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Abstract. While consistency of the maximum likelihood estimator of the
drift matrix in a multi-dimensional continuous time Ornstein-Uhlenbeck pro-
cess holds under rather general conditions, little is known about the rate
of convergence and the limiting distribution of the estimator when the un-
derlying process is not ergodic. The objective of the paper is to investigate
these questions for an important example of a non-ergodic two-dimensional
Ornstein-Uhlenbeck process: an undamped harmonic oscillator.

1. Introduction

The objective of this paper is to study parameter estimation in the equation

Ẍ(t) + aẊ(t) + θX(t) = Ẇ (t), t > 0, X(0) = Ẋ(0) = 0, (1.1)

or the equivalent system

dX = Y dt, dY = −(θX + aY )dt + dW (t) (1.2)

with a standard Brownian motion W = W (t). The solution of (1.1) is a Gaussian
process

X(t) =

∫ t

0

φ(t − s)dW (s), (1.3)

where the function φ(t) is the unique solution of the initial value problem

φ̈ + aφ̇(t) + θφ(t) = 0, φ(0) = 0, φ̇(0) = 1. (1.4)

We construct the maximum likelihood estimators âT , θ̂T of a and θ from the
continuous time observations of (X(t), Ẋ(t), t ∈ [0, T ]), and study their limiting
distribution, as T → ∞, when θ = c2 and a = 0. Figure 1 presents sample tra-
jectories of the process X for c = π and three different values of a: a = 0 (pure
oscillations) a = 0.05 (damped oscillations), and a = −0.05 (amplified oscilla-
tions); the realization of the Brownian motion is the same in all three simulation.
The procedure used to produce Figure 1 is described at the end of Section 5. The
rationale behind the choice of the parameters for simulations was as follows: c = π
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ensures an integer-valued period of the underlying oscillations; small absolute val-
ues of a ensure that the free motion does not die out or explode too quickly.
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Figure 1. Sample trajectories of the process X

Statistical inference for multi-dimensional linear and bi-linear diffusion pro-
cesses in continuous time has become an active area of research; the paper by
Basak and Lee [2] provides a comprehensive and up-to date survey of the liter-
ature on the subject. Even though every differential equation of order two and
higher can be reduced to a system, linear stochastic equations deserve a separate
analysis:

(1) Similar to deterministic linear equations, the solution is easier to study
than in the general matrix case;

(2) The unknown coefficients form a vector rather than matrix, which allows
analysis of estimators of individual coefficients in a much more convenient
way;

(3) The conditions in the matrix setting require certain non-degeneracy of the
diffusion, which may or may not hold for the higher-order linear stochastic
equation.

While strong consistency of the estimators has been recently established by
Basak and Lee [2] for a large class of systems, which includes (1.2), the limiting
distribution, together with the proper normalization, remains an open problem
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except when the process is ergodic and the estimator is asymptotically normal
with rate

√
T .

Equation (1.1) defines an ergodic process if and only if a > 0 and θ > 0, that
is, when the free motion of the system is asymptotically stable. The undamped
harmonic oscillator, with a = 0, θ > 0, becomes a natural example of a non-ergodic
process. If the asymptotic distribution of âT is known, then testing the hypothesis
H0 : a = 0 against the alternative H1 : a > 0 can be accomplished, at least when
the observation interval is large.

Here is the main result of the paper. Let w1 and w2 be two independent standard
Brownian motions. Define random variables Ψ and Υ by

Ψ =
2 − w2

1(1) − w2
2(1)

∫ 1

0
w2

1(t)dt +
∫ 1

0
w2

2(t)dt
, Υ =

∫ 1

0 w1(t)dw2(t) −
∫ 1

0 w2(t)dw1(t)
∫ 1

0
w2

1(t)dt +
∫ 1

0
w2

2(t)dt
. (1.5)

We also define the following random variables:

XT =

∫ T

0

X2(t)dt, YT =

∫ T

0

Ẋ2(t)dt, (1.6)

and write
d
= to denote equality in distribution.

Theorem 1.1. The maximum likelihood estimators âT and θ̂T of a, θ in (1.1) are
explicitly computable given the observations of

X(t), Ẋ(t), 0 ≤ t ≤ T :

âT =
2X2(T )

(
X(T )Ẋ(T ) − YT

)
− 2XT

(
Ẋ2(T ) − T

)

4XT YT − X4(T )
,

θ̂T =
X2(T )

(
Ẋ2(T ) − T

)
− 4YT

(
X(T )Ẋ(T ) − YT

)

4XT YT − X4(T )
,

(1.7)

and are strongly consistent in the limit T → ∞. For the undamped harmonic
oscillator (θ = c2 > 0, a = 0),

lim
T→∞

T âT
d
= Ψ, lim

T→∞

T (θ̂T − c2)
d
= 2cΥ.

If T is sufficiently large, then the null hypothesis H0 : a = 0 (no damping) can be
rejected in favor of the alternative H1 : a > 0 (damping is present) at the level of
significance α if T âT > γα, where P(Ψ > γα) = α.

The advantage of the test statistic T âT is that no knowledge of the frequency c
is necessary. The disadvantage is that the resulting test is asymptotic and is only
guaranteed to work in the limit T → ∞.

To prove Theorem 1.1, we first consider the models with only one unknown
parameter. In Section 2 we study estimation of θ when a = 0, and in Section
3, estimation of a when θ = c2 is known. The proof of the main result is in
Section 4. Estimators in Sections 2 and 3, being different from (1.7), can also
be of independent interest. Section 5 presents a reduction of the continuous-time
equation (1.1) to a second-order auto-regression and discusses the corresponding
estimation problems in discrete-time setting. While analytically challenging, the
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question of discrete-time inference must be addressed to some extend as soon as
one tries to implement continuous-time estimators numerically.

Through the rest of the paper, we fix a probability space (Ω,F , P) with standard
Brownian motion W = W (t); E denotes the expectation with respect to P. We
use notations ġ(t), g̈(t) for the first and second time derivatives of the function g

and write
d
= to indicate equality in distribution.

2. Estimation of Frequency With no Damping

Consider the second-order stochastic equation

Ẍ(t) + θ X(t) = Ẇ (t), t > 0, X(0) = Ẋ(0) = 0. (2.1)

We interpret (2.1) as a system of two equations

dX = Y dt; dY = −θ Xdt + dW (t);

that is, Y (t) = Ẋ(t). The objective is to estimate θ from the observations of the

solution (X(t), Ẋ(t)) for 0 ≤ t ≤ T .
The process Y = Y (t) is a diffusion-type process in the sense of Liptser and

Shiryaev; see [7, Definition 4.2.7]. Therefore, by Theorem 7.6 in [7], the measure
PY

T generated by (Y (t), 0 ≤ t ≤ T ) in the space of continuous functions is ab-
solutely continuous with respect to the corresponding measure PW

T generated by
the Brownian motion (W (t), 0 ≤ t ≤ T ), and the likelihood ratio is

dP Y
T

dPW
T

(Y ) = exp

(
−
∫ T

0

θX(t)dY (t) − 1

2

∫ T

0

(θ2X(t))2dt

)
.

This results in the maximum likelihood estimator θ̂T of θ:

θ̂T = −
∫ T

0 X(t)dY (t)
∫ T

0 X2(t)dt
= −

∫ T

0 X(t)dẊ(t)
∫ T

0 X2(t)dt
, (2.2)

which is different from the one considered by Basak and Lee [2].
First, we establish the limiting distribution of the estimator. Here and below,

expression

lim
T→∞

ξ(T )
d
= ζ

means that the random process ξ = ξ(t), t ≥ t0, converges in distribution to the
random variable ζ.

Theorem 2.1. If θ = c2 > 0, then

lim
T→∞

T
(
θ̂T − θ

) d
= 2cΥ, (2.3)

where the random variable Υ is defined in (1.5).

Proof. Let B = {bn, n ≥ 1} be a sequence of positive numbers such that
limn→∞ bn = +∞. Then (2.3) is equivalent to

lim
n→∞

bn

(
θ̂bn

− c2
) d

= 2cΥ
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for every sequence B. Working with a sequence is just a technical modification that
would allow us to use some standard limit theorems that are stated for sequences.

According to (1.3) and (1.4),

X(t) =
1

c

∫ t

0

sin(c(t − s))dW (s), (2.4)

EX2(t) =
t

2c2
− sin(2ct)

4c3
. (2.5)

For t ∈ [0, 1], define the processes

Mn(t) =
1√
cbn

∫ bnt

0

cos(cs) dW (s),

Nn(t) =
1√
cbn

∫ bnt

0

sin(cs) dW (s).

(2.6)

It follows from (2.4) and (2.11) that

1

bn

∫ bn

0

X(s)dW (s) =

∫ 1

0

(
Mn(t)dNn(t) − Nn(t)dMn(t)

)
(2.7)

1

b2
n

∫ bn

0

X2(s)ds =
1

c

∫ 1

0

(
sin(cbnt)Nn(t) − cos(cbnt)Mn(t)

)2
dt (2.8)

bn

(
θ̂bn

− c2
)

=
c
∫ 1

0

(
Mn(t)dNn(t) − Nn(t)dMn(t)

)
∫ 1

0

(
sin(cbnt)Nn(t) − cos(cbnt)Mn(t)

)2
dt

. (2.9)

Note that Mn and Nn are continuous square-integrable martingales, and

lim
n→∞

〈Mn〉(t) = lim
n→∞

〈Nn〉(t) =
t

2c
,

lim
n→∞

〈Mn, Nn〉(t) = lim
n→∞

1

2cbn

∫ bnt

0

sin(2cs)ds = 0.

By Theorem VIII.3.11 in [5], the pair (Mn, Nn) converges in distribution to the

two-dimensional process (w1, w2)/
√

2c, where w1, w2 are independent standard
Brownian motions. Then, after expanding the square and integrating by parts,

lim
n→∞

∫ 1

0

(
sin(cbnt)Nn(t) − cos(cbnt)Mn(t)

)2
dt

d
=

1

4c

∫ 1

0

(w2
1(t) + w2

2(t))dt.

(2.10)

Next, let us consider the four-dimensional process

Bn(t) =

(
Mn(t), Nn(t),

∫ t

0

Mn(s)dNn(s),

∫ t

0

Nn(s)dMn(s)

)
,

0 ≤ t ≤ 1. By Proposition VI.6.13 and Theorem VI.6.22 in [5], this process
converges in distribution to

B(t) =

(
w1(t)√

2c
,

w2(t)√
2c

,
1

2c

∫ t

0

w1(s)dw2(s),
1

2c

∫ t

0

w1(s)dw2(s)

)
.
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By the continuous mapping theorem (see, for example, Billingsley [3, Corollary
1.5.1]),

lim
n→∞

∫ 1

0

(
Mn(t)dNn(t) − Nn(t)dMn(t)

)
∫ 1

0

(
sin(cbnt)Nn(t) − cos(cbnt)Mn(t)

)2
dt

d
= 2Υ,

which concludes the proof of Theorem 2.1. �

Theorem 2.1 is the key to establishing strong consistency of θ̂T .

Theorem 2.2. If θ = c2 > 0, then the estimator θ̂T is strongly consistent in the
large sample asymptotic T → ∞:

lim
T→∞

θ̂T = θ

with probability one.

Proof. It follows from (2.2) that

θ̂T − θ = −
∫ T

0 X(t)dW (t)
∫ T

0 X2(t)dt
. (2.11)

The process Z(t) =
∫ t

0 X(s)dW (s) is a continuous square-integrable martingale
with quadratic characteristic

〈Z〉(t) =

∫ t

0

X2(s)ds,

so that

θ̂T − θ = − Z(T )

〈Z〉(T )
.

By the strong law of large numbers for martingales (see, for example, [6, Corollary
1 to Theorem 2.6.10]), to complete the proof of the theorem it remains to show
that ∫

∞

0

X2(t)dt = +∞ (2.12)

with probability one.
Define the random process

Q(t) =

∫ t

0

X2(s)ds;

for notational convenience we switch from 〈Z〉 to Q. The random process Q =
Q(t, ω) is non-decreasing and therefore the limit

Q∞(ω) = lim
t→∞

Q(t, ω) =

∫
∞

0

X2(s, ω)ds,

finite or infinite, exists for every elementary outcome ω ∈ Ω. We need to show that
P(Q∞ = +∞) = 1, that is, for every sufficiently large C > 0 and every sufficiently
small ε > 0,

P(Q∞ > C) > 1 − ε. (2.13)
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Fix C and ε. Since Q∞ > Q(T ) for every T > 0, we have

P(Q∞ > C) ≥ P(Q(T ) > C) = P

(
Q(T )

T 2
>

C

T 2

)
. (2.14)

By (2.8) and (2.10), for every x > 0,

lim
T→∞

P

(
Q(T )

T 2
> x

)
= P(ξ > x), (2.15)

where ξ is an absolutely continuous non-negative random variable and P(ξ = 0) =
0. Accordingly, there exists a δ > 0 such that

P(ξ > δ) > 1 − ε.

By (2.14), for all T such that C < T 2δ,

P(Q∞ > C) > P

(
Q(T )

T 2
> δ

)
.

Passing to the limit T → ∞ in the last inequality completes the proof of Theorem
2.2 �

3. Testing for Damping With Known Frequency

Consider the stochastic differential equation

Ẍ(t) + aẊ(t) + c2X(t) = Ẇ (t), t > 0, X(0) = Ẋ(0) = 0, (3.1)

where c > 0 is known. We interpret the equation as a system

dX = Y dt; dY = (−c2X − aY )dt + dW (t).

The process Y = Y (t) is a diffusion-type process in the sense of Liptser and
Shiryaev; see [7, Definition 4.2.7]. Therefore, by Theorem 7.6 in [7], the measure
PY

T generated by (Y (t), 0 ≤ t ≤ T ) in the space of continuous functions is ab-
solutely continuous with respect to the corresponding measure PW

T generated by
the Brownian motion (W (t), 0 ≤ t ≤ T ), and

dP Y
T

dPW
T

(Y )

= exp

(
−
∫ T

0

(c2X(t) + aY (t))dY (t) − 1

2

∫ T

0

(c2X(t) + aY (t))2dt

)
.

Therefore, the maximum likelihood estimator âT of a is

âT = −
∫ T

0
Y (t)dY (t) + c2

∫ T

0
X(t)Y (t)dt

∫ T

0
Y 2(t)dt

or, keeping in mind that Y = Ẋ ,

âT =
2T − Ẋ2(T ) − c2X2(T )

2
∫ T

0
Y 2(t)dt

. (3.2)
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It also follows that

âT − a = −
∫ T

0 Ẋ(t)dW (t)
∫ T

0
Ẋ2(t)dt

. (3.3)

Note that (3.2) is not the same as the estimator considered by Basak and Lee [2].
If a = 0, then (2.4) implies

Ẋ(t) =

∫ t

0

cos(c(t − s))dW (s).

Theorem 3.1. If a = 0 and c > 0, then

P( lim
T→∞

âT = 0) = 1 (3.4)

and

lim
T→∞

T âT
d
= Ψ, (3.5)

with Ψ defined in (1.5). Thus, for sufficiently large T , the null hypothesis H0 : a =
0 (no damping) can be rejected in favor of the alternative H1 : a > 0 (damping is
present) at the level of significance α if âT > γα/T , where P(Ψ > γα) = α.

Proof. The arguments are similar to the proof of Theorem 2.1. We start by es-
tablishing (3.5). Let B = (bn, n ≥ 1) be a sequence such that bn > 0 and
limn→∞ bn = +∞. With the martingales Mn and Nn defined in (2.6),

1

bn

∫ bn

0

Ẋ(s)dW (s) = c

∫ 1

0

(
Mn(t)dMn(t) + Mn(t)dMn(t)

)

1

b2
n

∫ bn

0

Ẋ2(s)ds = c

∫ 1

0

(
cos(cbnt)Mn(t) + sin(cbnt)Nn(t)

)2
dt

bn

(
âbn

− a
)

= −
∫ 1

0

(
Mn(t)dMn(t) + Nn(t)dNn(t)

)
∫ 1

0

(
cos(cbnt)Mn(t) + sin(cbnt)Nn(t)

)2
dt

.

The proof of Theorem 2.1 shows that

lim
n→∞

∫ 1

0

(
Mn(t)dMn(t) + Mn(t)dMn(t)

)

d
=

1

2c

∫ 1

0

(w1(t)dw1(t) + w2(t)dw2(t))

=
w2

1(1) + w2
2(1) − 2

4c
,

lim
n→∞

∫ 1

0

(
cos(cbnt)Mn(t) + sin(cbnt)Nn(t)

)2
dt

d
=

1

4c

∫ 1

0

(w2
1(t) + w2

2(t))dt,

and, by the continuous mapping theorem,

lim
n→∞

bn

(
âbn

− a
) d

= Ψ.
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To prove (3.4), note that

âT − a = − Z(T )

〈Z〉(T )
, where Z(t) =

∫ t

0

Ẋ(s)dW (s).

The proof that limT→∞〈Z〉(T ) = +∞, that is,
∫

∞

0

Ẋ2(t)dt = +∞

with probability one, is identical to the proof of (2.12). �

To conclude the section, we comment briefly about connections with the discrete
time case. In [4, Corollary 3.3.8], Chan and Wei consider the parameter estimation
problem for the second-order auto-regression

xn = 2 cos θ xn−1 + α xn−2 + εn (3.6)

and show that if α = −1, then, for all θ ∈ (0, π), the least squares estimator α̂n of
α satisfies

lim
n→∞

n(α̂n + 1)
d
= Ψ. (3.7)

Let us discretize (3.1) using a uniform time step h as follows:

Xn − 2Xn−1 + Xn−2

h2
+ a

Xn−1 − Xn−2

h
+ c2Xn−1 =

ξn√
h

.

Then

Xn = (2 − ah − c2h2)Xn−1 + (ah − 1)Xn−2 + h3/2ξn, (3.8)

which is of the same form as (3.6), with 2 cos θ = 2 − ah − c2h2 and α = ah − 1.
In particular, if a = 0, then α = −1, and then estimation of α = −1 in (3.6)
is equivalent to estimation of a = 0 in (3.8). Since the limiting distribution of
n(α̂n + 1) in (3.6) does not depend on θ, the limiting distribution of nân in (3.8)
does not depend on h, suggesting that the result should continue to hold in the limit
h → 0. Theorem 3.1 shows that this is indeed the case, which is rather remarkable,
because in general there is little connection between the estimators in continuous
time and the corresponding estimators for discretized models. In Section 5 we will
see how (3.1) can be discretized exactly, leading to a finite-difference equation that
is very different from (3.6) and (3.8).

4. Testing for Damping With Unknown Frequency

Consider the stochastic differential equation

Ẍ(t) + aẊ(t) + θ X(t) = Ẇ (t), t > 0, X(0) = Ẋ(0) = 0,

which we interpret as a system of two equations

dX = Y dt; dY = (−θ X − aY )dt + dW (t).

If θ is unknown, then testing a = 0 vs a > 0 requires a joint estimation of a and θ.
The process Y = Y (t) is a diffusion-type process in the sense of Liptser and

Shiryaev; see [7, Definition 4.2.7]. Therefore, by Theorem 7.6 in [7], the measure
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PY
T generated by (Y (t), 0 ≤ t ≤ T ) in the space of continuous functions is ab-

solutely continuous with respect to the corresponding measure PW
T generated by

the Brownian motion (W (t), 0 ≤ t ≤ T ), and

dP Y
T

dPW
T

(Y )

= exp

(
−
∫ T

0

(θX(t) + aY (t))dY (t) − 1

2

∫ T

0

(θ X(t) + aY (t))2dt

)
.

Keeping in mind that Y (t) = Ẋ(t), the maximum likelihood estimators âT and θ̂T

of a and θ given the observations (X(t), Ẋ(t), 0 ≤ t ≤ T ) are

âT =

(∫
T

0
X(t)Ẋ(t)dt

)(∫
T

0
X(t)dẊ(t)

)
−

(∫
T

0
X2(t)dt

)(∫
T

0
Ẋ(t)dẊ(t)

)

(∫
T

0
Ẋ2(t)dt

)(∫
T

0
X2(t)dt

)
−

(∫
T

0
X(t)Ẋ(t)dt

)2
,

θ̂T =

(∫
T

0
X(t)Ẋ(t)dt

)(∫
T

0
Ẋ(t)dẊ(t)

)
−

(∫
T

0
Ẋ2(t)dt

)(∫
T

0
X(t)dẊ(t)

)

(∫
T

0
Ẋ2(t)dt

)(∫
T

0
X2(t)dt

)
−

(∫
T

0
X(t)Ẋ(t)dt

)2
.

(4.1)

The estimators are well-defined: by the Cauchy-Schwartz inequality,
(∫ T

0

Ẋ2(t)dt

)(∫ T

0

X2(t)dt

)
>

(∫ T

0

X(t)Ẋ(t)dt

)2

with probability one.
The amount of numerical integration required to evaluate the above expressions

can be reduced using the rules of the usual and stochastic calculus and keeping
in mind that the processes X is continuously differentiable, the process Ẋ is a
continuous semi-martingale with quadratic variation equal to t, and that X(0) =

Ẋ(0) = 0:

∫ T

0

X(t)Ẋ(t)dt =

∫ T

0

X(t)dX(t) =
X2(T )

2
,

∫ T

0

Ẋ(t)dẊ(t) =
Ẋ2(T ) − T

2
,

∫ T

0

X(t)dẊ(t) = X(T )Ẋ(T ) −
∫ T

0

Ẋ2(t)dt.

(4.2)

This leads to equivalent formulas (1.7) in Introduction.

Theorem 4.1. If θ = c2 > 0 and a = 0, then the estimators âT and θ̂T are
strongly consistent in the large sample asymptotic: with probability one,

lim
T→∞

âT = 0, lim
T→∞

θ̂ = c2, (4.3)

and

lim
T→∞

T (âT − a)
d
= Ψ, lim

T→∞

T
(
θ̂T − θ

) d
= 2cΥ, (4.4)
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with random variables Ψ, Υ defined in (1.5). For sufficiently large T , the null
hypothesis H0 : a = 0 (no damping) can be rejected in favor of the alternative
H1 : a > 0 (damping is present) at the level of significance α if

âT >
γα

T
,

where P(Ψ > γα) = α.

Proof. Estimators (4.1) are a part of the estimator considered by Basak and Lee
[2] for the drift matrix

F =

(
0 1

−θ −a

)
,

and then (4.3) follows from [2, Theorem 2.1].
To establish (4.4), define

DT =

(∫ T

0 X(t)Ẋ(t)dt
)2

(∫ T

0 Ẋ2(t)dt
)(∫ T

0 X2(t)dt
)

=

(
X(T )

T

)4

4
(

1
T 2

∫ T

0 Ẋ2(t)dt
)(

1
T 2

∫ T

0 X2(t)dt
) .

(4.5)

and rewrite (4.1) as

T (âT − a) =
1

1 − DT

(
−

1
T

∫ T

0
Ẋ(t)dW (t)

1
T 2

∫ T

0
Ẋ2(t)dt

(4.6)

+

(
1
T

∫ T

0 X(t)dW (t)
)(

X2(T )
4T 2

)

(
1

T 2

∫ T

0
Ẋ2(t)dt

)(
1

T 2

∫ T

0
X2(t)dt

)
)

,

T (θ̂T − θ) =
1

1 − DT

(
−

1
T

∫ T

0
X(t)dW (t)

1
T 2

∫ T

0
X2(t)dt

(4.7)

+

(
1
T

∫ T

0
Ẋ(t)dW (t)

) (
X2(T )
4T 2

)

(
1

T 2

∫ T

0
Ẋ2(t)dt

)(
1

T 2

∫ T

0
X2(t)dt

)
)

.

If θ = c2 > 0 and a = 0, then

X(T ) =
1

c

∫ T

0

sin(c(T − s)) dW (s), Ẋ(T ) =

∫ T

0

cos(c(T − s)) dW (s).

In particular, EX2(T ) ≤ T/c2 and therefore.

lim
T→∞

X2(T )

T 2
= 0 (4.8)

in probability. Next, (2.3) implies

lim
T→∞

1
T

∫ T

0
X(t)dW (t)

1
T 2

∫ T

0
X2(t)dt

d
= −2cΥ,
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and (3.5) implies
1
T

∫ T

0
Ẋ(t)dW (t)

1
T 2

∫ T

0 Ẋ2(t)dt

d
= −Ψ.

Finally, from (4.8) and the second equality in (4.5),

lim
T→∞

D(T ) = 0

in probability. This establishes (4.4) and completes the proof of Theorem 4.1. �

5. Inference From Discrete Time Observations

The objective of this section is to provide some insight into a more realistic
setting when the continuous time process X = X(t) is observed at discrete mo-
ments. The corresponding estimation problem admits several formulation and a
number of different solutions, and is different from the well-studied second-order
auto-regression models. The emphasis below is on the ideas rather than detailed
proofs, and the main goal is to suggest ways to implement the continuous time
estimators.

We begin with the setting of Section 2 and assume that X = X(t) satisfies

Ẍ(t) + θ X(t) = Ẇ (t), X(0) = Ẋ(0) = 0, (5.1)

and that available observations are Xk = X(hk), k = 0, 1, . . . , N , with fixed and
non-random h > 0. In other words, the assumption is that the position (and only
the position) of the randomly perturbed harmonic oscillator is observed at equally
spaced time moments. Under some conditions, it could be natural to assume that
both the position Xk = X(hk) and the velocity Ẋk = Ẋ(hk) are observed, which
leads to a different estimation problem. Further modifications could be non-equally
spaced observation times, either deterministic or random.

To begin, let us use (5.1) to derive the relation between the samples Xk when
θ = c2 > 0. Using the properties of second-order ordinary differential equations
with constant coefficients,

X(t) = Xk cos
(
c(t − kh)

)
+

Ẋk

c
sin
(
c(t − kh)

)

+
1

c

∫ t

kh

sin
(
c(t − s)

)
dW (s).

(5.2)

Adding equations (5.2) for t = (k + 1)h and t = (k − 1)h, we find

Xk+1 = 2 cos(ch)Xk − Xk−1 + ξk+1, k ≥ 1, (5.3)

where

X0 = 0, X1 = ξ1 =
1

c

∫ h

0

sin
(
c(h − s)

)
dW (s),

ξk+1 =
1

c

∫ (k+1)h

kh

sin
(
c((k + 1)h − s)

)
dW (s)

− 1

c

∫ kh

(k−1)h

sin
(
c((k − 1)h − s)

)
dW (s).

(5.4)
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By direct computation,

E
(
Xkξk+1

)
= E

(
ξkξk+1

)
=

ch cos(ch) − sin(ch)

2c
< 0 for all ch ∈ (0, π).

Let us emphasize that (5.3) is not an approximation but an exact discretizaion of
(5.1): Xk = X(kh) for all k ≥ 0.

While (5.3) looks like a standard second-order auto-regression, there are several
major differences from the similar models considered in the literature (for example,
by Chan and Wei [4]):

(1) the random variables ξk, k ≥ 1, are not independent, which complicates
the analysis;

(2) only one parameter is unknown, which means that the “off-the-shelf” es-
timators, designed for all the coefficients at once, are not the best;

(3) the unknown parameter c is in cos(ch), which creates identifiability prob-
lems if ch > π.

On the one hand, the sequence Xk, k ≥ 1, is Gaussian (although not Markov).
Therefore, the joint density pθ

N of the vector (X0, . . . , XN) is known, and leads
to the corresponding maximum likelihood estimator of θ. On the other hand, the
expression for pθ

N is complicated and becomes increasingly complex for larger N .
Therefore, the closed-form expression for the maximum likelihood estimator is, for
all practical purposes, unavailable. A possible approach is to study the maximum
likelihood estimator indirectly and then construct an approximate estimator using
a suitable approximation of the function pθ

N . The work of Aı̈t-Sahalia [1] for scalar
diffusions suggests that this approach requires a serious investigation well beyond
the scope of this paper.

A more straightforward approach is to consider a discrete-time approximation
of (2.2) using dẊ ≈ Ẋk+1 − Ẋk, Ẋk ≈ (Xk − Xk−1)/h and approximating the
integral in the denominator by the left-point rule:

θ̂N,h = −

N−1∑

k=1

Xk+1 − 2Xk + Xk−1

h
Xk

h

N−1∑

k=1

X2
k

; (5.5)

when h is small, (5.5) is preferable to any alternative expression involving an h2.

When θ̂N,h ≥ 0, we call

ĉN,h =

√
θ̂N,h (5.6)

the D-MLE (discretized maximum likelihood estimator) of c. Similar to (2.2), (5.5)
makes sense for all real values of θ, and it follows from (5.3) that, when θ = c2 > 0,

θ̂N,h − c2 = −2 cos(ch) − 2 + c2h2

h2
−
∑N−1

k=0 Xkξk+1

h2
∑N−1

k=1 X2
k

. (5.7)

Define the random variable

RN =

∑N−1
k=0 Xkξk+1∑N−1

k=1 X2
k

.
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Since the sequence ξk, k ≥ 1, is stationary and weakly dependent (ξk and ξm are
independent for all k > m+1), by analogy with the results of Chan and Wei [4], one
would expect that limN→∞ RN = 0 with probability one and limN→∞ NRN exists
in distribution and is a non-degenerate random variable. Numerical experiments
seem to be consistent with this conjecture. Still, dependence between Xk and ξk+1

leads to technical complications in the theoretical analysis of RN , and we will not
pursue it in this paper.

Equality (5.7) suggests, and numerical experiments confirm, that θ̂N,h is not a
consistent estimator of c2. In the limit n → ∞, the bias is 2h−2(1 − cos(ch)) −
c2, which, for small c2h2, is approximately −c4h2/12. The asymptotic bias
limN→∞ ĉN,h − c of the D-MLE is

δ =
√

2h−2(1 − cos(ch)) − c. (5.8)

The relative asymptotic bias δr = δ/c is a function of ch:

δr =

√
2
(
1 − cos(ch)

)

ch
− 1; (5.9)

for small ch, δr ≈ −c2h2/24. Numerical experiments seem to confirm these con-
clusions.

If ch ≤ π, relation (5.3) leads to an alternative procedure for estimating c. We
start with the least-squares estimator ẑ of 2 cos(ch) by minimizing with respect to
z the expression

N−1∑

k=1

(
Xk+1 − zXk + Xk−1

)2

;

the result is

ẑN,h =

N−1∑

k=1

(Xk+1 + Xk−1)Xk

N−1∑

k=1

X2
k

. (5.10)

It follows that

ẑN,h − 2 cos(ch) =

∑N−1
k=0 Xkξk+1∑N−1

k=1 X2
k

,

suggesting that ẑN,h is a consistent estimator of 2 cos(ch).
Estimator ẑN,h can be defined using discrete samples Xk = X(kh) of the so-

lution of (5.1) for all values of θ. In particular if θ = −b2 < 0, then ẑN,h is an
estimator of 2 cosh(bh).

If θ = c2 and |ẑN,h| ≤ 1, then

c̃N,h = h−1 arccos(ẑN,h/2) (5.11)

is an estimator of c. We refer to it as the LSE (least squares estimator).
Figures 2 and 3 present sample realizations of the D-MLE ĉN,h and the LSE

c̃N,h for different values of c and h. In Figure 2, c = π and h = 0.1; in Figure
3, c = 5π and h = 0.02. In both cases, N = 2000 (which explains different time
scales), ch ≈ 0.3 and the relative bias δr of the D-MLE is approximately −0.004.
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The graphs do not show the highly irregular behavior of the estimators for small
values of N .
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Figure 2. Estimators of c when c = π.

To conclude this section, we note that every second-order equation

Ẍ + aẊ + θ X = Ẇ (5.12)

admits a time-series representation of the type (5.3). Indeed, let u = u(t) and
v = v(t) be the fundamental family of solutions for (5.12), that is,

ü + au̇ + θ u = 0, u(0) = 1, u̇(0) = 0,

v̈ + av̇ + θ v = 0, v(0) = 0, v̇(0) = 1.
(5.13)

By direct computations, and using notation ν =
√
|θ − (a2/4)|,

u(t) =






(
cos(νt) + a

2ν sin(νt)
)
e−at/2, if θ > a2/4,

(1 + (at/2))e−at/2, if θ = a2/4,(
cosh(νt) + a

2ν sinh(νt)
)
e−at/2, if θ < a2/4,

v(t) =






sin(νt)
ν e−at/2, if θ > a2/4,

t e−at/2, if θ = a2/4,
sinh(νt)

ν e−at/2, if θ < a2/4,

(5.14)
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Figure 3. Estimators of c when c = 5π.

Using the notations tk = kh, Xk = X(tk), Ẋk = Ẋ(tk), the solution of (5.12)
can now be written as

X(t) = Xku(t − tk) + Ẋkv(t − tk) +

∫ t

tk

v(t − s)dW (s). (5.15)

The term containing Ẋk is then eliminated by considering (5.15) for t = tk+1 and
t = tk−1. The result is

Xk+1 = AXk + BXk−1 + ξk+1, k ≥ 1, (5.16)

where

A = u(h) − v(h)

v(−h)
u(−h), B =

v(h)

v(−h)
,

ξk+1 =

∫ tk+1

tk

v(tk+1 − s)dW (s) − v(h)

v(−h)

∫ tk

tk−1

v(tk−1 − s)dW (s);

(5.17)

the values of X1 and ξ1 are obtained from (5.15) when k = 0 and t = t1. Note
that, by (5.17), v(t) 6= 0 in some neighborhood of t = 0. We again emphasize that
(5.16) is not an approximation but an exact discretizaion of (5.12): Xk = X(kh)
for all k ≥ 0.
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An oscillator, damped or amplified, corresponds to θ = c2, a 6= 0, and ν2 =
c2 − (a/2)2 > 0, so that

u(t) = e−at/2 cos(νt) +
a

2ν
e−at/2 sin(νt), v(t) =

1

ν
e−at/2 sin(νt),

and

Xk+1 = 2e−ah/2 cos(νh)Xk − e−ah Xk−1 + ξk+1, k ≥ 1, (5.18)

with

ξk+1 =
1

ν

∫ tk+1

tk

e−a(tk−s)/2 sin(ν(tk − s))dW (s)

− e−ah

ν

∫ tk

tk−1

e−a(tk−1−s)/2 sin(ν(tk−1 − s))dW (s).

(5.19)

In particular, sample trajectories in Figure 1 for a 6= 0 were produced using (5.18)
and (5.19) with h = 0.04; for a = 0, equations (5.3) and (5.4) were used, also with
h = 0.04.

Statistical analysis of (5.18) (and more generally, (5.16)) cannot be carried out
using the existing results for time series and requires a separate investigation be-
cause the random variables ξk, k ≥ 1, are dependent, and the unknown parameters
enter the regression coefficients in a rather complicated way.

6. Conclusions

(1) In this paper, we consider the parameter estimation problem for the sto-
chastic differential equation

Ẍ(t) + aẊ(t) + θ X(t) = Ẇ , X(0) = Ẋ(0) = 0.

We establish consistency and the rate of convergence of the maximum
likelihood estimators for a and θ when a = 0 and θ > 0 (undamped
harmonic oscillator), and use the result to propose a statistical procedure
for testing a = 0 vs. a > 0.

(2) When a = 0 and θ > 0, the limiting distribution of T (âT − a), as T → ∞,
does not depend on θ.

(3) While maximum likelihood estimators (4.1) have the same form for all
a, θ ∈ R, the rate of convergence and the limiting distribution depend on
the specific values of the parameters.

(4) Time discretization of the stochastic differential equation with a constant
time step h leads to an exact relation between the samples X(k) = X(kh):

Xk+1 = AXk + BXk−1 + ξk+1, k ≥ 1,

with dependent Gaussian noise sequence ξk and explicit but complicated
connection between a, θ and the coefficients A, B.
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