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Abstract. It has been known for a while that a nonlinear equation driven by singu-
lar noise must be interpreted in the renormalized, or Wick, form. For the stochastic
Burgers equation, Wick nonlinearity forces the solution to be a generalized process no
matter how regular the random perturbation is, whence the curse. On the other hand,
certain multiplicative random perturbations of the deterministic Burgers equation can
only be interpreted in the Wick form, whence the cure. The analysis is based on the
study of the coefficients of the chaos expansion of the solution at different stochastic
scales.

1. Introduction

Burgers equation,

(1.1) ut + uux = uxx, t > 0, x ∈ R,

first suggested as a simplified model of turbulence (Bateman [1], Burgers [2, 3]) is
now used to study problems such as traffic flows (Chowdhury et al. [4]) and mass
distribution of the large scale structure of the universe (Molchanov et al. [5]). The
equation also appears in the study of interacting particle systems (Sznitman [6]).

Considering random initial condition and/or driving force in equation (1.1) is one
way to model and investigate turbulence. The idea goes back to Burgers himself and
the result is known as the Burgers turbulence. A popular option for the driving force is
additive space-time white noise Ẇ (t, x). Mathematical theory of the resulting equation,

(1.2) ut + uux = uxx + Ẇ (t, x)

has been developed (Bertini et al. [7]). A more general version of (1.2) with multi-
plicative noise,

(1.3) ut + uux = uxx + f(t, x) +
(
g(u(t, x)

)
x

+ h(u(t, x))Ẇ (t, x),

has also been studied (Gyöngy and Nualart [8]). It turns out that (1.2) cannot be
generalized much further while staying within the same mathematical framework, when
the solution of the equation is a square-integrable random variable with sufficiently
regular sample paths. In particular, equation

(1.4) ut + uux = uxx + uxẆ (t, x)

makes no sense, because the solution, if it existed, cannot be regular enough to define
the pointwise multiplications uux and uxẆ .
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Using the Wick product ¦ instead of the usual pointwise multiplication makes it
possible to study (1.4) and similar equations in the framework of white noise theory.
The operation ¦ was first introduced in quantum field theory (Wick [9]). In stochastic
analysis, the operation is essentially a convolution (Hida and Ikeda [10]), and is closely
connected with the Itô and Skorokhod integrals (Holden et al. [11, Chapter 2]). The
Wick version of (1.4),

(1.5) ut + u ¦ ux = uxx + ux ¦ Ẇ (t, x), x ∈ R,

has been studied (Benth et al. [12, Section 5.2, Example 2]), and is known to have a
solution in the space of generalized random processes. The tools of white noise analysis
and availability of generalized random processes make it possible to consider even more
singular noise than Ẇ , both additive (Holden et al. [13, 14]) and multiplicative (Benth
et al. [12]).

Our objective in this paper is to study the equation

ut(t, x) + u(t, x) ¦ ux(t, x) = uxx(t, x) + f(t, x)

+
∑

k≥1

(ak(t, x)uxx + bk(t, x)ux + ck(t, x)u + gk(t, x)) ¦ ξk,(1.6)

0 < t ≤ T, u(0, x) = ϕ(x), where {ξk, k ≥ 1} are independent identically distributed
(iid) standard normal random variables, T < ∞ is non-random, the coefficients ak, bk, ck

and the free terms f, gk are non-random, and x ∈ G, with

• G = R (whole line) or
• G = S1 (the circle, which corresponds to periodic boundary conditions).

Equation (1.6) includes (1.5) as a particular case because the space-time white noise
Ẇ (t, x) can be written as

(1.7) Ẇ (t, x) =
∑

k≥1

hk(t, x)ξk,

where {hk, k ≥ 1} is an orthonormal basis in L2((0, T )×R) (see, for example, Holden
et al. [11, Definition 2.3.9]). From the physical point of view, (1.6) is a natural random
perturbation of the original equation (1.1). Indeed, one possible interpretation of (1.1)
is the motion of a one-dimensional fluid, and then the basic laws of fluid dynamics
suggest a more general version of (1.1):

(1.8) ut + uux =
1

ρ
(µux)x +

1

ρ
F (t, x),

where ρ is the density of the fluid, µ is the (dynamic) viscosity, and F is the external
force (see, for example, Gallavotti [15, Section 1.2.2]). Thus, (1.1) is (1.8) with constant
µ and ρ. If µ is not known, then (assuming ρ is still constant) a possible approach is
to consider

(1.9) µ(t, x) = µ0 + εẆ (t, x), µ0 = const;

given the time and space scales of the model, one can choose ε > 0 small enough
to have the right-hand side of (1.9) positive with probability arbitrarily close to one.
Substituting (1.9) into (1.8) and using (1.7) (and interpreting all multiplications in
the Wick sense) leads to a particular case of (1.6) with ak = µ0 + hk, bk = ∂hk/∂x,
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f = ck = gk = 0. Note that we must interpret multiplications in the Wick sense: no
matter how small the ε is in (1.9), the equation ut = (1 + εẆ (t, x))uxx is ill-posed
path-wise. An extra benefit of this interpretation is preservation of the mean dynamic,
something we would never get with the usual Burgers equation. Indeed, a remarkable
property of the Wick product is that the (generalized) expectation of the product is the
product of expectations: E(u ¦ v) = (Eu)(Ev). As a result, the (generalized) expected
value U = Eu of the solution of (1.6) satisfies the usual Burgers equation

Ut + UUx = Uxx + f, U |t=0 = Eϕ.

The main results of the paper are as follows:

(1) If the functions ak, bk, ck, f, gk are non-random, bounded and measurable and
the initial condition ϕ is a generalized random field on G, then (under some
addition technical conditions on f and ϕ) there exists a unique generalized
process solution of (1.6);

(2) The Wick product u¦ux forces the solution of (1.6) to be a generalized process
even when the random perturbation is very well-behaved (such as ak = bk =
ck = gk = 0 for all k ≥ 1, and ϕ(x) = ξ1 h(x) for a smooth compactly supported
h).

Our approach to proving existence and uniqueness of solution is to derive the chaos
expansion of the solution of (1.6) and to establish explicit bounds on the coefficient of
the expansion. The proof has a combinatorial component due to the appearance of the
Catalan numbers. Mikulevicius and Rozovskii [16] use the same approach to study the
Wick-stochastic version of the Navier-Stokes equations.

The overall conclusion, which also explains the title of the paper, is that, while so-
lutions of any stochastic Burgers equation in the Wick form are generalized random
processes (even when the use of the point-wise multiplication leads to a classical so-
lution — whence the curse), certain random perturbations can only be considered for
the Wick form of the equation (because point-wise multiplication cannot be defined
— whence the cure). In our opinion, the cures (the ability to consider more gen-
eral stochastic perturbations, preservation of the mean dynamics, and an easy access
to the chaos coefficients of the solution) outweigh the curses (necessity to work with
generalized random elements and questions about physical interpretation of the model).

Although there are some similarities between our work and that of Benth et al. [12],
there are also several important differences:

(1) The random perturbations in (1.6) and in [12] are different and there is no
obvious way to reduce one to the other;

(2) The solution of (1.6) is global in time (can be constructed for all T > 0);
(3) The solution of (1.6) is constructed on an arbitrary probability space, not just

on the white noise space;
(4) Our analysis of the chaos expansion of the solution leads to more detailed

information about the solution space and can be used to compute the solution
numerically.

In Section 2 we outline the main constructions in the theory of generalized processes.
In Section 3 we define the chaos solution for equation (1.6) and state the main result
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about existence and uniqueness of solution (Theorem 3.3). We also show (Theorem
3.2) that the Wick product indeed forces the solution to be a generalized process. In
Section 4 we derive the propagator for equation (1.6) (the system of deterministic par-
tial differential equations describing the propagation of random perturbation in the
equation through different stochastic scales) and outline the proof of Theorem 3.3. We
also discuss briefly the general technical issues related to the study of (1.6) and similar
equations. The details of the proof of Theorem 3.3 are in Section 5.

Throughout the paper, we fix a probability space F = (Ω,F ,P) and a countable
collection of independent and identically distributed (iid) standard Gaussian random
variables ξ = (ξ1, ξ2, . . .) on F. We also assume that F is generated by ξ. By R and
C we denote the sets of real and complex numbers, respectively; C and C1 denote the
spaces of bounded continuous and bounded continuously differentiable functions (with
the derivative also bounded).

2. Gaussian polynomial chaos and the Wick product

We start with a review of some constructions from the white noise theory.

Definition 2.1. A generalized Gaussian chaos space is collection of the following four
objects (F, ξ, H, Q):

• A probability space F = (Ω,F ,P);
• a collection of iid standard Gaussian random variables ξ = (ξ1, ξ2, . . .) such that
F is generated by ξ;

• A separable Hilbert space H;
• An unbounded, self-adjoint positive-definite operator Q on H such that Q has

a pure point spectrum:

Qhk = qkhk, k ≥ 1,

the eigenfunctions hk of Q form an orthonormal basis in H, and the eigenvalues
qk of Q satisfy

(2.1)
∑

k≥1

1

qγ
k

< ∞

for some γ > 0.

Condition (2.1) ensures that the projective limit of the domains of Qn, n ≥ 1, is a
nuclear space.1 To simplify some of the future computations, we will assume that

(2.2) 1 < q1 ≤ q2 ≤ . . . and
∑

k

1

qk

< 1.

There is no loss of generality involved, as we can always replace the original operator
Q with cQγ, with c sufficiently large. By q we denote the sequence (q1, q2, . . .) of the
eigenvalues of Q.

1In the white noise approach, the dual of that nuclear space with the Borel sigma-algebra and a
Gaussian measure is the probability space. We are able to use an arbitrary probability space without
any topological structure. For us, the numbers qk are just weights to ensure convergence of certain
infinite sums.
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Example 2.2. (1) The traditional white noise constructions correspond to H = L2(Rd)
and Q = −∆ + |x|2 + 1. If d = 1, then qk = 2k. (2) Stochastic partial differential
equations in Rd correspond to H = L2((0, T )×Rd), Q = −∂2/∂t2−∆ + |x|2 + 1, with
periodic boundary conditions in time. (3) Stochastic partial differential equations in
domains or on a manifold correspond to H = L2((0, T ) × G), where G is a smooth
bounded domain or a smooth compact manifold in Rd, and Q = −∂2/∂t2 −∆, with
periodic boundary conditions in time and appropriate boundary conditions for the
Laplace operator ∆ on G.

Next, we review some of the notations related to multi-indices.
A multi-index α is a sequence α = (α1, α2, . . .) of non-negative integers, such that

only finitely many of αk are different from 0. The collection of all multi-indices is
denoted by J . By definition,

• β ≤ α if βk ≤ αk for all k;
• β < α if βk ≤ αk for all k and βk < αk for at least one k.

If β ≤ α, then α− β is the multi-index (αk − βk, k ≥ 1). For α ∈ J define

|α| =
∑

k

αk, α! =
∏

k

αk!.

Special multi-indices and the corresponding notations are (i) (0), the multi-index with
all zeros: |(0)| = 0; (ii) ε(k), the multi-index with 1 at position k and zeroes elsewhere:
|ε(k)| = 1.

For a sequence z = (z1, z2, . . .) of complex numbers and α ∈ J we write

zα =
∏

k

zαk
k , zrα =

(
zα

)r
, r ∈ R.

Here are some useful technical results.

Proposition 2.3. Let q = (q1, q2, . . .) be the sequence of eigenvalues of the operator
Q. Under the assumptions (2.2),

∑
α∈J

q−α

α!
= exp

(∑

k≥1

1

qk

)
,(2.3)

∑
α∈J

q−α =
∏

k≥1

qk

qk − 1
,(2.4)

|α|! ≤ qαα!.(2.5)

Proof. Define pk = 1/qk. To establish (2.3) and (2.4), note that, since limk→∞ pk = 0,
we have

exp
( ∑

k

pk

)
=

∏

k

epk =
∑
α∈J

∏

k

pαk
k

αk!
,

∏

k≥1

1

1− pk

=
∑
α∈J

∏

k

pαk
k .

To establish (2.5), let n = |α| and use the multinomial formula and (2.2) to find

1 ≥
(∑

k

1

qk

)n

=
∑

α∈J ;|α|=n

n!

α! q−α
.

This concludes the proof of Proposition 2.3. ¤
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By a theorem of Cameron and Martin [17], every F (ξ) ∈ L2(F) with values in a
(complex) Hilbert space V can be written as

(2.6) F (ξ) =
∑
α∈J

Fαξα,

where

ξα =
1√
α!

∏

k

Hαk
(ξk),

Hn(x) = (−1)nex2/2 dn

dxn
e−x2/2

and
Fα = E

(
F (ξ)ξα

)
.

Then
E‖F (ξ)‖2

V =
∑
α∈J

‖Fα‖2
V .

We denote by L(ξ; V ) the collection of all square-integrable V -valued functions F (ξ).
Next, we construct spaces of stochastic test functions and generalized random ele-

ments.

Definition 2.4. For ρ ∈ [0, 1] and ` ≥ 0,

• the space (S)ρ,`(V ) is the collection of Φ ∈ L2(ξ; V ) such that

‖Φ‖2
ρ,`;V =

∑
α∈J

(α!)ρq`α‖Φα‖2
V < ∞;

• the space (S)−ρ,−`(V ) is the closure of L2(ξ; V ) with respect to the norm

‖Φ‖2
−ρ,−`;V =

∑
α∈J

(α!)−ρq−`α‖Φα‖2
V ;

• the space (S)ρ(V ) is the projective limit (intersection endowed with a special
topology) of the spaces (S)ρ,`(V ), as ` varies over all non-negative integers;

• the space (S)−ρ(V ) is the inductive limit (union endowed with a special topology)
of the spaces (S)−ρ,−`(V ), as ` varies over all non-negative integers.

A stochastic test function is an element of (S)ρ(C) for some ρ ≥ 0.
A (V -valued) generalized random element is an element of (S)−1(V ).

Thus, every Φ ∈ (S)−1(V ) has a chaos expansion

(2.7) Φ =
∑

α

Φαξα,

and the coefficients Φα provide information about Φ at different stochastic scales (that
is, in the linear spans of ξα, |α| = n).

In the white noise theory, the spaces (S)−0(C) and (S)−1(C) are known, respectively,
as the spaces of Hida and Kondratiev distributions (note that indeed (S)−0 is not the
same as (S)0).

It follows from (2.5) that α! in the definitions of the spaces can be replaced with |α|!:
it will not change (S)ρ and (S)−ρ and will shift the index ` in the individual (S)±ρ,±`.
We will see below why the values of ρ are restricted to [0, 1].
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For Ψ ∈ (S)−ρ(V ) and η ∈ (S)ρ(C), define 〈Ψ, η〉 ∈ V by

(2.8) 〈Ψ, η〉 =
∑
α∈J

Ψαηα.

By the Cauchy-Schwarz and the triangle inequalities,

(2.9) ‖〈Ψ, η〉‖V ≤
(∑

α∈J
‖Ψα‖2

V (α!)−ρq−`α

)1/2 (∑
α∈J

|ηα|2(α!)ρq`α

)1/2

.

Let z = (z1, z2, . . .) be a sequence of complex numbers such that
∑

k≥1 |zk|2 < ∞.
The stochastic exponential of z is the random variable

E(z) =
∑
α∈J

zα

√
α!

ξα.

Direct computations using (2.3), (2.4) and the generating function formula for the
Hermite polynomials show that

(1) If
∑

k q`
k|zk|2 < ∞, then E(z) ∈ (S)ρ,`(C) for every 0 ≤ ρ < 1;

(2)
∑

k q`
k|zk|2 < 1, then E(z) ∈ (S)1,`(C).

Definition 2.5. The S-transform Φ̃ of Φ ∈ (S)−ρ,−`(V ) with chaos expansion (2.7) is

Φ̃(z) = 〈Φ, E(z)〉 =
∑
α∈J

Φα√
α!

zα,

defined for z such that E(z) ∈ (S)ρ,`(C).

Note that Φ(0) = Φ̃(0); Φ(0) is called a generalized expectation of Φ and even denoted
by EΦ, although it is clear from the corresponding definitions that a typical element
of (S)−ρ,−` for ρ, ` > 0 cannot have any moments in the usual sense.

The following is a (partial) characterization of the spaces S−ρ(V ) in terms of the
S-transform.

Theorem 2.6 (Characterization Theorem). (a) If Φ ∈ (S)−ρ,−` and 0 ≤ ρ < 1 then,
for every real sequences p and r, such that E(p) ∈ (S)ρ,`(C), E(r) ∈ (S)ρ,`(C), the

function f(z) = Φ̃(zp + q) is an entire function of z ∈ C.
(b) For 0 < R, ` < ∞ let

K`(R) =

{
z :

∑
α∈J

q`α|zα|2 < R2

}
.(2.10)

If Φ ∈ (S)−1(V ), then there exist R, ` such that Φ̃(z) is analytic in K`(R). Conversely,
if f = f(z) is a function analytic in K`(R) for some 0 < R, ` < ∞, then there exists

a unique Φ ∈ (S)−1(V ) such that Φ̃ = f .

Proof. (a) See Kuo [18, Theorem 8.10]. There is also a converse statement character-
izing entire functions with certain growth at infinity as S-transforms of elements from
(S)−ρ(V ).
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(b) See Holden et al. [11, Theorem 2.6.11]. Note that, given f = Φ̃, we recover
Φ =

∑
α Φαξα by

(2.11) Φα =
1√
α!

∂|α|Φ̃(z)

∂zα1
1 ∂zα2

2 · · ·
∣∣∣
z=0

.

¤
In what follows, we refer to K`(R) from (2.10) as a neighborhood of z = 0.
The significance of Theorem 2.6 is that it provides an intrinsic characterization of

the spaces (S)−ρ(V ) in terms of the S-transform and the spaces of analytic functions,
as opposed to the extrinsic characterization of Definition 2.4 using a particular or-
thonormal basis in L2(ξ; V ). We also see why the values of ρ are restricted to [0, 1]: for
ρ > 1, stochastic exponentials are never test functions, making it impossible to define
the S-transform.

Finally, we define the Wick product ¦ for two elements of (S)−1(C).

Definition 2.7. Given Φ, Ψ ∈ (S)−1(C), Φ¦Ψ is the unique element of (S)−1(C) such
that

(2.12) Φ̃ ¦Ψ(z) = Φ̃(z)Ψ̃(z)

An immediate consequence of (2.12) is a useful property of generalized expectations:

E(Φ ¦Ψ) =
(
EΦ

)(
EΨ

)
.

Formula (2.12) is motivated by the following property of the Wick product (which can
be traced back to the original paper by Wick [9]):

(2.13) Hm(ξk) ¦ Hn(ξl) =

{
Hm(ξk)Hn(ξl), if k 6= l;

Hm+n(ξk), if k = l.

Writing Hα(ξ) =
√

α!ξα, we conclude from (2.13) that

(2.14) Hα(ξ) ¦ Hβ(ξ) = Hα+β(ξ).

If
Φ =

∑
α

Φ̄αHα(ξ), Ψ =
∑

α

Ψ̄αHα(ξ),

then formal term-by-term multiplication using (2.14) implies

(2.15) Φ ¦Ψ =
∑

α,β

Φ̄αΨ̄βHα+β(ξ),

which is consistent with (2.12). Note also that if

Φ =
∑

α

Φαξα Ψ =
∑

α

Ψαξα,

then Ψα = Φ̄α

√
α! and

(2.16) Φ ¦Ψ =
∑

α,β

√
(α + β)!

α!β!
ΦαΨβξα+β,

which is not as convenient as (2.15).



WICK PRODUCT AND BURGERS EQUATION 9

3. Existence and uniqueness of solution

Let G = R or G = S1 (the circle, which corresponds to periodic boundary conditions
and which we identify with R/(0, π)). Denote by Hγ(G), γ ∈ R, the Sobolev spaces
on G and by ‖ · ‖γ the corresponding norms; H0(G) = L2(G). Recall that, for G = R,

‖f‖2
γ =

∫

R
(1 + y2)γ|f̂(y)|2dy,

where f̂ is the Fourier transform of f , and for G = S1,

‖f‖2
γ =

∑

k

(1 + k2)γ|fk|2,

where fk are the Fourier coefficients of f . Also recall that, by the Sobolev embedding
theorem, every element (equivalence class) from H1(G) has a representative that is
a bounded and Hölder continuous function on G. To avoid unnecessary technical
complications, we will simply say that if f ∈ H1(G), then f is bounded and Hölder
continuous, and supx∈G |f(x)| ≤ C‖f‖1 for some C independent of f .

Consider the equation

ut(t, x) + u(t, x) ¦ ux(t, x) = uxx(t, x) + f(t, x)

+
∑

k≥1

(ak(t, x)uxx + bk(t, x)ux + ck(t, x)u + gk(t, x)) ¦ ξk,

0 < t ≤ T, x ∈ G,

(3.1)

with initial condition u(0, x) ∈ (S)−1(L2(G)), where ξk are iid standard normal random
variables, and f, ak, bk, ck and gk are non-random measurable functions. To define the
solution we assume that f, gk ∈ L2((0, T )×G) and

(3.2) sup
t,x
|ak(t, x)|+ sup

t,x
|bk(t, x)|+ sup

t,x
|ck(t, x)|+ ‖gk‖L2((0,T )×G) ≤ qr

k

for qk from Definition 2.1 and some r > 0.

Definition 3.1. The process u ∈ (S)−1

(
(L2((0, T ); H2(G))

)
, is called a strong chaos

solution of (3.1) if there exist 0 < R, ` < ∞ such that, for all z = (z1, z2, . . .) ∈ K`(R)
and all t ∈ [0, T ], the equality

ũ(t, x; z) +

∫ t

0

ũ(s, x; z)ũx(s, x; z)ds = ũ(0, x; z) +

∫ t

0

ũxx(s, x; z)ds

+
∑

k≥1

∫ t

0

(
ak(s, x)ũxx + bk(s, x)ũx + ck(t, x)ũ + gk(t, x)

)
zkds

(3.3)

holds in L2(G).

The a priori assumption u ∈ (S)−1

(
(L2((0, T ); H2(G))

)
implies

〈u, η〉 ∈ L2((0, T ); H2(G))

for all η ∈ (S)1(C). The S-transform ũ of u is thus an element of L2((0, T ); H2(G)),
so that ũx ∈ L2((0, T ); H1(G)) and ũx ∈ L2((0, T ) × G). By the Sobolev embedding
theorem, ũ, ũx ∈ L2((0, T ); C(G)). Condition (3.2) ensures uniform in (t, x) convergence
of all infinite sums.
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The chaos solution is a variational solution in the space (S)−1

(
L2((0, T ); H2(G))

)
,

and the characterization theorem (Theorem 2.6) makes it possible to restrict the set
of test functions to stochastic exponentials. The resulting deterministic equation for
the S-transform (3.3) (which follows from (3.1) by the linearity of the S-transform
and the definition of the Wick product (2.12)) can be satisfied in a variety of ways
(classical, variational, viscosity, etc.) Our a priori assumptions on u allow us to satisfy
the equation for ũ in the strong sense, because all the necessary partial derivatives of
ũ in t and x exist as L2 functions. This is why the resulting solution of (3.1) is called
a strong chaos solution.

While our main objective is to establish existence and uniqueness of solution of (3.1),
we will start by showing that the space (S)−1 is indeed the natural solution space. In
other words, we should not expect the solution of (3.1) to belong to any (S)−ρ if ρ < 1.

Theorem 3.2. Let φ = φ(x), x ∈ R be a smooth compactly supported function and let
ξ be a standard Gaussian random variable. Then equation

(3.4) ut + u ¦ ux = uxx, 0 < t ≤ T, x ∈ R,

with initial condition u(0, x) = ξ φ(x) cannot have a solution that is an element of
(S)−ρ,−`(L2((0, T ); H2(R)) for some 0 ≤ ρ < 1 and ` > 0.

Proof. We will show that the S-transform ũ of u cannot be an entire function, as
required by Theorem 2.6 for u to be an element of (S)−ρ,`, ρ < 1.

By (3.3),

(3.5) ũt(t, x; z) + ũ(t, x; z)ũx(t, x; z) = ũxx(t, x; z),

ũ(0, x; z) = zφ(x); with only one random variable ξ, we have only one complex param-
eter z.

Equation (3.5) is the usual Burgers equation and has a closed-form solution via the
Hopf-Cole transformation (see Evans [19, Section 4.4.1]): writing F (x) =

∫ x

−∞ φ(y)dy,
we find

(3.6) ũ(t, x; z) =

∫ +∞
−∞ zφ(y) exp

(
− (x−y)2

4t
− zF (y)

2

)
dy

∫ +∞
−∞ exp

(
− (x−y)2

4t
− zF (y)

2

)
dy

.

This is a classical solution of (3.5) and leads to a classical chaos solution of (3.4); the
solution of (3.5) is unique in the class L2((0, T ); H2(R)) (see Biler et al. [20, Theorem
2.1]). If u(t, x) ∈ (S)−ρ,−`(R) for every t, x, then, by Theorem 2.6(a), ũ(t, x; z) must be
an analytic function of z for all t ∈ [0, T ], x ∈ R, z ∈ C. Since it is not immediately clear
from (3.6) whether the dependence of ũ on z is analytic, we will transform equation
(3.6) further by going back to the derivation of the Hopf-Cole transformation.

Consider the equation

(3.7) vt +
1

2
|vx|2 = vxx, 0 < t ≤ T, x ∈ R,

with initial condition v(0, x; z) = zF (x) = z
∫ x

−∞ φ(y)dy. Information about v leads
to information about ũ because of the relation vx = ũ. Note that F is a smooth
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bounded function. Direct computations (see [19, Section 4.4.1]) show that the function
V defined by

(3.8) V (t, x; z) = exp
(
− v(t, x; z)/2

)

satisfies the heat equation

(3.9) Vt = Vxx, V (0, x; z) = exp
(
− zF (x)/2

)
.

Equation (3.9) has a classical solution which is unique in the class of bounded twice
continuously differentiable functions. Interpreting the heat kernel as the normal den-
sity, the solution of (3.9) can be written as

(3.10) V (t, x; z) = Ee−zζ(t,x),

where ζ(t, x) = (1/2)F
(
x +

√
2w(t)

)
and w is a standard Brownian motion.

We are now ready to show that the function ũ from (3.6) cannot be entire (that is,
analytic for all z ∈ C). The argument goes as follows:

(1) The function V defined in (3.10) is an extension to the complex plane of the
characteristic function of a uniformly bounded non-degenerate random variable
ζ and is therefore an entire function of the form

(3.11) V (t, x; z) = V0(t, x; z)eg(t,x)z,

where V0(t, x; z) is an entire function with infinitely many zeroes (Lukacs [21,
Theorem 7.2.3]).

(2) Representation (3.8) then implies that the function v cannot be an entire func-
tion of z; otherwise V would have no zeroes;

(3) By uniqueness of solutions of (3.5) and (3.7) we conclude that vx(t, x; z) =
ũ(t, x; z), because both functions satisfy the same equation with the same initial
condition.

(4) By the fundamental theorem of calculus, v(t, x; z) = v(t, 0; z) +
∫ x

0
ũ(t, y; z)dy,

which means that if ũ were an entire function of z, so would be v(t, x; z) −
v(t, 0; z).

(5) If v(t, x; z)− v(t, 0; z) is entire, then, by (3.8), so is

V̄ (t, x; z) =
V (t, x; z)

V (t, 0; z)

and moreover, V̄ , as a function of z, has no zeros (because 1/V̄ corresponds
to v(t, 0; z)− v(t, x; z) and must be entire as well); then (3.11) and some basic
complex analysis imply

(3.12) V̄ (t, x; z) = h(t, x)ezf(t,x) or V (t, x; z) = V (t, 0, z)h(t, x)ezf(t,x).

(6) Finally, (3.12) and the equality ũ = −2Vx/V imply that (if we assume ũ is
entire, forcing v(t, x; z) − v(t, 0; z) to be entire, in turn forcing V to have the
form (3.12)) the solution ũ of (3.5) must be a linear function of z, which is
impossible and provides the required contradiction.

Note that the key step in the argument, namely, showing that the function V (t, x; z)
cannot have the same zeros in z for all x, can be carried out in several different ways.
This concludes the proof of Theorem 3.2. ¤
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Note that equation (3.4) without the Wick product,

(3.13) Ut + UUx = Uxx, U(0, x) = ξ φ(x),

has a classical solution which is a very regular stochastic process. Indeed, the solution
is given by the right-hand side of (3.6) with ξ instead of z, from which it immediately
follows that U(t, x) is a smooth function of (t, x) and

|U(t, x)| ≤ c1|ξ|ec2|ξ|

for some positive numbers c1, c2. That is, as a random variable, U has moments of all
orders. By contrast, the solution of (3.4) (provided it exists) is a generalized random
element from (S)−1(R). In other words, Theorem (3.2) delivers the “curse” part of
paper’s title: Wick product in the Burgers equation indeed forces the solution into the
largest space of generalized random elements. The following observation provides a bit
of relief: with all the nice properties of U , there is no easy way to get EU(t, x); on
the other hand, for the solution of (3.4), the generalized expectation ũ(t, x; 0) solves
the deterministic Burgers equation with zero initial condition and is therefore equal to
zero.

The next theorem delivers the “cure” part by establishing solvability of (3.1) in
(S)−1

(
L2((0, T ); H2(G))

)
For technical reasons, the conditions are slightly different for

G = R and G = S1; in particular, we have to consider the “homogeneous” case f = 0
when G = S1. We discuss these and other questions in the following section. Recall
that, for a generalized random element Φ, EΦ denotes its generalized expectation, and

EΦ = Φ(0) = Φ̃(0).

Theorem 3.3. Assume that

• condition (3.2) holds;
• u0 ∈ (S)−1,−`(H

1(G)) for some ` > 0 and Eu0 ∈ H2(G);
• If G = R, then also Eu0 ∈ L1(R) and f(t, x) = Fx(t, x) for a function F such

that both F and Fx are bounded and Hölder continuous in (t, x);
• If G = S1, then also f = 0.

Under these assumptions, equation (3.1) has a unique solution and there exists an
n > 0 such that

(3.14) ‖u‖2
−1,−n;L2((0,T );H2(R)) + sup

0≤t≤T
‖u(t, ·)‖2

−1,−n;H1(R) < ∞.

It turns out that the generalized expectation u(0) of the solution has special signifi-
cance. In particular, unlike the other chaos coefficients, u(0) and its partial derivative
in x have to be bounded continuous functions, and the conditions of the theorem ensure
that. This is yet another technical issue which we will discuss later.

Example 3.4. Let us apply Theorem 3.3 to the Burgers equation with random vis-
cosity

(3.15) ut + u ¦ ux =
((

µ0 + Ẇ (t, x)
)
ux

)
x
,

which was mentioned in the introduction as one of the motivations for investigating
(3.1). To concentrate on the effects of the noise in the viscosity, we assume that the
initial condition is a non-random smooth function with compact support.
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For the space-time white noise Ẇ (t, x), we have representation

(3.16) Ẇ (t, x) =
∑

k≥1

hk(t, x)ξk,

where {hk, k ≥ 1} is an orthonormal basis in L2((0, T )×G) (see, for example, Holden
et al. [11, Definition 2.3.9]). Then (3.15) becomes a particular case of (3.1) with
ak = µ0 + hk, bk = ∂hk/∂x, ck = gk = f = 0.

If G = R, then we take

hk(t, x) = hk1,k2(t, x) = mk1(t)wk2(x), k1, k2 ≥ 1,

where ml are normalized sines and cosines, and wl are Hermite functions (the standard
reference for Hermite functions is Hille and Phillips [22, Section 21.3]). In particular,
it is known that supx |wl(x)| ≤ cl−1/12 and therefore supx |w′

l(x)| ≤ cl5/12 (recall that
−w′′

l + (1 + |x|2)wl = 2lwl). Then (3.2) holds with ql = 2l, r = 1.
If G = S1, then we take

hk(t, x) = hk1,k2(t, x) = mk1(t)mk2(x), k1, k2 ≥ 1,

where ml are normalized sines and cosines. In this case supx |m′
l(x)| ≤ cl, and again

(3.2) holds with ql = 2l, r = 1.
As a result, we can apply Theorem 3.3 with ql = 2l in both cases, which is the

standard choice in the traditional white noise setting.
We can generalize the model further and introduce, in addition to the white noise

viscosity, a white noise random forcing and a white-in-space initial condition, with
arbitrary correlation between the three (by suitably parsing the sequence ξ for the
construction of the corresponding random term).

The eigenvalues of the type ql = (2l)r, r ≥ 1 work in most models. The option to
select other ql can help, for example, to deal with exotic stochastic forcing terms such
as

∑
k

(
ekt sin x

)
ξk.

This concludes Example 3.4.

4. Outline of the proof and further directions

Recall that our objective is to study the equation

ut(t, x) + u(t, x) ¦ ux(t, x) = uxx(t, x) + f(t, x)

+
∑

k≥1

(ak(t, x)uxx + bk(t, x)ux + ck(t, x)u + gk(t, x)) ¦ ξk,

0 < t ≤ T, x ∈ G.

(4.1)

By definition, the solution is a generalized random element with S-transform ũ satis-
fying

ũ(t, x; z) +

∫ t

0

ũ(s, x; z)ũx(s, x; z)ds = ũ(0, x; z) +

∫ t

0

ũxx(s, x; z)ds

+
∑

k≥1

∫ t

0

(
ak(s, x)ũxx + bk(s, x)ũx + ck(t, x)ũ + gk(t, x)

)
zkds.

(4.2)
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The most natural approach to proving existence and uniqueness of solution for (4.1)
is to prove existence and uniqueness of solution for (4.2). This approach is used, for
example, by Benth et al. [12]. Here are some of the reasons why we choose a different
approach:

• The complex-valued Burgers equation (4.2) is not easily handled by the Hilbert-
space methods (a major reason is that, for complex numbers, z2 6= |z|2), whereas
our goal is to get solvability in the Sobolev spaces Hγ.

• The Hölder spaces could be a natural choice for (4.2), but the available methods
lead either to existence that is local in time or require additional assumptions
about the initial conditions (in the form of smallness of certain norms). We
would like to avoid either of these restrictions.

• The problem of uniqueness of solution for (4.2) is non-trivial.
• Even if we succeed in finding ũ and proving that it is unique, there is still no

easy way to get any regularity information about the solution, such as estimate
(3.14).

Our approach is to get information about the solution from the chaos expansion. In
what follows, we will use the notation

(4.3) Hα(ξ) =
√

α! ξα

and an equivalent chaos expansion

(4.4) u =
∑
α∈J

uαHα(ξ).

By (2.15), representation (4.4) is more convenient for the computation of the Wick
product.

Our first step is to derive equations for the coefficients uα. As a bonus, we also get
an alternative way to prove uniqueness of solution.

By (2.11) (and keeping track of the factorial terms), we get the following relation
between the chaos coefficients uα from (4.4) and the S-transform ũ:

ũ(t, x, z) =
∑
α∈J

uα(t, x)zα.(4.5)

Before we proceed, let us introduce several notations. To reduce the number of sub-
scripts, it is convenient to rename the initial condition: u0(x) = ϕ(x), and to use
alternative notations for derivatives: u̇ = ut, and Du = ux. With the generalized
expectation u(0) having special significance (which also means frequent appearance in
complicated formulas), we re-name it as well: u(0) = u. Now we are ready to derive
the equations for uα.
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Theorem 4.1. The function ũ is a (strong) solution of (4.2) if and only if the chaos
coefficients {uα, α ∈ J } satisfy (also in the strong sense) the system of equations

u̇ + uDu = D2u, u(0, x) = ϕ(0)(x);(4.6)

u̇ε(k) = D
(
Duε(k) − uuε(k)

)
+ akD

2u + bkDu + cku + gk,(4.7)

uε(k)(0, x) = ϕε(k)(x);

u̇α = D
(
Duα − uuα

)−
∑

(0)<β<α

uβDuα−β(4.8)

+
∑

k:αk>0

(
akD

2uα−ε(k) + bkDuα−ε(k) + ckuα−ε(k)

)
,

uα(0, x) = ϕα(x), |α| > 1,

and there exists a p > 0 such that, for all α ∈ J ,

(4.9) ‖uα‖2
L2((0,T );H2(G)) ≤ qpα.

Proof. Note that (4.9) is equivalent to the condition u ∈ (S)−1(L2((0, T ); H2(G))).
Assume that ũ satisfies (4.2) and is an analytic function of z so that the series (4.5)

converges uniformly in (t, x, z) in some neighborhood of z = 0. We then substitute
(4.5) into (4.2), compare the coefficients of zα for each α, and get (4.6)–(4.8). Uniform
convergence ensures that all manipulations are legitimate.

For the proof in the opposite direction, we reverse the above argument. If (4.9)
holds, then the series (4.5) converges uniformly in (t, x, z) in some neighborhood of
z = 0. We then combine equalities (4.6)–(4.8) into power series and get (4.2).
This concludes the proof of Theorem 4.1. ¤

The system of PDEs (4.6)–(4.8) is called the propagator for equation (4.1) and
describes how the stochastic equation propagates chaos through difference stochastic
scales. Note that this propagation of chaos has no connection with the similar term
used for deterministic equations in the study of particle systems (e.g. Sznitman [6]).

Before we proceed, let us note that:

(1) Since limk→∞ qk = +∞, an upper bound qpα is equivalent to C |α|qpα: in (4.9),
we can always take a larger p, or, in the original construction of the chaos space,
we can switch from qk to Cqk.

(2) The propagator is a lower triangular system and can be solved by induction
on |α|. Only the first equation, describing u = u(0) is non-linear: it is a
deterministic Burgers equation. All other equations are linear, but with variable
coefficients in the lower-order derivatives; these coefficients are determined by
u.

(3) By Theorem 4.1, uniqueness of solution for the propagator implies uniqueness
of solution of (4.1) in the sense of Definition 3.1.

To prove Theorem 3.3, it is enough to show that the propagator has a unique solution
and

(4.10) ‖uα‖2
L2((0,T );H2(G)) + sup

0≤t≤T
‖uα(t, ·)‖2

H1(G) ≤ C |α|qpα, p > 0;

this is actually stronger than (3.14).
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A key step in the analysis of the propagator is the study of the Burgers equation
(4.6). The solution of (4.6) must be

• a function, continuously differentiable in x, to act as a variable coefficient in
the subsequent propagator equations, and also

• an element of L2((0, T ); H2(G)), to produce a sufficiently regular free term in
(4.7).

On the real line, the necessary solvability results can be obtained using the Hopf-Cole
transformation, with sufficiently many regularity assumptions on ϕ and f . On the
circle, we have to go with the best result we could find: Kiselev et al. [25, Theorem
1.1], who consider f = 0.

We will now present the precise results about solvability of the deterministic Burgers
equation.

Consider the equation

Ut(t, x) + U(t, x)Ux(t, x) = Uxx(t, x) + Fx(t, x)(4.11)

with the initial condition U(0, x) = U0(x), for x ∈ G where G = R (real line) or G = S1

(unit circle or periodic boundary conditions). To define the solution of the equation,
we assume that U0 is a continuous function and F ∈ L2((0, T )×G)).

A weak solution of (4.11), U , is a continuous function in t, x such that for all smooth
functions ψ with compact support in G, the equality

∫

G

U(t, x)ψ(x)dx− 1

2

∫ t

0

∫

G

U2(s, x)ψ′(x)dxdt =

∫

G

U0(x)ψ(x)dx

+

∫ t

0

∫

G

U(s, x)ψ′′(x)dxdt−
∫ t

0

∫

G

F (s, x)ψ′(x)dxds

(4.12)

holds for all t ∈ [0, T ].

Theorem 4.2 (Solvability of the deterministic Burgers equation).

(a) If U0 ∈ C1(R)
⋂

L1(R), U ′
0 is Hölder continuous (any non-zero order will work),

and F , Fx, are bounded and Hölder continuous in (t, x) functions, then (4.11) has
a weak solution U = U(t, x) such that U is bounded and has a continuous bounded
derivative in x. The solution is unique in the class of bounded continuous functions.

(b) If U0 ∈ C1(R)
⋂

H1(R)
⋂

L1(R), U ′
0 is Hölder continuous (any non-zero order

will work), and F and Fx are bounded and Hölder continuous in (t, x) functions, then
(4.11) has a weak solution U = U(t, x) such that

(4.13) U ∈ L2

(
(0, T ); H2(R)

) ⋂
C((0, T ); H1(R)).

The solution is unique in the class of bounded continuous functions.
(c) If U0 ∈ H2(S1) and F = 0, then (4.11) has a weak solution U = U(t, x) such

that U ∈ C((0, T ); H2(S1)
)

(by the Sobolev embedding, this implies continuous differ-
entiability in x). The solution is unique in the class of bounded continuous function.

Proof. For the case G = R, existence, uniqueness, and regularity of the solution are
established using the Hopf-Cole transformation: we have

(4.14) U = −2Vx/V,
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where V is the solution of the heat equation

(4.15) Vt = Vxx − 1

2
F (t, x) V, V (0, x) = exp

(
− 1

2

∫ x

−∞
U0(y)dy

)
.

Thus, the study of equation (4.12) is reduced to the study of equation (4.15).
(a) A result from Ladyzhensakaya et al. [23, Theorem IV.5.1] implies that, under

our assumptions, equation (4.15) has a classical solution and the solution is unique in
the class of bounded continuous functions. Then a result from Rozovskii [24, Theorem
5.1.1] provides the following probabilistic representation of the solution, with w = w(t)
denoting a standard Brownian motion:

(4.16) V (t, x) = E
(
V0

(
x +

√
2w(t)

)
exp

(− 1

2

∫ t

0

F (s, x +
√

2w(t)−
√

2w(s))ds
))

;

Since F is bounded and

e−(1/2)‖U0‖L1(R) ≤ V (x) ≤ e(1/2)‖U0‖L1(R) ,

it follows from (4.16) that there exist numbers 0 < p1 < p2 such that, for all t, x,
p1 ≤ V (t, x) ≤ p2. Therefore the functions U = −2Vx/V and Ux = −2(VxxV −V 2

x )/V 2

are bounded and continuous. Uniqueness of U follows from the uniqueness of V . The
reader can also note that considering the Burgers equation in the form Ut+UUx = Uxx/2
would eliminate a lot of various powers of 2 in subsequent computations.

(b) Under the assumed conditions, equation (4.15) still has a classical solution, but
the standard parabolic regularity theorem in Sobolev spaces cannot be applied to V
because V0 is not integrable, and so V does not belong to any Sobolev space. On the
other hand, (4.14) implies that (4.13) will follow if we can show that 1/V is bounded
and has two continuous and bounded derivatives in x (which we did in part (a)), and
that

(4.17) Vx ∈ L2

(
(0, T ); H2(R)

) ⋂
C((0, T ); H1(R)),

which we show next.
Denoting Vx by V̄ , we find from (4.15) that

V̄t = V̄xx − 1

2
F V̄ − 1

2
V Fx,

and V̄ (0, x) = −(1/2)U0(x)V0(x). Assumptions of the theorem and the properties of V
imply that V̄ (0, ·) ∈ H1 and V Fx ∈ L2((0, T )×R). Then the linear parabolic regularity
theorem (see Theorem 4.3 below) in the normal triple (H2(R), H1(R), L2(R)) implies
(4.17).

By the Sobolev embedding, the conditions U0 ∈ C1(R)
⋂

H1(R) plus Hölder continu-
ity of U ′

0 can be replaced with a stronger but shorter condition U0 ∈ H2(R), and this
is what happens in the statement of Theorem 3.3. In general, we do have to add the
condition U0 ∈ L1(R) (for example, the function (1 + |x|2)−1/2 is in every Hγ(R), but
is not in L1(R).) Finally, note that the resulting weak solution U , being an element of
L2((0, T ); H2(R)), is in fact strong.
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(c) See Kiselev et al. [25, Theorem 1.1].

This completes the proof of Theorem 4.2. ¤

We were unable to find satisfactory solvability results for the circle when an inho-
mogeneous term f(t, x) is present, or for the Dirichlet or Neumann boundary value
problems. As soon as these results are available, the corresponding analogue of The-
orem 3.3 will follow immediately from Theorem 4.1. In fact, one can go even further
and investigate Wick-stochastic versions of other one-dimensional equations with qua-
dratic nonlinearity, such as Camassa-Holm, KdV, KPP, and Kuramoto-Sivashinskii
equations, provided there is a satisfactory solvability result for the corresponding deter-
ministic nonlinear equation.

Extension to higher dimensions presents an additional challenge, as the Sobolev space
H1(Rd), d ≥ 2, is no longer embedded into the space of continuous functions. Never-
theless, Mikulevicius and Rozovskii [16] recently studied the Wick-stochastic versions
of the Navier-Stokes equations using Lp solvability results with p > d. Extension of
our results to a d-dimensional system of Burgers equations seems feasible, especially on
Rd, where the Hopf-Cole transformation reduces the system to a scalar heat equation.

Similar to [16], one can study other properties of the chaos solution of (particular
cases of) (4.1), such as adaptedness and Markov property. For a number of reasons,
these questions fell outside the scope of the current paper (in fact, to simplify presen-
tation, we do not even consider a filtration and introduce random perturbation simply
as a countable set of iid standard Gaussian random variables).

We now continue with an outline of the proof of Theorem 3.3. The difference between
G = R and G = S1 stops with Theorem 4.2. After that, analysis of the propagator is
all about linear parabolic equations of the form

ut = Au + F,

where A is a linear partial differential operator. The analysis relies on the following
result.

Theorem 4.3 (Linear Parabolic Regularity). Let (V,H, V ′) be a normal triple of sep-
arable Hilbert spaces and denote by [w, v], w ∈ V ′, v ∈ V , the duality between V and
V ′ relative to the inner product in H. Consider a collection of bounded linear operators
A(t), 0 ≤ t ≤ T, from V to V ′ with the following properties:

• For all x, y ∈ V , the function t 7→ [A(t)x, y] is measurable;
• There exist ε > 0 and C0 ∈ R such that, for all t ∈ [0, T ] and v ∈ V ,

[A(t)v, v] + ε‖v‖2
V ≤ C0‖v‖2

H .

Then, for every u0 ∈ H and F ∈ L2((0, T ); V ′), there exists a unique u ∈ L2((0, T ); V )
such that the equality

u(t) = u0 +

∫ t

0

A(s)u(s)ds +

∫ t

0

F (s)ds
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holds in L2((0, T ); V ′). Moreover, u ∈ C((0, T ); H) and
∫ T

0

‖u(t)‖2
V dt + sup

0<t<T
‖u(t)‖2

H ≤ C(ε, C0, T )
(‖u0‖2

H +

∫ T

0

‖F (s)‖2
V ′ds

)
.

Proof. See, for example, Rozovskii [24, Theorem 3.1.2]. ¤

To study the propagator equations (4.8), we apply Theorem 4.3 with

• V = H2(G), H = H1(G), V ′ = L2(G);
• A = ∂2/∂x2 − u(t, x)∂/∂x− ux(t, x), where u is the solution of (4.6);
• A complicated but manageable free term

F = Fα = −
∑

(0)<β<α

uβDuα−β +
∑

k:αk>0

(
akD

2uα−ε(k) + bkDuα−ε(k)

+ckuα−ε(k)

)
.

(4.18)

By Theorem 4.2, the functions u and ux are continuous and bounded, so that the oper-
ator A is indeed bounded from H2(G) to L2(G). The terms uβ have β < α and come
from the earlier propagator equations. In particular, by Theorem 4.3 and the Sobolev
embedding, uβ ∈ L2((0, T ); H2(G))

⋂ C((0, T ) × G), which means that expressions
uβDuα−β and akD

2uα−ε(k) are square-integrable, and therefore F ∈ L2((0, T )×G).
The main technical complication is that the number of terms on the right-hand side

of (4.18) grows with |α|, and, to satisfy (4.10), we have to control this growth. In the
following section, we derive a recursive relation between the L2 norms of Fα for different
α and show that the rate of growth in |α| is controlled by the Catalan numbers C|α|−1

(along with the admissible factor qpα). The exponential growth rate of the Catalan
numbers (Ck ≤ 4k) allows us to complete the proof.

5. Analysis of the propagator

In this section we carry out the analysis of the propagator (4.6)–(4.8) and complete
the proof of Theorem 3.3. Our main goal is to establish (4.10).

Equation (4.6) is covered by Theorem 4.2: under the assumptions on ϕ(0) = Eu0

and f , we know that u and ux are bounded and continuous, and

u ∈ L2((0, T ); H2(G)).

Next, consider (4.7). If α = εk, we have

u̇εk
= D

(
Duεk

− u(0)uεk

)
+ Fεk

(t, x), uεk
(0, x) = ϕεk

,

where

Fεk
(t, x) = akD

2u(0) + bkDu(0) + cku(0) + gk

By Theorem 4.2 Fεk
∈ L2 ((0, T )×G) . We then solve for uεk

in the normal triple
(H2(G), H1(G), L2(G)) using Theorem 4.3 and deduce (4.10) for |α| = 1.

As was mentioned earlier, induction on |α|, Sobolev embedding, and Theorem 4.3
imply that Fα, the free term in (4.8) (see also (4.18)), is an element of L2((0, T )×G).
All we need is a bound on the norm of Fα that is consistent with (4.10).
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By the Sobolev embedding, the L2 norm of Fα with |α| > 1 is controlled by the norms
of uβ, (0) < β < α, in the space L2((0, T ); H2(G))

⋂ C((0, T ); H1(G)). Accordingly,
for α with |α| ≥ 1, we define

L2
α =

∫ T

0

‖uα(t, ·)‖2
2dt + sup

0<t<T
‖uα(t, ·)‖2

1 = ‖uα‖2
L2((0,T );H2(G)) + ‖uα‖2

C((0,T );H1(G)).

The next step is to derive a recursion for Lα.
By Theorem 4.3 applied to (4.8),

L2
α ≤ λ

(‖ϕα‖2
1 + ‖Fα‖2

L2((0,T )×G)

)
,(5.1)

and λ, throughout, is a number depending only on T and some norms of u. The value
of λ can change from line to line. With no loss of generality, we assume that λ > 1,
and, with m = max(`, r), put

Lε(k) = λqm
k .

For |α| > 1, (5.1), (4.18), and assumptions of Theorem 3.3 imply

Lα ≤ λ
(
q`α +

∑

(0)<β<α

‖uβ‖C([0,T ]×G) ‖uα−β‖L2((0,T );H1(G))

+
∑

k:αk>0

qr
k‖uα−ε(k)‖L2((0,T );H2(G))

)

≤ λ

(
q`α +

∑

(0)<β<α

LβLα−β +
∑

k:αk>0

qr
kLα−ε(k)

)
.

Define

L̃α = 2λ

(
Lα

qmα
+ 1

)
.

Then

L̃α ≤
∑

(0)<β<α

L̃βL̃α−β.

Let {Aα : α ∈ J } be a sequence such that Aεk
= L̃ε(k) and

(5.2) Aα =
∑

(0)<β<α

AβAα−β, |α| > 1.

It follows by induction that

(5.3) L̃α ≤ Aα

for all α ∈ J . Indeed, (5.3) is true by definition if |α| = 1. Assume that (5.3) holds
for all |α| < N . For |α| = N ,

L̃α ≤
∑

(0)<β<α

L̃βL̃α−β

≤
∑

(0)<β<α

AβAα−β = Aα,
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proving (5.3) for all α ∈ J .

Our next step is to find a bound on Aα, which we do using generating functions.
Since multi-indices α can have non-zero entries in arbitrary positions, the argument
requires an additional construction.

Let d ≥ 1 be an integer and let β = (β1, β2, . . . , βd) be a d−dimensional vector
of nonnegative integers with at least one βi > 0. Let Mεi

∈ R, i = 1, 2, . . . , d, be
prescribed positive numbers and let Mβ, |β| > 1, be defined through the recursive
equation

M
(d)
β =

∑

γ+δ=β,|γ|,|δ|>0

M (d)
γ M

(d)
δ .

Consider

Fd(z1, z2, ...., zd) =
∑

β

M
(d)
β zβ1

1 zβ2

2 . . . zβd

d .

Then

F 2
d (z1, z2, ...., zd) =

∑

|β|>1


 ∑

γ+δ=β,|γ|,|δ|>0

M (d)
γ M

(d)
δ


 zβ1

1 zβ2

2 . . . zβd

d

=
∑

|β|>1

M
(d)
β zβ1

1 zβ2

2 . . . zβd

d

= Fd(z1, z2, ...., zd)−
∑

i

M (d)
εi

zi,

where εi is the d-dimensional vector with 1 at the ith coordinate and 0 everywhere else.
Solving for Fd we get,

Fd(z1, z2, ...., zd) =
1±

√
1− 4

∑
i M

(d)
εi zi

2
.

By comparing the coefficients of similar powers we obtain,

(5.4) M
(d)
β =

1

|β|
(

2|β| − 2

|β| − 1

)(|β|
β

) ∏
i

(M (d)
εi

)βi ;

here
(|β|

β

)
= |β|!/β!. Let Γd = {α = (α1, α2, . . .) ∈ J : αi = 0 for all i > d}. If

α ∈ Γd then, by (5.2), Aα is uniquely determined by {Aβ : β < α}. Also, if α ∈ Γd

and β < α, then β ∈ Γd as well. Set M
(d)
εi = Aεi

, for each εi ∈ Γd. Then

(5.5) M
(d)

αd = Aα,

where αd = (α1, α2, . . . , αd), which follows by induction on |α|. Indeed, equality (5.5)
is true if α ∈ Γd such that |α| = 1. Assume (5.5) is true for α ∈ Γd such that |α| < N .
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For α ∈ Γd such that |α| = N ,

Aα =
∑

γ+δ=α,|γ|,|δ|>0

AγAδ

=
∑

γd+δd=αd,|γd|,|δd|>0

M
(d)

γd M
(d)

δd

= M
(d)

αd ,

and the general equality (5.5) follows.
Given any α ∈ J there exists a d ∈ N such that α ∈ Γd. Then for such a d,

M
(d)

αd = Aα. Using (5.4),

(5.6) Aα =
1

|α|
(

2|α| − 2

|α| − 1

)(|α|
α

) ∏
i

Aαi
εi

.

We now notice that

Cn =
1

n + 1

(
2n

n

)
, n ≥ 0,

is the nth Catalan number, a very popular combinatorial object (see, for example,
Stanley [26]). Hence, retracing our arguments back to Lα, we conclude that

Lα ≤ (2λ)2|α|C|α|−1

(|α|
α

)
qmα.(5.7)

The final two observations are

• Cn ≤ 4n, which follows by the Stirling formula;
• (|α|

α

) ≤ qα, which we proved in Proposition 2.3.

Therefore, Lα ≤ (8λ)|α|q(m+1)α, which establishes (4.10) and completes the proof of
Theorem 3.3.
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