipating stochastic integral, and a different approach (e.g using rough path
theory) might be necessary to deal with exceptional sets during the construction
of v.

Further generalizations are more technically demanding:

(1) Time-dependent operators A and Bk. Now there is no matrix exponential
to consider; instead, we need to study the fundamental solution of the corre-
sponding ODE with matrix MA,B(t, y). Similar to the deterministic setting [7,
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Section 9.2], this difficulty can be resolved by freezing the time variable in the
operators.

(2) Space-dependent operators. The symbol of the operator becomes a func-
tion of t, x, y, and the Fourier transform method no longer works. The analysis
should still be possible with the help of standard PDE techniques such as lo-
calization (freezing the coefficients and partition of unity) and the method of
continuity.

(3) Random predictable operators. This generalization presents the most
challenge because now there seems to be no way around anticipating stochastic
integrals. While anticipating integration can be avoided for scalar parabolic
equations [13] (and then, under a more restrictive condition (5.1), for systems
[12]), the method does not seem to work under a more general condition (3.33).
The approach based on anticipating stochastic calculus is possible for one equa-
tion [1] and could probably be extended to systems, at least for second-order
in space under the parabolicity condition

sup
ω,t,x

α
(
MA,B(ω, t, x; y)

)
≤ −ε|y|2 + L.

6. Conclusions

In the analysis of stochastic evolution systems, the key object is the covariance
matrix of the solution rather than the norm of the solution. When written in a matrix-
vector form, the matrix differential equation satisfied by the covariance leads to a linear
system of ordinary differential equations; the matrix in the equation is a sum of certain
Kronecker products of the matrices from the original system. In other words, instead
of the “obvious” characteristic matrix

NA,B = A+ A∗ +B∗B,

the “correct” characteristic matrix of the system is

MA,B = A⊗ I + I ⊗ A+B ⊗B.

While dimension of the matrix increases from N -by-N to N2-by-N2, and integration by
parts no longer works, the pay-off is a sharp condition for well-posedness of the system.
For parabolic systems, the condition is an extension of the Petrowski parabolicity.
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