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ON GENERALIZED MALLIAVIN CALCULUS

S. V. LOTOTSKY, B. L. ROZOVSKII, AND D. SELESI

ABSTRACT. The Malliavin derivative, divergence operator (Skorokhod integral),
and the Ornstein-Uhlenbeck operator are extended from the traditional Gaussian
setting to nonlinear generalized functionals of white noise. These extensions are
related to the new developments in the theory of stochastic PDEs, in particular
elliptic PDEs driven by spatial white noise and quantized nonlinear equations.
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1. INTRODUCTION

Currently, the predominant driving random source in Malliavin calculus is the isonor-
mal Gaussian process (white noise) W on a separable Hilbert space ¢ [15, 18]. This
process is in effect a linear combination of a countable collection & := {},o, of
independent standard Gaussian random variables. -

In the first part of this paper (Sections 2-4) we extend Malliavin calculus to the driv-
ing random source given by a nonlinear functional u := u (§) of white noise. More
specifically, we study the main operators of Malliavin calculus: Malliavin deriva-
tive D, (f); divergence operator 8, (f), and Ornstein-Uhlenbeck operator £, (f) with
respect to a generalized random element u = 7, UaSa, Where {{a, || < 0o} is
the Cameron-Martin basis in the Wiener Chaos space, a is a multiindex and ugq
belongs to a certain Hilbert space U. The term “generalized” indicates that

2 2
lulkx = > lluallk = oo

|ar|<oo

Looking for driving random sources that are generalized random elements is quite
reasonable: after all, the Gaussian white noise that often drives the equation of
interest is itself a generalized random element.

Our interest in this subject was prompted by some open problems in the theory and
applications stochastic partial differential equations (SPDEs). In particular:

(A) Non-adapted SPDEs, including elliptic and parabolic equations with
time-independent random forcing;
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(B) SPDEs driven by random sources more general then Brownian motion,
for example, nonlinear functionals of Gaussian white noise;

(C) Stochastic quantization of non-linear SPDEs.
These issues are discussed in the second part of the paper (Sections 5 and 6).

Skorokhod integral (Malliavin divergence operator) is a standard tool in the Ls theory
of non-adapted stochastic differential equations. However, simple examples of SPDESs
from classes (A) and (B) indicate that their solutions have infinite energy (Lo norm).
To address this issue, one must allow the “argument” f = Z‘a‘ coo Jaba also to be a
generalized random elements taking values in an appropriate Hilbert space.

Stochastic SPDEs with infinite energy are not a rarity. One simple example is the
heat equation driven by multiplicative space-time white noise W (¢, x) with dimension
of x two or higher:

u = Au+ uW. (1.1)
Examples in one space dimension also exist:
du = Ugpdt + cugdw(t), o > 2, (1.2)
or
du = Uy dt + g dw(t). (1.3)

Elliptic equations with random inputs (including random coefficients) is another large
class of SPDEs that generate solutions with infinite variance. A classic example is
equation

Au=W, forz e D=(0,1)", u(z) =0 for x € D
when d > 4.

Another important example of an elliptic SPDE with an infinite energy solution is
(a(x) o ug(t,x)) = f(z), = €R, (1.4)

where

RS N N €))

a(x) =e = o;j o H, (1.5)
is the positive noise process ([4, Section 2.6]), {ex(x), k > 1} are the Hermite func-
tions, and Hy = £oV/a!. The function a = a(z) defined by (1.5) models permeability
of a random medium.

A somewhat similar example with coefficient a(x) taking negative values with positive
probability was considered in [25].

Beside the study of equation of the type (1.1)—(1.4), an important impetus for de-
velopment of generalized Malliavin calculus is the problem of unbiased stochastic
perturbations for nonlinear deterministic PDE. Unbiased stochastic perturbations
can be produced by way of stochastic quantization." Roughly speaking, stochastic
quantization procedure consists in approximating the product uv by &, (u) where

L4Stochastic quantization” is not a standard term. For background see [20, 6, 17] and [16, Section
6].
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d, is the generalized Malliavin divergence operator, where u and v are functions of
Gaussian white noise W or, equivalently, the sequence & := {f,-}ZZl. The nature of
this approximation could be explained by the following formula:

n!

vou =48, (v)+ (1.6)

n=1

(see [17]). Formula (1.6) implies that &, (v) is the highest stochastic order approxi-
mation for the product v - u. For example, if u = &, and v = g, then (1.6) yields
§alp = 0¢s (§a) T Dy p CvSy- Since ¢,y (§a) = Eavrp it is indeed the highest sto-
chastic order component of the Wiener chaos expansion of {,£g. Note that, if v and
u are real valued square integrable random variables, then 8, (v) = w ¢ v where ©
stands for Wick product [2, 4, 26]. Equations subjected to stochastic quantization
procedure are usually referred to as “quantized”.

Interesting examples of quantized stochastic PDEs include randomly forced equations
of Burgers [7] and Navier-Stokes [17]. For example, let us consider Burgers equation
with deterministic initial condition and simple Gaussian forcing given by

Up = Uypy + ULy, + e‘w2£, (1.7)

where ¢ is a standard Gaussian random variable. The quantized version of this
equation is given by

Vp = Vg + 61} (Um) + €_m2£ ) (18)

where 4, (v,) is Malliavin divergence operator of v, with respect to the solution v
of (1.8). It can be shown that v (t,z) := Euv (¢,z) solves the deterministic Burgers
equation vy (t,x) = Uy, (t,2) + 0 (¢, 2) U, (t,2). In other words, in contrast to the
standard stochastic Burgers equation, its quantized version provides an unbiased
random perturbation of the solution of the deterministic Burgers equation u; = ., +
uu,. Thus, the quantized version (1.8) of stochastic Burgers equation is an unbiased
perturbation of the standard Burgers equation (1.7).

Note that, in all examples we have discussed, the variance of a generalized random
element u was given by the diverging sum ) ||ua||§( = oo. However, the rate of
divergence could differ substantially from case to case. To study this rate, we intro-
duce a rescaling operator R defined by Ry = rafa , Where weights 1, are positive
numbers selected in such a way that the weighted sum S _ 72 [[uq||% becomes finite.
Of course, it could be done in many ways. A particular choice of weights (weighted
spaces) depends on the specifics of the problem, for example on the type of the sto-
chastic PDE in question. A special case of the aforementioned rescaling procedure
was originally introduced in quantum physics and referred to as “second quantization”
[24]. Tt was limited to a special but very important class of weights. In this paper
they are referred to as sequence weights.

Quantum physics has brought about a number of important precursors to Malliavin
calculus. For example, creation and annihilation operators correspond to Malliavin
divergence and derivative operators, respectively, for a single Gaussian random vari-
able. The original definition of Wick product [26] is not related to the Malliavin
divergence operator or Skorokhod integral but remarkably these notions coincide in
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some situations. In fact, standard Wick product could be interpreted as Skorokhod
integral with respect to square integrable processes generated by Gaussian white
noise, while the classic Malliavin divergence operator integrates only with respect to
isonormal Gaussian process. In Section 3, we demonstrate that Malliavin divergence
operator could be extended to the setting where both the integrand and the integra-
tor are generalized random elements in a Hilbert space; however, we were unable to
extend Wick product to the same extent.

To summarize, in this paper, we construct and investigate the three main opera-
tors of Malliavin calculus: the derivative operator D, (v), the divergence operator
0,(f), and the Ornstein-Uhlenbeck operator £,(v) = 8, o D,(v) when u,v, and f
are Hilbert space-valued generalized random elements. Section 2 reviews the main
constructions of the Malliavin calculus in the form suitable for generalizations. Sec-
tion 3 presents the definitions of the Malliavin derivative, Skorokhod integral, and
Ornstein-Uhlenbeck operator in the most general setting of weighted chaos spaces.
Section 4 presents a more detailed analysis of the operators on some special classes of
spaces. In particular, in Section 4 we study the strong continuity of these operators
with respect to the “argument”. We show that

AL () ]la < C(lulls) V]l

where || -||;, i = a, b, ¢ are norms in the suitable spaces, the function C' is independent
of v, and A is one of the operators D, 4, £. In Section 5 we generalize the isonormal
Gaussian process W to Zy = Zo<\a\§v u?*H,, 1 < N < oo, where {u;, k> 1} is
an orthonormal basis in U. Parameter N is the stochastic order of Zy. In particular,

the stochastic order of W is 1, while the stochastic order of the positive noise (1.5) is
infinity.

We investigate the properties of the corresponding operators Dy , 6, , L, , and
use the results to characterize certain spaces of generalized random elements via the
action on the stochastic exponential. In Section 6 we introduce two new classes of
stochastic partial differential equations driven by Zx, prove the main existence and
uniqueness theorems, and consider some particular examples.

More specifically, in Section 6 we study general parabolic and elliptic SPDEs of the
form

a(t) = A(t)u(t)+ f(t) + 0, (M(t)u(t)), 0 <t < T,
and
Au+6,; (Mu) = f,

where A :V = V'and M:V — V' @ @, U*".

Roughly speaking, the only assumptions on the operators A and M are that M
and A~'M are appropriately bounded. The initial conditions and the free forces are
assumed to be from the spaces based on Kondratiev space S_;. Appropriate counter
examples indicate that our results are sharp.
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2. REVIEW OF THE TRADITIONAL MALLIAVIN CALCULUS

The starting point in the development of Malliavin calculus is the isonormal Gaussian
process (also known as Gaussian white noise) W: a Gaussian system {W(u), u € U}
indexed by a separable Hilbert space U and such that EW (u) = 0, E(W(u) W(v)) =
(u,v)y. The objective of this section is to outline a different but equivalent construc-
tion.

Let F := (2, F,P) be a probability space, where F is the o-algebra generated by
a collection of independent standard Gaussian random variables {;},~,. Given a
real separable Hilbert space X, we denote by Ly(IF; X) the Hilbert space of square-
integrable F-measurable X-valued random elements f. When X = R, we often write
Ly(F) instead of Lo(F;R). Finally, we fix a real separable Hilbert space U with an
orthonormal basis U = {ug, k> 1}.

Definition 2.1. A Gaussian white noise W on U is a formal series

k>1

Given an isonormal Gaussian process W and an orthonormal basis ${ in U, repre-
sentation (2.1) follows with & = W (u). Conversely, (2.1) defines an isonormal
Gaussian process on U by W(u) = 3o, (u, ug)y & To proceed, we need to review
several definitions related to multi-indices. Let J be the collection of multi-indices
a = (ag, a,...) such that ap € {0,1,2,...} and > ,., oy < 00. For o, 8 € J, we
define

a+B=(a+PfLa+ B ), lal=> a ol =]]al

k>1 k>1

By definition, e > 0 if || > 0, and B < a if [ < oy, for all k > 1. If B < «, then

a—B= (a1 —B,ay—fa,...)
Similar to the convention for the usual binomial coefficients,

ol

(§) - a—pmar "=
B 0, otherwise.

We use the following notation for the special multi-indices:

(1) (0) is the multi-index with all zero entries: (0), = 0 for all &;
(2) (i) is the multi-index of length 1 and with the single non-zero entry at position
i: le. e(i)y = 1if k =i and (i) = 0 if & # i. We also use convention

£(0) = (0).

Given a sequence of positive numbers q = (¢, g2, - . .) and a real number ¢, we define
the sequence q‘*, a € J, by q'* =[], ¢.**. In particular, (2N)‘* = 1)1 (2k) .
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Next, we recall the construction of an orthonormal basis in Ly(F; X). Define the
collection of random variables = = {ga, acJ } as follows:

o Hak(gk)
o = IH Nk

where H,, is the Hermite polynomial of order n: H,(t) = (—1) . Some-
times it is convenient to work with unnormalized basis elements H,, defined by

Ho = \/aga = HH% (fk) (2'2)

k>1

n t2/2 d" —t?/2
e /eagme

Theorem 2.2 (Cameron-Martin [1]). The set = is an orthonormal basis in Ly(F; X):
if v € Ly(F; X) and v = E(v fa), then v = Zaej Vala and Eljv|3 = Zaej lvall%-

If the space U is n-dimensional, then the multi-indices are restricted to the the set
In={aeJ:ap=0,k>n}.

The three main operators of the Malliavin calculus are

(1) The (Malliavin) derivative Dy;
(2) The divergence operator d;, also known as the Skorokhod integral;
(3) The Ornstein-Uhlenbeck operator Ly, = &y, Dy;.

For reader’s convenience, we summarize the main properties of Dy;, and dy;; all the
details are in [18, Chapter 1].

(1) Dy, is a closed unbounded linear operator from Lo (F; X) to Ly(F; X @U); the
domain of Dy, is denoted by D'*(F; X);

(2) If v = F(W(hl) W(hn)) for a polynomial F' = F(xy,...,z,) and
hi,...,h, € X, then

D, (v) = ZaF (W(h), ..., W (h,)) hy. (2.3)

(3) 0 is the adjoint of DW and is a closed unbounded linear operator from
Ly(F; X @ U) to Lo(F; X) such that

E(0dy (f)) = E(f, Dy (#)), (2.4)
for all ¢ € D'?(F;R) and f € D"*(F; X @ U). Equivalently,
(“>5W(f))L2(F;X) ( (v ))L (F; X ®U) (2.5)

for all v € DM*(F; X) and f € DY(F; X Q@ U).

The following theorem provides representations of the operators Dy, d;,, and Ly;, in
the basis =. These representations are well known (e.g. [18, Chapter 1]).

Theorem 2.3. (1) If v € Ly(F; X) and
> laflvallk < oo, (2.6)

acJ
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then Dy, (v) € Lo(F; X @ U) and
DW(U) - Z Z vV Ok ga—e(k) Vo @ Ug. (27)

acJ k>1

(2) [ff - Zaej,k21 fk,a & Uy gaa and
S el frallk < oo, (2.8)

acJ, k>1

then &y, (f) € Lo(F; X) and

acJ \k>1

(8) If v € Ly(F; X) and

>l floallk < oo, (2.10)
acJ
then Ly, (v) € Ly(F; X) and
Ly () = |alvata. (2.11)
acJ

Remark 2.4. There is an important technical difference between the derivative and
the divergence operators:

e For the operator Dy, (Dw(’l}))a = > jo1 Vi + 1 Uaqe) @uy; in general, the
sum on the right-hand side contains infinitely many terms and will diverge
without additional conditions on v, such as (2.6).

e For the operator 4y, (5W(f))a = > ko1 VO fra—ek); the sum on the right-
hand side always contains finitely many terms, because only finitely many of
oy are not equal to zero. Thus, for fized a, (5W( f))a is defined without any
additional conditions on f.

3. GENERALIZATIONS TO WEIGHTED CHAOS SPACES

Recall that W, as defined by (2.1), is not a-valued random element, but a generalized
random element on U: W (h) = 3, -, (h, )y &, where the series on the right-hand
side converges with probability one for every h € U. The objective of this section is to
find similar interpretations of the series in (2.7), (2.9), and (2.11) if the corresponding
conditions (2.6), (2.8), (2.10) fail. Along the way, it also becomes natural to allow
other generalized random elements to replace W.

We start with the construction of weighted chaos spaces. Let R be a bounded linear
operator on Lo(F) defined by Rén = rala for every a € J, where the weights
{ra, a € J} are positive numbers.

Given a Hilbert space X, we extend R to an operator on Lo(IF; X') by defining R f as
the unique element of Lo(F; X') such that, for all g € X

E(Rf,9)x = > _ raB((f.9)x¢a)-

acJ
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Denote by RLs(F; X) the closure of Ly(F; X') with respect to the norm

HfH?QLg(F;X) = H,R’fH%g(F;X) = Z Ti“fa“%{

acJ

In what follows, we will identify the operator R with the corresponding collection
(ra, @ € J). Note that if u € Ry Ly(F; X) and v € RyLo(F; X), then both u and v
belong to RLy(F; X), where 7o = min(ry o, 72,). As usual, the argument X will be
omitted if X = R.

Important particular cases of R Lo (FF; X) are

(1) The sequence spaces Lg4(IF; X), corresponding to the weights ro = q%,

where q = {qx, k > 1} is a sequence of positive numbers; see [11, 9, 19].
Given a real number p, one can also consider the spaces
Ly ((F; X) = Lo o (F; X), (3.1)

where q” = {q}, k > 1} . In particular, L%,q = L27q?L2_,%| = Ly1/q- Under the
additional assumption ¢, > 1 we have an embedding similar to the usual
Sobolev spaces: Ly, (IF; X) C Ly (F; X), p > .

(2) The Kondratiev spaces (S),¢(X), corresponding to the weights ro =
(a)P2(2N)*> p e [-1,1], £ € R, see [4].

(3) The sequence Kondratiev spaces (S),q(X), corresponding to the weights
Ta = (a!)?2q%, p € [-1,1]. We will see below in Section 6 that the sequence
Kondratiev spaces (S),q(X), which include both Ly 4(X) and (S),.(X) as
particular cases, are of interest in the study of stochastic evolution equations.
We will write || - ||,,4.x to denote the norm in (S), 4(X).

The Cauchy-Schwartz inequality leads to two natural definitions of duality between
spaces of generalized random elements, which we denote by (-,-) and ((-,)), respec-
tively. If u € (S),4(X) and v € (S)_, 4-1(X), then

<u7 U> = Z(uav Ua)X- (32)

The result of this duality is a number extending the notion of E(u, v)x to generalized
X-valued random elements.

Ifue (S),(X®V)andv e (S)_,q1(V), then
(u,0) =Y (e va)v (3.3)

o3

This duality produces an element of the Hilbert space X.

Taking projective and injective limits of weighted spaces leads to constructions similar
to the Schwartz spaces S(R?) and &'(R%). Of special interest are

(1) The power sequence spaces Ly (F; X) = () cp Lh,(F; X), Ly (F; X) =
Uper L5,4(F; X), where q = {qi, k > 1} is a sequence with g; > 1 (see (3.1)).
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(2) The spaces S?(X) and S_,(X), 0 < p <1 of Kondratiev test functions
and distributions: S”(X) = (,cr(S)pe(X), S_p(X) = User(S)—pe(X). In
the traditional white noise setting, X = R?, p = 0 corresponds to the Hida
spaces, and the term Kondratiev spaces is usually reserved for S*(RY) and
S_1(R%). The similar constructions of the test functions and distributions are
possible for the sequence Kondratiev spaces.

If the space U is finite-dimensional, then the sequence q can be taken finite, with as
many elements as the dimension of /. In this case, certain Kondratiev spaces are
bigger than any sequence space. The precise result is as follows.

Proposition 3.1. IfU is finite-dimensional, then
Ly o(X) C (8)-p-e(X) (3.4)
for every p > 0, £ > p and every q.

Proof. Let n be the dimension of ¢ and r = min{q,...,q,}. Define v = {r,... r}.
Then Ly 4(X) C Ly (X). On the other hand, for all « € 7, (2N)?al > |a]!, so that
(red(al)?(2N)2) =t < (r2lel(|a!)?) =t < C(r), which means Lo (X) C (S)_, _o(X).

O

Analysis of the proof shows that, in general, an inclusion of the type (3.4) is possible
if and only if there is a uniform in e bound of the type (q**(|a|!)?)™" < C(2N)Pe;
the constants C' and p can depend on the sequence . If the space U is infinite-
dimensional, then such a bound may exist for certain sequences q (such as q = N),
and may fail to exist for other sequences (such as q = exp(N)).

Definition 3.2. A generalized X-valued random element is an element of the
set | JRLy(F; X), with the union taken over all weight sequences R.
To complete the discussion of weighted spaces, we need the following results about

multi-indexed series.

Proposition 3.3. Let v = {ry, k > 1} be a sequence of positive numbers.

(1) If > sy T < 00, then

S e (Z rk> . (3.5)

acJg k>1

(2) If 3 sy Tk < 00 and vy < 1 for all k, then, for every e € J,

O N [T S

BeJ k>1
where 1 — v is the sequence {1 — 1y, k > 1}. In particular,
> (@N) < oo (3.7)
acJ
for all ¢ > 1; cf. [4, Proposition 2.3.3].
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(3) For every a € 7,

3 (g) =140 (3.8)

BeJ
where 1 + v is the sequence {1+ 1y, k > 1}.

Proof. Note that exp (Zkzl ) = [list 2y 78/ Thst L= 77" = Tlist 2onst -
By assumption, limy_.. 7% = 0, and therefore [[,-, 7* = 0 unless only finitely many
of ny, are not equal to zero. Then both (3.5) and (3.6) with a = (0) follow. For
general o, (3.6) follows from >, ., ("Zk):ck = (1 —z)™ ', |z| < 1, which, in turn,
follows by differentiating n times the equality L% = (1 —x)~!. Recall that

dm<oo, 0<r <l = 0<]] < 0.
k

1—7r
k k

Equality (3.8) follows from the usual binomial formula. O

Corollary 3.4. (a) For every collection fo, o € J of elements from X there exists
a weight sequence ro, a € J such that Y- . - || fal%72 < co.

(b) If g > 1 and Yo 1/qr < 00, then the space Ly ((X) is nuclear.,
(¢) The space SP(X) is nuclear for every p € [0,1].

Proof. (a) In view of (3.7), one can take, for example, ro = (2N)"*(1 + || fallx) "
(b) By (3.6), the embedding Lg;l(X) C Lh 4(X) is Hilbert-Schmidt for every p € R.

(c) Note that >, -,(2k)~* < oo. Therefore, by (3.6), the embedding (S),+1(X) C
(S)p,e(X) is Hilbert-Schmidt for every ¢ € R. O

To summarize, an element f of RLy(F; X) can be identified with a formal series
> acs faba, where fo € X and Y | falk7% < oo. Conversely, every formal
series

f - Z fozgom (39)

acJ

fo € X, is a generalized X-valued random element. Using (2.2), we get an alternative
representation of the generalized X-valued random element (3.9):

f=>_ faHa, (3.10)
acJ
with fo € X. By (2.2), fa = fo/Val.
The following definition extends the three operators of the Malliavin calculus to gen-

eralized random elements.

Definition 3.5. Let u = ) . uaéa be a generalized U-valued random element,
V=) 0esVala, a generalized X -valued random element, and f =Y ., fala, @
generalized X ® U-valued random element.



ON GENERALIZED MALLIAVIN CALCULUS 11

(1) The Malliavin derivative of v with respect to u is the generalized X @U-valued
random element

=2 (Z <a+ﬂ) va+a®ws> o (3.11)

acd \BeJ

provided the inner sum is well-defined.

(2) The Skorokhod integral of f with respect to u is a generalized X -valued random

element
Zj(ﬁZ ( ) fﬂ,ua_;a)u) o (3.12)

(8) The Ornstein-Uhlenbeck operator with respect to w, when applied to v, is a
generalized X -valued random element

=2 < > ( )(ﬂ;v) U,B+~r(u~y>ua—,6)u) £as (3.13)

acJ \B~yeJ

provided the inner sum is well-defined.

For future reference, here are the equivalent forms of (3.11), (3.12), and (3.13) using
the un-normalized expansion (3.10): if u = > ;tUaHa, v = 3/ 0aHa, f =

> ac foHe, then

D,(v) =) (Z %vam ® uﬁ) He, (3.14)

acJ \BeJ
ZZ fﬁ’ua B UH ZZ fa ,67“,6 (315)
a BLla a BLa
|
Luv) = Z ( Z (6’%7) ?7ﬁ+v(ﬂmﬂa—ﬁ)u> Ha, (3.16)
acd \ByeJ

The definitions imply that both D and & are bi-linear operators: Ay ip(w) =
aA,(w) +bA,(w), A,(av + bw) = aA,(v) + bA,(w), a,b € R, for all suitable u, v, w;
A is either D or d. The operation £, (v) is linear in v for fixed u, but is not linear

in u. The equality D¢, (§a) = 4/ (g) £a—p shows that, in general D, (v) # D,(u). The

definition of the Skorokhod integral §,(f) has a built-in non-symmetry between the
integrator v and the integrand f: they have to belong to different spaces. This is
necessary to keep the definition consistent with (2.9). Similar non-symmetry holds
for the Ornstein-Uhlenbeck operator £, (v). Still, we will see later that d,(f) = d¢(u)

if both f and u are real-valued. If D,(v) is defined, then £,(v) = 8,(Dy(v)), but
L,(v) can exist even when D, (v) is not defined.

Next, note that §,(f) is a well-defined generalized random element for all u and f,
while definitions of D, (v) and £, (f) require additional assumptions. Indeed, ( ) =0
unless B < «, and therefore the inner sum on the right-hand side of (3.12) always
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contains finitely many non-zero terms. By the same reason, the inner sums on the
right-hand sides of (3.11) and (3.13) usually contain infinitely many non-zero terms
and the convergence must be verified. This observation is an extension of Remark
2.4, and we illustrate it on a concrete example. The example also shows that £, (v)
can be defined even when D, (v) is not.

Example 3.6. Consider u = v = W. Then D, (v) is not defined. Indeed,

if = >1
o = v = {0 =), k21, (3.17)
0, otherwise.

Thus, (Dy(v)),_ = 0if [ > 0, and (Dy,(v))

convergent series.

o = Zk21uk ® uy, which is not a

On the other hand, interpreting v as an R ® U-valued generalized random element,
we find

V2, a=2ek), k>1,

(0u(v)), = {0,

or, keeping in mind that v2&epy = Ha(&), 8, (W) = > k>1 Ha(&k). Note that
> k1 Ha(8k) € (8)o(R) for every £ < —1/2.

We conclude the example with an observation that, although Dy, (1) is not defined,

Ly, (W) is. If fact, (3.13) implies that L, (W) = W, which is consistent with (3.17)
and the equality L &o = |a|&q.

otherwise,

If either w or v is a finite linear combination of £,, then D,(v) is defined. The
following proposition gives two more sufficient conditions for D, (v) to be defined.

Proposition 3.7. (1) Assume that there exist weights ro, o € J such that
Zaej 2|a‘T;2||Ua||§< < 00 and Zaej T?xHUaHZ%{ < oo. If

Ta-i—ﬁ )

sup = bo < 00 (3.18)
Beg B
for every o € J, then D, (v) is well-defined and
1(Du(v)) e <2102 Y 282 uallx Y rllugly - (3.19)
BeJ BeJ

(2) Assume that there exist weights ro, o € J such that Y, r2]|vallk < oo and
Yaes 2 luallf < co. If

'8 = < 00 (3.20)

sup
BeJ Ta+pB

for every a € J, then D, (v) is well-defined and

I(Du(®) Nk <22 > ralloslix D 2Prg>lugllZ -
BeJ BeJ
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Proof. Using Zkgo (Z) = 2" we conclude that (Z) < 2" for all £ > 0 and therefore

()11

Z (a ; B) Vatp ® Ug

for all B € J. Therefore,

H(Du(v))aer@u -

BeJ xeu (3.22)
< 372 g gl x gl
BeJ
and the result follows by the Cauchy-Schwartz inequality. O

Remark 3.8. (a) If o, = q® for some sequence ¢, then both (3.18) and (3.20)
hold. (b) More information about the structure of u and/or v can lead to weaker
sufficient conditions. For example, if (uq,ug)y = 0 for o # B, and |Jually < 1,

2
then || (Du(v)) /[y ey
generalization of (2.6). Similarly, if (uq,ug)y = 0 for a # 3, then (L, (v))_, exists

for all € J and (L4(v)),, = <ZI@GJ (g) ||Ua—ﬁ’|z24) Var-

< oo if and only if Y75 (agﬂ)HvaJrﬁH%( < 00, which is a

Direct computations show that

(1) If w = W, with ueg) = w, and ug = 0 otherwise, then (3.11), (3.12), and
(3.13) become, respectively, (2.7), (2.9), and (2.11).
(2) The operators d¢, and Dy, are the creation and annihilation operators from
quantum physics [2]:
ka (ga) = VO ga—e(k% 5§k (ga) = Vvaog +1 ga—i-e(k).

More generally,

D, (€a) = \/@ o Bes(6a) = 1 ("‘ 5 ) Earsr Lea(6a) = (g) o
(3) T

v € Ly(F; X), f e L(F; X ®U), Du(v) € Lo(F; X ®@U), 8.(f) € L2(F; X), (3.23)
then a simple rearrangement of terms shows that the following analogue of
(2.5) holds:

For example, Dy(&y) = > s (:;) Uny—o o, and, if we assume that u and f

are such that d,(f) € La(FF; X), then E(g,yéu(f)) =D 0y (l) (Uy—ces fa)uu
=E(f,Du(&y),,

(4) With the notation Ho = V! &, De, (Ha) = i, Haery, 0¢, (Ha) = Hare),
and

Dy, H, = (a

) Ha-a. O (1) = Hocp (3.25)
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To conclude the section, we use (3.25) to establish a connection between the Sko-
rokhod integral é and the Wick product.

Definition 3.9. Let f be a generalized X -valued random element and n, a general-
ized real-valued random element. The Wick product f on is a generalized X -valued
random element defined by

fon=>" (Z (g)fa_ﬁnﬁ) o (3.26)

acJ \BeJ

The definition implies that fon=no f, (a0 &g =/ (o‘:ﬁ) forp, HaoHg=Hayg.
In other words, (3.26) extends relation (3.25) by linearity to generalized random
elements. Comparing (3.26) and (3.12), we get the connection between the Wick
product and the Skorokhod integral.

Theorem 3.10. If f is a generalized X -valued random element and 7, a general-
ized real-valued random element, then 8,(f) = fon. In particular, if n and 0 are
generalized real-valued random elements, then 6,(0) = dg(n) =no 0.

The original definition of Wick product [26] is not related to the Skorokhod integral,
and it is remarkable that the two coincide in some situations. The important fea-
ture of (3.26) is the presence of point-wise multiplication, which does not admit a
straightforward extension to general spaces.

Definition 3.9 and Theorem 3.10 raise the following questions:

(1) Is it possible to extend the operation ¢ by replacing the point-wise product
on the right-hand side of (3.26) with something else and still preserve the
connection with the operator 87 Clearly, simply setting f o u = §,(f) is not
acceptable, as we expect the ¢ operation to be fully symmetric.

(2) Under what conditions will the operator v — uowv be (a Hilbert space) adjoint
or (a topological space) dual of D,,?

(3) What is the most general construction of the multiple Wiener-It6 integral?

We will not address these questions in this paper and leave them for future investi-
gation (see references [21, 22] for some particular cases).

4. ELEMENTS OF MALLIAVIN CALCULUS ON SPECIAL SPACES

The objectives of this section are

are norms in the suitable sequence or Kondratiev spaces, the function C' is
independent of v, and A is one of the operators D, §, L.
e to look closer at D and 4 as adjoints of each other when (3.23) does not hold.

e to establish results of the type ||A4,(v)|la < C(||ulls) [|v]|e, where ||-||;, i = a, b, ¢

To simplify the notations, we will write Ly (X) for Lj ,(F; X).
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To begin, let us see what one can obtain with a straightforward application of the
Cauchy-Schwartz inequality. The first collection of results is for the sequence spaces.

Theorem 4.1. Let q = {qx, k > 1} be a sequence such that g, > 1 for all k and
> k1 1/ai < 00. Denote by V2q the sequence {\/2qp, k> 1}.

(a) If u € Ly (U) and v € Ly 34(X), then Dy,(v) € Lo(F; X ® U) and
12 _ o1\ /2
EIDu0)3ee) " < (Msa 1 =) " Mullipzan lollz, om0

(b) If u € Lié(l/l), fe LQ;(X @U), and 3, -, 2k /q? < oo, then 8,(f) € L7*

p 2,V/2q
an
ok 1/2
I6uP ezt pc0 < (22 ) Iellzyen 1 ccenn,

k>1 2k
In particular, if u € Ly ((U) and f € Ly (X @ U), then ,(f) € Ly 4(X).

(c) Ifu € Lié(U), v € Ly 5(X), and Y-, 28 /a3 < o0, then Ly(v) € L 1[

5 1/2 o 1/2
q
a0 < <H 2f1) (Z ?> 1l 102, a0

i1 Ik k>1

(X)

(X) and

Proof. (a) By (3.19) with rq = by = q~¢

(D)) o Bects < 472l N0l
The result then follows from (3.6).
(b) By (3.12), (3.21), and the Cauchy-Schwartz inequality,

1(8u(f)) (15 < 21 2"‘ZGl_wllﬁallmz,{Zq 2P ua—pli

B<a

and the result follows.
(c) This follows by combining the results of (a) and (b). O

Analysis of the proof shows that alternative results are possible by avoiding inequality
(3.21); see Theorem 4.3 below. The next collection of results is for the Kondratiev
spaces.

Theorem 4.2. (a) If u € (S)_1—¢(U) and v € (S)14(X) for some ¢ € R, then
D,(v) € (8)1—p(X @U) for all p > 1/2, and

1/2
1/2 1
IDL)(8), -, cxeen < (HW lullis) ..o Ivllsn. 0
k>1

(b) If w € (S)-14U) and f € (S)-14(X @ U) for some { € R, then ,(f) €
(S)-1.0-p(X) for everyp > 1/2, and

1/2
16 (F)l)-1.0px) < (Z(QN)_Q”“> lulls) 100 1f1ls) 1exern-

acJ
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In particular, if u € S_1(U) and f € S_1(X @U), then §,(f) € S_1(X).
(c) If u € (S)-1-e(U) and v € (8)104p(X) for some £ € R and p > 1/2, then

L.,(f) € (S)-1-p(X) and
) 1/2 1/2
(H 1 (Qk)—_2p> <Z <2N)_2pa>
k>1 acg

HUH%S),L,e(u) ||UH(S)1,e(X®M)-

1w (5)-1.0-px)

| A

Proof. To simplify the notations, we write rq = (2N)‘

( 1/2
(a) By (3.11), (Dy(v)) Zg( ks +ﬁ)> Vatrp ® ug. To get the result, use

r2 7’2 a!B!

triangle inequality, followed by the Cauchy—Schwartz inequality and (3.5).
(b) By (3.12) and the Cauchy-Schwartz inequality,

13u(5)). ||X§r—2a'2 ;,nfgnmuz To- o llua-sll

,6<a
and the result follows.
(c) This follows by combining the results of (a) and (b), because (S);,(X) C
(8)-1,(X). H

Let us now discuss the duality relation between é, and D,. Recall that (3.24) is
just a consequence of the definitions, once the terms in the corresponding sums are
rearranged, as long as the sums converge. Condition (3.23) is one way to ensure the
convergence, but is not the only possibility: one can also use duality relations between
various weighted chaos spaces.

In particular, duality relation (3.2) and Theorem 4.2 lead to the following version of
(3.24): if, for some £ € R and p > 1/2, we have u € (S)_1 s p(LI), v € (8)14p(X),
and f € (S)-14(X @U), then (8u(f), V)1.e4p = (f, Du(v))10

To derive a similar result in the sequence spaces, we need a different version of The-
orem 4.1.

Theorem 4.3. Let p, q, and ¢ be sequences of positive numbers such that
11 1

2 Y

— k>1. 4.1
pi qk Tk 1)

(a) If u € Loy(U) and f € Log(X @U), then 6,(f) € Lo (X) and

100 ()l o) < Nl 2oy @) 1 2oy (xs00)-

(b) In addition to (4.1) assume that

Yok < oo, (4.2)
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_ 1/2
Define C' = (Hk>1 z%) fu € Lyy(U) and v € Ly+(X), then D, (v) € L;;(X@
- k k ) b
U) and

IDu )11 ey < C a0l

Proof. (a) By (3.12),

18,0 = X | 2 () sl

~YeJ lla+PB=~

2

e

<3| S ()1t

~YeJ |la+PB=~

Define the sequence ¢ = {cx, k > 1} by ¢, = p2/q?, such that (1 + c_l)atza = g2
(14 ¢)*®* = p?*. Then

[ (Y _
||(5u(f)||2L27r(X) < Z ( Z (a) c/?%¢ a/2||fa||M®XHUﬁHL{ P
~veJ \a+B=~

By the Cauchy-Schwartz inequality and (3.8),

)
LAGIEESS ((Z (Z) c“) ( > < Clalioxllually v ﬁ))

yeJ acJ a+B=~
=2 (<1+C>”( S O falZoxlusll rzarzﬁ»
veJ otB=
=3 ST 4+ P fall lugll 26
YT a+PB=~
= (Z | fallZex (1+ c—1>at2a> <Z gl (1+ c)ﬁr2ﬁ>
= (Z | foell P p“) (Z lug|% q”) — 1 s 12l 0o

(b) By (3.11),

2
a+ 3 o
D) s oy = 32 || S ( )vaw@uﬁ -
acJ ||BeT XU
2
a+ 3 Con
< > ( 3 )Hvam”XHUﬁHM) g2
acg \BeJ

Define the sequence ¢ = {c¢;, k> 1} by ¢ = r2/p; < 1, such that
(C_l _ l)aq2a — p2a’ (1 _ C)aq2a — t2a‘ (43)
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Then

a+ 3 (e
IDu) et <Z(Z (*37) @i ﬁ/2||va+ﬁ||xqﬁ||uﬁ||u>

acd \BeJ

2

By the Cauchy-Schwartz inequality and (3.6),

D, (v )||2 Hxau) S > <Z (a;ﬁ) ) (Z a2 P lvaralk qQBHUﬂHu)

acJ \BeJ BeT
=@22<(1—c *) D sl a7 6 ug r|2>
acJ BeT
Z(”“ﬁ“uc o1 g <Z Jvasslea (1 - >‘(°‘+ﬁ)>>
J acJ

<C? (Z [ugllz (¢ = 1)%2") (Z Va3 (1 — c)“"q‘z”)
BeJ acg

= Ol 00 10121

where the last equality follows from (4.3). Note also that

> NesalBier < o2

acJ
and the equality holds if and only if 8 = (0). O
Together with duality relation (3.2), Theorem 4.3 leads to the following version of

(3.23): if u € Lap(U), f € Lag(X @U), and v € Ly (X), if the sequences p, q, t are
related by (4.1), and if (4.2) holds, then (8,(f),v). = (f, Du(v))q.

Here is a general procedure for constructing sequences p, g, t satisfying (4.1) and (4.2).
Start with an arbitrary sequence of positive numbers p and a sequence ¢ such that
0<c <land Y, . e < oo Then set 72 = ¢;p? and ¢2 = p?/(c;' —1). If the
space U is n-dimensional, then condition (4.2) is not necessary because in this case
the sequences p, g, t are finite.

The next result is for the Ornstein-Uhlenbeck operator.

Theorem 4.4. Let p, q, and ¢ be sequences of positive numbers such that

1 1\ [/, 1)
- G ——=)=1k>1, 4.4
(7“13 pi)('“ i 44

and also, pigt > 1, k> 1, >, ﬁ < oo. Ifu € Lyp(U) and v € Ly o(X), then
- k1k
L,(v) € Ly(X) and

1/2
2.2
prq
0l a0i) < (I | —_1> a0 1000 (45)

k51 P4
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Proof. 1t follows from (3.13) that

(L) 3 < (Z (P27) (5 ) omal sl )

Let h = {hg, k> 1} be a sequence of positive numbers such that that hy < 1, k >
1, 3, by < co. Define Cj, = [],(1 — hg)~Y/2. Then

1/2
Z <ﬂ+7) [vgallx |yl < (Z <ﬁj)’—7) h7> (Zb_7’|vﬁ+7||§(’|u7’|l%’>
¥

Y

1 1/2
:Ch (m) <Zb_7”v,@+‘7”2X||u‘YHZ2/{>
vy

Next, take another sequence w = {wy, k > 1} of positive numbers and define the
sequence ¢ = {cx, k> 1} by

1/2

1/2

Wi
- (4.6)
Then
2
6+7 o
Z 3 Vg1 | x|l |2y [[2s
(8% _
< <Z (5) ) (Z el <Zb 7||v5+7||x||u~,||u)>.
I B<a
As a result,
D (L) J5E** <C2Y e (1 4+ ¢) o uy |7
a ~
Z 2B (1 4 )P~ (B+) vgi~y %
I
> A1+ ) Puagl}
Then (4.5) holds if
2(1+c)
201 _ o we o il s AT
(1 + cr) T oom P o q, (4.7)

The three equalities in (4.7) imply (1 + ¢) = p2/ri, wp, = pi/qi, hx = 1/(piq}),
and then (4.4) follows from (4.6). Note that a particular case of (4.4) is qx = 1/7%,
p,;2 +1= 7‘,;2, which is consistent with Theorem 4.3 if we require the range of D, to
be in the domain of 4,,. O

Example 4.5. Let Y = X = R. Then a = n € {0,1,2,...}, &y i= &y = 28

§:=8u), u= 250Ul V=2 ns0Un€mn), [ = Dns0 fabn)s UniUn, fr € R To




20 S. V. LOTOTSKY, B. L. ROZOVSKII, AND D. SELESI

begin, take © = &. Then

- Z\/ﬁvn&”_l)’ 5u(f) = Z V1 + ]-fn-i-lg(n)a

n>1 n>0

Z nURE(n)

Next, let us illustrate the results of Theorems 4.3 and 4.4. Let p, ¢, r be positive real
numbers such that p~'+¢~! = r ~1 for example, p=q = 1, r = 1/2. By Theorem 4.3,
if > oo p"u? < oo and Zn>0 = < oo, then ) ., ( (v))iq_" <oo. If Y, S ptul <
oo and Y, o, q"f2 < oo, then > . " (5“(f))i < oo. If p,q,r are positive real
numbers such that (r=* —p™) (¢ —p~!) = 1 (for example, p =1, ¢ =2, r = 1/2)
and Y o p"ul < 00, >.,50¢"v2 < 0o, then, by Theorem 4.4, Y~ _ 7" (Eu(v))i < 0.

5. HIGHER ORDER NOISE AND THE STOCHASTIC EXPONENTIAL

Recall that the Gaussian white noise W on a Hilbert space U is a zero-mean Gaussian
family {W(h), h € U} such that E(W (g)W (h)) = (g, h)y. Given an orthonormal

basis {uy, k > 1} in U, we get a chaos expansion of W, W = > kst W ks = W(ug).
This expansion can be generalized to higher-order chaos spaces:

Z wH,, Z. = Z u®*H,,. (5.1)

0<|ex|<N || >0

We call ZN the N-th order noise and we call Z,, the infinite order noise;
clearly, W = Z,. For technical reasons, it is more convenient to work with the
un-normalized expansion using the basis function Ha.

In this and the following sections, we will work with sequence Kondratiev spaces
(8)p,q(X), defined in Section 3, and denote by || - ||,q4x the corresponding norm.
Recall that if f € (S),q(X) and f =3 ./ falq, then

1 17ax = D I fallia®™ (@), (5.2)

acJ

We also use the following notation: Y := @, U**. The collection {u®?, |8| > 0}
is an orthonormal basis in the space Y. It follows from (5.1) that Zy and Z,, are
generalized Y-valued random elements.

Next, we derive the expressions for the derivative, divergence, and the Ornstein-
Uhlenbeck operators.
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The derivatives D; and D, . If v = ) ., va Hq is an X-valued generalized
random element, then (3.14) implies

a+3)!

acg \0<|BI<N ’
a—+3)!

acJ \|B/>0 '

The divergence operators d, and d; . If f =3 (Z,B>0 fap ®u®5) H,

is an X ® Y-valued generalized random element, then the second equality in (3.15)
implies

6ZN(f) = Z Z fa—,@,,@ Ha, 6Zoo(f) = Z ( Z fa—,&,@) He. (55)

acJ |1BIEN acJ \0<B<La
0<B<Lx

Proposition 5.1. Assume that the sequence q is such that 0 < gy <1, ", g < oo.

Then &4, and § 5 are bounded linear operator from (S)_14(X @Y) to (8)_14(X).

Proof. 1t is enough to consider d,. Let f € (§)_14(X ®@Y). By (5.2),

1?1 axer = > Ifaslka®™ < oco.
a,BeJ

By (5.5) and the Cauchy-Schwartz inequality,

105 fI210x = Z Z 0% fappa”

acJ ||BLa

2

X

<> (Z qza—wufa_gﬂn%) (z qw>

acJ \BLlox B<a

< ( > ||fa7;a||§<q2°‘) (Z qw),

o,BeJ BeJ
and the result follows from (3.6). O

The OU operators L, and L . If vis an X-valued generalized random element
with expansion v =) ;v Hy, then (3.16) implies

PREED I D SR N (5.6)

acJ \0<|a—BI<N

‘CZOO(U) = Z (Z %: ) VaHe. (5'7)

acd \B<a
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Indeed, in (3.16) we have iy, = u®, |y| > 0, and (u®7,u®@P))y =1, 5. In
particular, each H, is an eigenfunction of £, , with the corresponding eigenvalue

|
Ma)=S" 2
20

Similarly, each He, is an eigenfunction of £, , with the corresponding eigenvalue

0<|a—B|<N
If N =1, then we recover the familiar result A\;(a) = ||, and if N = 2, then
Ao(@) = lal + ) o + > aglag — 1) = |af’.
k£l k
In general, though, Ay () # ||V if N > 2.

Next, we introduce the stochastic exponential &, and show that the random variable
&En 18, in some sense, an eigenfunction of every D, and, under additional conditions,
also of D .

Consider the complexification Uc of U. Given h = f+ig, i =+/—1, f,g € U, denote
by h* the complex conjugate: h* = f —ig. If hy = fi +ig1, ha = fo + igs, then

(h1, ho)ue = (f1, f2)u + (915 92)u + Z'((fzjgl)u - (f1>92)u)-

The Gaussian white noise W extends to Uc: if h = f+ig,, then W (h) = W (f)+iW (g).
Given h € Ug, consider the complex-valued random variable

& = exp (W(h) — (1)), (5.8)

also known as the stochastic exponential. It is a standard fact that the collection of
the (real) random variables &,, h € U, is dense in Lo(IF).

Writing
h = Z Zp Uk, 2k € (C, (59)

E>1
we get

En = exp (Z (24 & — (2 /2))) : (5.10)

k>1
Using the generating function formula for the Hermite polynomials and the notation
3 = (21,2,...), (5.10) becomes &, = > ., £ H, = & In other words, if the
emphasis is on the function h, then the stochastic exponential will be denoted by &,.
If the emphasis is on the sequence 3 from representation (5.9), then the stochastic
exponential will be denoted by &;.

Proposition 5.2. (a) For every N > 1, the random variable &, is in the domain of
D, and

n=1

N
D (&) = hy &, where hy = (Z h®”> . (5.11)
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(b) Let q = (q1,q2,...) be a sequence of positive numbers. If the function h with
expansion (5.9) is such that

|2kl g < 1 for all k and Z 21| ¢F < oo, (5.12)
k>1
then &, € (S)1,4(C).

Proof. (a) To prove (5.11), recall that Dy,He = 3! (g)Ha_ﬁ. Therefore,

Dy, (&n) = Z ﬁ Hop = 5°Ep. (5.13)
azf3

By (5.3), Dy (&) = (Z‘ﬁ‘SNg,Bu@B) En, which is the same as (5.11).

(b) The result follows from (3.6) and the equality ||Ex[|7 ,c = D acs 1317¥0°
U

Corollary 5.3. If ||hljy < 1, then the random variable &, is in the domain of D, _
and

D (&) = hoo En, Where ho = (Z h®"> : (5.14)
n=1

Proof. By definition of the norm in the space Y, |[hx||2 = 320, ||l As a result, if
[hllr < 1, then the series 02 | h®" converges in Y and > 07 | A" =37 5 3Pu®s
Equality (5.14) now follows from (5.4) and (5.13).

Corollary 5.4. Assume that ||hlly < 1, f € (S)-14(X ®Y), and 0 < ¢ < 1,
> kst @k < 00. Then, using notation (3.3),

(02, (F). &) = (f. Dz (En) = ({F: 1) hoc)y - (5.15)

Remark 5.5. (a) Since non-random objects play the role of constants for the Malli-
avin derivative, equalities (5.11) and (5.14) can indeed be interpreted as eigen-
value/eigenfuntion relations for Dy and D.

(b) Given a sequence 3, one can always find a sequence q to satisfy (5.12), for example,
by taking g = 27%"1/(|z| + 1).

If n € (S)_1,4(X), then we can define the X-valued function 7(3) = (1, &;)). The next
two theorems establish some useful properties of the function 7. Before we state the
results, let us introduce another notation: Given a sequence ¢ = (cy, ¢s .. .) of positive
numbers, K(¢) denotes the collection of complex sequences 3 = (z1, 29, . . .) such that
2z € C and |z;| < ¢ for all k£ > 1:

K(c)={3=(a1,2,..) | % €C, || <cx, k>1} (5.16)

Theorem 5.6. Ifn = > _noaHa € (S)-

(8)-1,4(X) then there exists a region K(c) such
that & € (S8)1,4-1(C) for 3 € K(c) and 1(3)

(n, &) is an analytic function in K(c).

‘Q
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Proof. In the setting of the theorem, (3.3) implies 7(3) = > c;Ma3%, which is a
power series and hence analytic inside its region of convergence. By the Cauchy-
Schwartz inequality,

[(3)” < (Z !|ua!|§<q2°‘> (

acJ

> %) : (5.17)

acJ

According to (3.6), the right-hand side of (5.17) is finite if |z;| < ¢ for all k£ and
Soelal?/ad < 1, for example, if |z < 27%7'g, := ¢,. With this choice of the
sequence ¢, the function u is analytic in K(c). O

Theorem 5.7. Let q = (q1,qz, - . .) be a sequence such that 0 < ¢, <1 and Y-, ¢i <
1, and let X be a Hilbert space. N

(a) Ifn =3 e Natla € (8)-1,4(X), then(3) = > qcs Nad™ is an X -valued analytic
function in the region K(g?) and

1/2
~ 1
sup |[7(3)[|x < <H 1 _q2> 171l -1.9.x- (5.18)

3€K(9?) k>1 k

(b) If 1 =3 ner Nad™ is an X-valued function, analytic in K(q) and such that

sup [|7(3)|lx < B, (5.19)

3€K(q)

then 1 =73 csNala € (S)-1,¢2(X) and

1/2
1
||77||—1,q2,X§<H1_ ) B. (520)

k>1 T

Proof. (a) If |z| < ¢?, then, by the triangle inequality, followed by the Cauchy-
Schwartz inequality,

1/2
7Gx <> Imallx 3% < lnll-1.4.x (Z q2“> ,

acJ acJ
and then (5.18) follows from (3.6).

(b) Inequality (5.19) and general properties of analytic functions imply ||74]x q* < B
for all @ € J, which is derived starting with a single complex variable and applying
the Cauchy integral formula, and then doing induction on the number of variables;
see [4, Lemma 2.6.10]. After that,

021 = D Mnald = D (Inallia®) a2 < B2 a2,

acJ acJ acJ

and (5.20) follows. O
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6. STOCHASTIC EVOLUTION EQUATIONS DRIVEN BY INFINITE-ORDER NOISE

The results of the previous sections allow us to develop basic solvability theory in
the sequence Kondratiev spaces (S)_1,4(X) for stochastic equations driven by Z.
In what follows, we assume that 0 < ¢ < 1 and ), ¢¢ < 1 for some p > 0. Since
a smaller sequence ¢ corresponds to a larger space (S)_14(X), there is no loss of
generality.

6.1. Evolution equations. To begin, we introduce the set-up to study evolution
equations. Let (V, H, V') be a normal triple of Hilbert spaces and

V(T) = Lo((0,T); V), H(T) = L2((0,T); H), V(T) = L2((0,T); V). (6.1)

Let A(t) : V — V' and M(t) : V — V' ® Y be bounded linear operators for every
t€0,T]. Givenv € V, M(t)v = 3_ 550 va(t)@u®P and we define Mg(t)v = vg(t) =
(M(t)v,u®P)y, |8| > 0. Recall that Y = @, U®".

The objective of this section is to study the stochastic evolution equation
t
u(t) = u’ +/ (A(s)u(s) + f(s)+0,_ (M(s)u(s)))ds, 0<t<T, (6.2)
0

where u® € |J,(S)-1,90(H), f €U, (S)-1,4» (V' (T)).

To ensure that Mn € [J,(S)-1,;»(V/(T) @ Y) for every n € |J,(S)-1,4»(V'(T)), we
impose the following condition.

Condition (ME): There exists a sequence b = (by,bs,...) of positive numbers such
that, for every v € V(T') and every multi-index o, |af > 0,

IMovllvrzy < 6%[[v]lvry.- (6.3)

Remark 6.1. To consider a more general noise Z% = Z\a\>0 agHgu®P, ag € R, in
equation (6.2), it is enough to replace Mg with ag Mg.

Recall the following standard definition.

Definition 6.2. A solution of equation

U(t) =U + /Ot A(s)U(s)ds + /Ot F(s)ds, (6.4)

with Uy € H and F € V'(T), is an element of V(T') for which equality (6.4) holds in
V'(T). In other words, for every v from a dense subset of V,

U(t),v] = [UO,U]—I—/O [A(S)U(s),v]d8+/0 [F(s),v]ds (6.5)

for almost all t € [0,T]. In (6.5), [-,-] denotes the duality between V and V' relative
to the inner product in H.

Definition 6.3. The solution of equation (6.2) is an element of |, (S)-1,¢»(V(T))
with the following properties:
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(1) There exists a region K(c) inside which the function u(3) = (u,&,)) is defined
and analytic with values in V(T');
(2) For every 3 € K(c), the following equality holds in V'(T'):

(u(t), &) = (u, &) + / (A(s)u(s)), E)ds + / (F(s). E)ds
0 0 (6.6)

+/0 (o, (M(S>u(5))753))ds,

Remark 6.4. (a) The solutions from both Definition 6.3 and Definition 6.2 are ex-
amples of variational solutions. The key feature of the variational solution is the use
of duality to make sense out of the corresponding equation. In particular, in (6.5),
the duality is between V and V’, while in (6.6) the duality is between (8)_1,g» (V(T'))
and (S)1,4-(C). (b) Theorem 5.7(a) and assumption u € [J,,(S)-1,4(V(T)) ensure
existence of a region K(c¢) inside which the function w is analytic.

The following theorem gives a characterization of the solution in terms of the chaos
expansion.

Theorem 6.5. A V'(T")-valued generalized process u(t) =) ua Ha is a solution of
(6.2) if and only if the collection {ua(t), o € J} is a solution of the system

t t
(o) (t) = u(o) +/ Au(o)(s)d5+/ foy(s)ds, || =0,

) = ug, +/Aua ds—l—/fa )ds + Z /Mg S)ua-g(s)ds, |af > 0.
0<B<a
(6.7)

Remark 6.6. The system of equations (6.7) is called the propagator corresponding

o (6.2), and is solvable by induction on |a|: once every uqs(t) is known for all
with |a| = n, then all uy(t) corresponding to || = n + 1 can be recovered. Each
equation of the system is of the type (6.4), and its solution is understood in the sense
of Definition 6.2.

Proof of Theorem 6.5. With no loss of generality, we can assume that ), |2? <
1. By Corollary 5.3, D4(&;) = hao(3)E;, where hoo(3) = Yoo h®"(3) and h(3) =
> w2k w. Then (5.15) implies

i(t:3) = / A(s)i(s33)ds + /Ot«f(S),S;,))ds
n / (M(s)7(5:3). ho(3)) d.

By the definition of the operators M’@,

(M(s)u(s;3), = > 5"Mp(s)u(s:3), (6.9)

18|>0

(6.8)

and condition (ME) ensures convergence of the series on the right-hand side in a
suitable region K(c).
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Define the operator D§ by D§F(3) = 4 8‘;‘;(2’) . Representation u(t;3) =

3=0
Y o Ua(t)3® and analyticity of u(t;3) imply ua(t) = D§u(t;3) Application of D§
to both sides of (6.8) results in (6.7).
This completes the proof of Theorem 6.5. O

When N = 1, equation (6.2) was investigated in [12]. In particular, it was shown
that (6.2) with N = 1 includes as particular cases a variety of evolution equations,
ordinary or with partial derivatives, driven by standard Brownian motion, fractional
Brownian motion, Brownian sheet, and many other Gaussian processes.

Let us illustrate possible behavior of the solution of (6.2) for N > 1 when U =V =
H=V'"=R, so that Zy = Zszl Hy(¢) for a standard normal random variable &.

First, let us take N = 2 and consider the equation u(t) = 1 +f(f 8, (Mu(s))ds, where

M; = 0, and M, = 1. Direct computations show that u(t) = 1+ > 7, %Hgk(f).
Using Stirling’s formula, we conclude that the second moment of the solution blows
up in finite time:

Eu’(t) =1+ t%]i%)! ~ ) (2t = tooif t > 1/2.

12
E>1 () E>1

Next, let us take N = 4 and consider the equation u(t) = 1 + fot 8, (Mu(s))ds,
where Mk =0, k= 1,2,3, and My = 1. Direct computations show that u(t) =

L+ 00,5 H4k( ). Using Stirling’s formula, we conclude that the second moment of
the solutlon is infinite for all ¢ > 0:

12k 4k: 166\ 2
1+Z Z<?) 2P = 1ooif t > 0.

k>1 E>1

More complicated example involving stochastic partial differential equations are given
later in the section.

To prove existence and uniqueness of solution of (6.2), we impose the following con-
ditions on the operator A.

Condition (AE): For every Uy € H and F € V'(T), there exists a unique function
U €V that solves the deterministic equation

oU(t) =A)U(t) + F(t), U(0) = Uy (6.10)

and there ezists a constant Cy = Cy (A, T) such that ||Ullyry < Ca(||Uollu +

HF||V/(T)). In particular, the operator A generates a semi-group ® = &, 4, ¢t > s >0,
and

t
U(t) = &.0Up +/ ®, F(s)ds.
0

Remark 6.7. There are various types of assumptions on the operator A that imply
condition (AE). In particular, (AE) holds if the operator A is coercive in (V, H, V’):
[A(t)v,v] +7|[v||} < C|lv||% for every v € V, t € [0,T], where v > 0 and C' € R are
both independent of v, t.
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The following is the main result about existence, uniqueness, and regularity of the
solution of (6.2).

Theorem 6.8. Assume that conditions (AE) and (ME) hold, u° € (S)_14(H),
f € (8)-1,4(V(T)), and assume that the sequence q = (qi,qs,...) has the follow-
g properties:

a o 1
0<qk<1,2qk<1,C’o::qu <o (6.11)
k>1 acJ
where the number C'y and the sequence b are from conditions (AE) and (ME), respec-
tively. Define the number Cy =[], (1 — qi)~"/%.
Then equation (6.2) has a unique solution in |, (S)-1,q»(V(T)). The solution is an
element of (S)_1,4(V(T)) and
CaC? .
[wll—1,qv() < m@u [y ||f“—17q7V’(T))' (6.12)

Remark 6.9. Analysis of the equation du = u,,(dt + dw(t)) on the real line with
initial condition u°(z) = e~*"/2 shows that the conclusion of the theorem is sharp

in the following sense: if p > —1, then, in general, one cannot find a sequence ¢ to
ensure that the solution of (6.2) belongs to (S), (V(T')); see [10] for details.

Proof of Theorem 6.8. Define the functions u°(3) = > ,c;ua3% flt3) =

> acy fa(t)3®. By Theorem 5.7(a), both u° and f are analytic in K(q%). For fixed
3 € K(g?) consider the following deterministic equation with the unknown function

u(t; 3):
u(t;3) = u(3 /A t;,ds—l—/ftg

+> 3 /MB 3) ds.

18>0

(6.13)

The sum in B is well defined because of inequality (6.3) and the assumptions on g.

If u € U,(S)-1,4 (V(T)), then, by Theorem 5.7(a), the corresponding function u =
Y o Uad®™ is analytic in some region K(c). We already know (see (6.8) and (6.9)) that
if u is a solution of (6.2), then @ is an element of V(T") and satisfies (6.13). Therefore,
to prove the theorem, we need to show that (6.13) has a unique solution and to derive
a suitable bound on |||y ().

Condition (AE) implies the following a priori bound on ||u(-;3) ||y (7):
sl < Ca ([T @+ 1708+ Y P Mal)si3) e ).

IBI<N

By the triangle inequality and (6.3),
3wy < Ca(IT @l + 1763 v + Collit:3)lven)
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or
~ C - =
fi:3) v < =g (TGl -+ 17l (6.14)

Applying a fixed-point iteration, we conclude that equation (6.13) has a unique solu-
tion in V(7T') and (6.14) holds.

By Theorem 5.7(a),

sup [[u°(3)[|m < Cil|u®|-1,qm and  sup [|f(:53)[viry < Cillfll-1.qvi)-
3€K(q2) 3€K(q2)

Therefore, (6.14) implies

N C1Cy
sup [[@(53) vy €~

u’l|—1,qm || f —,,V'T>.
3€K(q?) 1—COCA<H I L,q 1Al 1,q,V/(T)

By Theorem 5.7(b), we conclude that u(-;3) corresponds to an element u €
(8)-1,4 (V(T)) and (6.12) holds.

This completes the proof of Theorem 6.8. O

Corollary 6.10. Standard results about deterministic evolution equations imply that,
in the setting of Theorem 6.8, we have u(t) € (S)_1,q(H) for every t € [0,T].

If both u® € H and f € V/(T') are non-random, then, of course, u € 1, (8),q(H)
and f € (N, ,(S)pq (V/(T)) for every sequence q. Nonetheless, it was shown in [10]
that, in general, the solution of (6.2) with N = 1 will not be an element of any
space smaller than (S)_y ¢ (V(T)) for some sequence q with 0 < ¢; < 1. Moreover,
conditions of the type (6.11) are in general necessary as well ([12, Proposition 4.8]).

The attractive special feature of equation (6.2) with deterministic input is that the
solution admits a representation in multiple Skorohod integrals of deterministic ker-
nels:

Theorem 6.11. Consider equation (6.2) and assume that u® € H and f € V'(T)
are non-random. Assume that the operators A and M satisfy conditions (AE) and
(ME), respectively, and let q be a sequence satisfying (6.11). Define the sequence
U,=U,(t),n>0,tel0,T], by

t
Uo(t) = ugy(t) = you® + / By, f(s)ds,
0

Upsa(t) = /Ot D, 0N (qM(s)Un(s))ds, n >0,

where (ql\/I)

Proof. By (6.7) with u2, = 0 and fo = 0 for |a| > 0,

qo‘ua(t):/o A(q%ua(s))ds + Z /Oqﬁl\/[g(qo‘_ﬁua_g(s))ds.

0<B<Lx
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Therefore, for n > 0,

CAD DS /0 Dy (M) 5 (Un1(5)) gl

0<B<Lx

By (5.5),

t
Un(t) = / By 56, ({M(s)Un—1(s))ds,
0
and the result follows. O

Theorem 6.11 is a further extension of a formula of Krylov and Veretennikov (see [12,
Corolloary 4.10] for the case N = 1 and [8] for the original result).

As a first application of Theorem 6.8, consider the equation

u(t, ) = (a(x) ou(t,x)) + f(t,x), t >0, v €R, (6.15)
where a(z) = ¢ The function a = a(z) is known as the positive noise process
and has a representation a(r) = > . ;e*(r)Hq/al!, where {ex(z), k > 1} are the
Hermite functions; see [4, Section 2.6] for details. Equation (6.15) can model diffusion
in a random media with very irregular diffusion coefficient.

By Theorem 3.10, equation (6.15) is a particular case of (6.2), with Av = v,,,
Mav = (e*v,) /a!. Properties of the Hermite functions imply that sup, |ex(x)] < C,
sup, |e}(z)| < C.k for some constant C, independent of k, and therefore condition
(ME) can be satisfied by taking b, = Ck, C' = max(2,C,). Then Theorem 6.8 gives
a Hilbert-space version of the result of Gjerde (see [4, Theorem 4.7.4]). Theorem 6.8
also makes it possible to consider more general diffusion coefficients a = a(x) of the
form a(x) = ) .7 @a(r)Ha where a(gy() is a strictly positive bounded measurable
function, and each aq(x), || > 0, is a continuously differentiable function such that
sup, |aa ()| + sup, |a,(z)] < b* for some positive sequence b. Extensions to z € R?
and a matrix-valued function a = a(zx) are straightforward.

As a motivation of another application of Theorem 6.8, let us consider the following
three equations:

du = Uy dt + oudw(t), (6.16)
du = Uydlt + o u, dw(t), (6.17)
du = Uy dt + 0 Uy, dw (). (6.18)

In all three equations, w is a standard Brownian motion, ¢ is a positive real number,
x € R, and, for simplicity, u(0,z) = e~**/2_ Note that all three equations are solvable
in closed form using the Fourier transform. In particular, it is known that

(1) for equation (6.16), E||u(t, -)||2L2(R) < oo for all t > 0 and all o > 0;

(2) for equation (6.17), if 0® < 2, then Elju(t, )|, < oo for all ¢ > 0; if
o? > 2, then E|u(t,)||7,@ < oo for t <1/(¢® —2) and, for t > 1/(c” - 2),
u(t) € (8)o,q(L2(R)) with ¢i = 2/0 for all k, (see [9, Theorem 4.1]);
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(3) for equation (6.18), Elu(t, ~)H%2(R) = oo for all £ > 0 and o > 0, and u(t) €
(S)-1,q(L2(R)), for a suitable sequence q (see [10, Section 2]).
All these results are consistent with the conclusions of Theorem 6.8.

To proceed, recall that the standard Brownian motion on [0, 7] has a representation
w(t) =Y My(t) &, (6.19)
k>1

where &, k > 1 are iid standard Gaussian random variables, M;(t) = fot my(s)ds,
and my, k > 1, are the elements of an orthonormal basis in Ly((0,7)).

We now modify (6.19) as follows. For an integer n > 1, define the process w(" =
wll(t), ¢t € [0,T] by

wih =" M () Ha ().

k>1
Clearly, w!" = w. From Parseval’s identity
t 2 t
S OMAt) =) ( / mk(s)ds) - / ds =t (6.20)
E>1 g>1 0 0
we conclude that w™ is well-defined for all n > 1 and ¢ > 0, with Ew™(¢) = 0 and
2
E(w["] (t)) = (n!)t. Figure 1 presents sample trajectories of w!™ for n = 1,2, 5.
Detailed analysis of the process w!™, while potentially an interesting problem, is
beyond the scope of this paper.
Let us replace w with w[™ in equations (6.16)-(6.18):
du = g dt + o udw!™(t), (6.21)

du = ugpdt + o uzdw™ (1), (6.22)
du = Uy dt + 0 Uzedw™(t), (6.23)

and investigate how the properties of the solution change with n. All three equations
can be written as

du = Ugydt + 0 Pudw™(t), 0 <t <T, u(0,2)=e"/? (6.24)
where oY =1, 9P = 9 /0xP, p=1,2.

To define the stochastic integral with respect to w!™ we use the divergence operator
d; and the setting of Theorem 6.8 with U = L,((0,7)), V = H'(R), H = Ly(R),
V'= HY(R), A = 9%/0x?,

M(t) = omg(t)oP if B = ne(k),
P 0 otherwise.

By Theorem 6.8, there is a unique solution of (6.24) for every p = 0,1,2, 0 > 0 and
T > 0, and, with a suitable sequence q, |Ju(t, ~)H2_17q7L2(R) < oo for all £ > 0. In what
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FIGURE 1. Sample trajectories of the process w!”

4.5

follows, we show that this result can be improved and the solution of (6.24) has the
following properties:

o u(t,") € (8)_1+2-p)/nq(L2(R)) for a suitable sequence g;
o if p =0, then Elfu(t, )||7,, < oo for t < 1/(40?).

If U ="U(t,y) is the Fourier transform of u, then

dU = —y*Udt + o (iy)? U dw!™(t), U(0,y) = e ¥"/2. (6.25)
As a result, to solve (6.25), we first need to solve

t

X(t) =1 +/ b X (s)dw™(s), beC.
0

By Theorem 6.5, X (t) =)

acy Xa(t)Ha, where

X =1, Xa(t) =3 tazn [ DM Xy (s)ds. (620

With the notation M*(t) = [], My*(t), the solution of the system (6.26) is X0 =

bl M (t) /al, X = 0 otherwise. This can either be verified by direct computation or
derived by noticing that the system of equation satisfied by the functions xo = X,a
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is the same as the propagator for the geometric Brownian motion. As a result,

X(t) = Z M H,e.

ol
acJ

alel (iy)plel pre(t)
acJ ‘ al H

it NPty = N2 e
_ —y2(142t)/2, 2p|e 2la 7 200 q>"*(na)!
Z(/ y dy) M0 (e e

Then U(t,y) = e ¥ /2e ¥t 3" nee- By the Fourier isometry,

acJ
Since
N+1
e—y2(1+2t)/2| Ny = 2TV (55
. ylay (14 2t)(N+D/2
we find
2led 9plad+1)/2 (%) 2rna
g7 (na)!
e, P g ey = D s MO e
= (1 4 2t)@ple+1)/ (a!)?((na)!)r
Equation (6.21) (p =0)
If n = 2, then

lut 2 20 = % ; (25) 02“M2°‘(t)((;;$- (6.27)

It follows that u(t,-) € (S)oq(H), 0 <t < T, for every sequence ¢ with

ar < 1/(20VT). (6.28)

In particular, E||u(t, )HL ) <ooift < 1/(40?%). Indeed, using (3.21) and T'(1/2) =
VT,

27T [e3 (a3 {03
lea(t )2 g 2oy < V2742 o S (@20)2 1 (1) g
and then (6.20) and (3.6) imply that the right-hand side of the last equality is finite
if (6.28) holds. This argument also leads to an upper bound on the blow-up time ¢*
of Ellu(t, -)||7,@): since (2a)! > (a!)?, we have t* < 1/0>.

If n > 2, then factorial terms dominate the right-hand side of (6.27). As a result,
we cannot take p = 0, and it becomes more complicated (and less important) to find
the best possible sequence q. Accordingly, we assume that q is such that ¢, > 0 and
> . @k is sufficiently small, and will concentrate on finding the best p.

With Stirling’s formula not easily applicable to a!, we will use the inequalities

ol
al <l|all < —,
qa
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where the first one is obvious and the second follows from the multinomial formula

! n!
(Za) -3 e
k |la|=n
Then
(na)! (nla])! g
(a)?((na)l)e = (le]))*((n]ax])t)?
A very rough version of the Stirling formula N! ~ NV shows that the term |cr|!*!
will have ¢ = 0if n —2—np =0orif p =1—(2/n). By (3.6) convergence of the
remaining geometric series can be achieve by choosing ¢, sufficiently small. As a
result, u(t,-) € (S)-14@2/n),q (L2(R)) if r > n 4 4.

Equation (6.22) (p =1)

—(np+2), (6.29)

Since the function I'(z) is increasing for x > 2,

(lof =11 <T (%)

Using (6.29), we conclude that u(t,-) € (S)_14(1/n),q- (L2(R)) if 7 > n + 4 and ¢, are
sufficiently small.

< |a|! when |ee| > 3.

Equation (6.23) (p = 2)

Since the function I'(z) is increasing for = > 2,
4 1
(2la| - 1) <T <%) < [2a! when |a| > 2.

Using (6.29), we conclude that u(t,-) € (S)_1,4(L2(R)) if 7 > n + 4 and g are
sufficiently small.

6.2. Stationary equations. Let V' and V'’ be two Hilbert spaces such that V is
densely and continuously embedded into V’. Let A : V — V' and M(¢) : V —
V' ® Y be bounded linear operators. Similar to the time-dependent case, we define
the operators Mg : V — V', [8] > 0, by Mgv = (M(¢t)v,u®P)y, |8] > 0.

The objective of this section is to study the equation

Au=36, (Mu)+f, felJ(S)-1qa(V). (6.30)

Note that, similar to the evolution case, Remark 6.1 applies to equation (6.30).

Even though equation (6.30) was investigated in [13] in the particular case of de-
terministic f, the proofs in [13] are not easily extendable to more general f. On
the other hand, the tools developed in this paper work equally well for evolutionary
and stationary equations, with either deterministic or random input. In particular,
all theorems and proofs for stationary equations are identical to the corresponding
theorems and proofs for evolution equations. Below, we outline the main ideas and
leave the details to an interested reader.
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To ensure that Mn € J,(S)-1,¢- (V' ® Y) for every n € |, (S)-1,4-(V’), we impose
the following condition.

Condition (MS): There exists a sequence b = (by, b, ...) of positive numbers such
that, for every v € V and every multi-inder o, |a| > 0,

Mooy < b¥[|vf]v- (6.31)

The following is the stationary version of Definition 6.2.

Definition 6.12. The solution of equation (6.30) is an element of |J, (S)_1,4(V)
with the following properties:

(1) There exists a region K(c) inside which the function u(3) = (u,&,)) is defined
and analytic with values in V' ;
(2) For every 3 € K(c), the following equality holds in V'(T):

(Au &) = (8, (M(s)u). &) + (£. &) (6.32)
Note that Theorem 5.7(a) and assumption u € |, (S)_1,q(V) ensure existence of a
region K(¢) inside which the function @ is analytic.

The following theorem gives a characterization of the solution in terms of the chaos
expansion.

Theorem 6.13. A V'-valued generalized process uw = e Ho is a solution of (6.2)
if and only if the collection {us, o € J} is a solution of the system

Augy = fo), la| =0,
Aug =Y Mgt p+ fa & > 0. (6.33)
0<B<Lx

The proof is identical to the proof of Theorem 6.5.
To prove existence and uniqueness of solution of (6.2), we impose the following con-
dition on the operator A.
Condition (AS) The operator A has a bounded inverse A= : V' — V.
We denote by C'4 the operator norm of A~!.

The following is the main result about existence, uniqueness, and regularity of the
solution of (6.2).

Theorem 6.14. Assume that conditions (AS) and (MS) hold, f € (S)-14(V’), and
assume that the sequence q = (q1,qo, - - .) has the following properties:
[o s % 1
0<g<1 Y qe<1 Coi=) b% <& (6.34)
k>1 acJ

Define the number Cy = [],5,(1 —q)~ /2.
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Then equation (6.30) has a unique solution in |J, (S)-1,¢ (V). The solution is an
element of (S)_1,4#(V) and

C4C?

[ul|~1,q0v < m“fll—l,q,v' (6.35)

Proof. The steps are the same as in the proof of Theorem 6.14. First, we use (6.34)
to show that, for 3 € K(g?), the function u((z)) = ((u,&;) is the unique solution

of Al = Y 53" Mgt + [ and satisfies |[illy < Cal|fllv+/(1 — CoCla). Then (6.35)
follows from Theorem 5.7(b). O

Remark 6.15. The solution of equation v = 14+d¢(u), where £ is a standard Gaussian
random variable, is u = Y, Hi(§). This example shows that the conclusion of
Theorem 6.14 is sharp in the following sense: if p > —1, then, in general, one cannot
find a sequence ¢ to ensure that the solution of (6.2) belongs to (S),(V(T)). For
more examples of this kind, see [13].
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