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Abstract
We study stochastic elliptic PDEs driven by multiplicative Gaussian white

noise. Even the simplest equations driven by this noise often do not have a
square-integrable solution and must be solved in special weighted spaces. We
demonstrate that the Cameron-Martin version of the Wiener chaos decomposi-
tion is an e�ective tool to study such equations and present the corresponding
solvability results.

1. Introduction

The objective of this paper is to study linear stochastic elliptic equations
with multiplicative noise, also known as bi-linear equations. While stochastic
elliptic equations, both linear and nonlinear, with additive noise are relatively
well-studied (see, for example, [1, 8, 10, 12]), a lot less is known about elliptic
equations with multiplicative noise. There are two major di�culties in studying
such equations: (a) absence of time evolution complicates a �natural� de�nition
of the stochastic integral; (b) with essentially any de�nition of the stochastic
integral, the solution of the equation is not a square-integrable random �eld.

In this paper, both di�culties are resolved by considering the equation in a
suitable weighted chaos space and de�ning the integral as an extension of the
divergence operator (or Skorokhod integral) from the Malliavin calculus; the
resulting stochastic integral is closely connected with the Wick product ¦ and
keeps the random perturbation zero on average. The approach also allows us to
abandon the usual subordination of the operators in the stochastic part of the
equation to the operator in the deterministic part, and to consider equations
of full second order, such as the Poisson equation in random medium

(1.1)
d∑

i,j=1

(
∂

∂xi

(
aij(x) + εijẆ (x)

)
¦ ∂u(x)

∂xj

)
= f(x),

with εijẆ representing the (small) random variations in the properties of the
medium.
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2. Weighted Chaos Spaces

In this section, we introduce the main notations and tools from the Malliavin
calculus.

Let F = (Ω,F ,P) be a complete probability space, and U , a real separable
Hilbert space with inner product (·, ·)U and an orthonormal basis U = {uk, k ≥
1}. A Gaussian white noiseẆ on U is a collection of zero-mean Gaussian
random variables {Ẇ (h), h ∈ U} such that E

(
Ẇ (h1)Ẇ (h2)

)
= (h1, h2)U . In

particular, ξk = Ẇ (uk), k ≥ 1, are iid standard Gaussian random variables.
We assume that F is the σ-algebra generated by Ẇ (h), h ∈ U .

Let J be the collection of multi-indices α with α = (α1, α2, . . .) so that each
αk is a non-negative integer and |α| := ∑

k≥1 αk < ∞. An alternative way to
describe a multi-index α with |α| = n > 0 is by its characteristic set Kα, that is,
an ordered n-tuple Kα = {k1, . . . , kn}, where k1 ≤ k2 ≤ . . . ≤ kn characterize
the locations and the values of the non-zero elements of α. More precisely, k1

is the index of the �rst non-zero element of α, followed by max (0, αk1 − 1) of
entries with the same value. The next entry after that is the index of the second
non-zero element of α, followed by max (0, αk2 − 1) of entries with the same
value, and so on. For example, if n = 7 and α = (1, 0, 2, 0, 0, 1, 0, 3, 0, . . .), then
the non-zero elements of α are α1 = 1, α3 = 2, α6 = 1, α8 = 3. As a result,
Kα = {1, 3, 3, 6, 8, 8, 8}, that is, k1 = 1, k2 = k3 = 3, k4 = 6, k5 = k6 = k7 = 8.

We will use the following notations:

α + β = (α1 + β1, α2 + β2, . . .), α! =
∏

k≥1

αk!, Nqα =
∏

k≥1

kqαk , q ∈ R.

By (0) we denote the multi-index with all zeroes. By εi we denote the multi-
index α with αi = 1 and αj = 0 for j 6= i. With this notation, nεi is the
multi-index α with αi = n and αj = 0 for j 6= i. The following two results are
often useful:

(2.1) |α|! ≤ α!(2N)2α;

(see [3, page 35]), and

(2.2)
∑

α∈J
(2N)qα < ∞ if and only if q < −1
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(see [3, Proposition 2.3.3] or [5, Proposition 7.1]).
De�ne the collection of random variables Ξ = {ξα, α ∈ J } as follows:

(2.3) ξα =
∏

k

(
Hαk

(ξk)√
αk!

)
,

where ξk = Ẇ (uk) and

(2.4) Hn(x) = (−1)nex2/2 dn

dxn
e−x2/2

is Hermite polynomial of order n.
Given a real separable Hilbert space X and sequence R = {rα, α ∈ J } of

positive numbers, we de�ne the space RL2(F; X) as the collection of formal se-
ries f =

∑
α∈J fαξα, fα ∈ X, such that ‖f‖2RL2(F;X) :=

∑
α ‖fα‖2Xr2

α < ∞. In
particular, Rf =

∑
α∈J rαfαξα ∈ L2(F;X). Similarly, the space R−1L2(F; X)

corresponds to the sequence R−1 = {1/rα, α ∈ J }. For f ∈ RL2(F; X) and
g ∈ R−1L2(F;R) we de�ne

(2.5) 〈〈f, g〉〉 := E
(
(Rf)(R−1g)

) ∈ X.

Important particular cases of the space RL2(F; X) correspond to the follow-
ing weights: (a) r2

α =
∏∞

k=1 qαk

k , where {qk, k ≥ 1} is a non-increasing sequence
of positive numbers with q1 ≤ 1 (see [6, 9]); (b) Kondratiev's spaces (S)ρ,`(X)
(see [2, 3]):

(2.6) r2
α = (α!)ρ(2N)`α, ρ ≤ 0, ` ≤ 0.

The divergence operator δ is de�ned as a linear operator fromRL2(F; X⊗
U) to RL2(F;X) in the same way as in the usual Malliavin calculus. In par-
ticular, for ξα ∈ Ξ, h ∈ X, and uk ∈ U, we have

(2.7) δ(ξα h⊗ uk) = h
√

αk + 1 ξα+εk
.

For ξα, ξβ from Ξ, the Wick product is de�ned by

(2.8) ξα ¦ ξβ :=

√(
(α + β)!

α!β!

)
ξα+β ,
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and then extended by linearity to RL2(F; X). It follows from (2.7) and (2.8)
that

(2.9) δ(ξαh⊗ uk) = hξα ¦ ξk, h ∈ X.

More generally, we have

Theorem 2.1. If f is an element of RL2(F;X⊗U) so that f =
∑

k≥1 fk⊗uk,
with fk =

∑
α∈J fk,α ξα ∈ RL2(F; X), then

δ(f) =
∑

k≥1

fk ¦ ξk := f ¦ Ẇ ,(2.10)

(δ(f))α =
∑

k≥1

√
αkfk,α−εk

,(2.11)

and δ(f) ∈ R̄L2(F;X), where, for |α| > 0, r̄α = rα/
√
|α|.

Proof � By linearity and (2.9),

δ(f) =
∑

k≥1

∑

α∈J
δ(ξαfk,α ⊗ uk) =

∑

k≥1

∑

α∈J
fk,αξα ¦ ξk =

∑

k≥1

fk ¦ ξk,

which is (2.10). On the other hand, by (2.7),

δ(f) =
∑

k≥1

∑

α∈J
fk,α

√
αk + 1 ξα+εk

=
∑

α∈J

∑

k≥1

fk,α−εk

√
αk ξα,

and (2.11) follows.

3. Abstract Elliptic Equations

The objective of this section is to study stationary stochastic equation

(3.1) Au + δ(Mu) = f

in a normal triple (V,H, V ′) of Hilbert spaces.

De�nition 3.1. The solution of equation (3.1) with f ∈ RL2(F; V ′), is a
random element u ∈ RL2(F; V ) so that, for every ϕ satisfying ϕ ∈ R−1L2(F;R)
and Dϕ ∈ R−1L2(F;U), the equality

(3.2) 〈〈Au, ϕ〉〉+ 〈〈δ(Mu), ϕ〉〉 = 〈〈f, ϕ〉〉
holds in V ′.
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Fix an orthonormal basis U in U and use (2.10) to rewrite (3.1) as

(3.3) Au + (Mu) ¦ Ẇ = f,

where

(3.4) Mu ¦ Ẇ :=
∑

k≥1

Mku ¦ ξk.

Taking ϕ = ξα in (3.2) and using relation (2.11) we conclude that

u =
∑

α∈J
uαξα

is a solution of equation (3.1) if and only if uα satis�es

(3.5) Auα +
∑

k≥1

√
αk Mkuα−εk

= fα

in the normal triple (V, H, V ′). This system of equation is lower-triangular and
can be solved by induction on |α|.

The following example shows the limitations on the �quality� of the solution
of equation (3.1).

Example 3.1 - Consider equation

(3.6) u = 1 + u ¦ ξ.

Write u =
∑

n≥0 u(n)Hn(ξ)/
√

n!, where Hn is Hermite polynomial of order n

(2.4). Then (3.5) implies u(n) = I(n=0) +
√

nu(n−1) or u(0) = 1, u(n) =
√

n!,
n ≥ 1, or u = 1 +

∑
n≥1 Hn(ξ). Clearly, the series does not converge in L2(F),

but does converge in (S)−1,q for every q < 0 (see (2.6)). As a result, even a
simple stationary equation (3.6) can be solved only in weighted spaces.

Theorem 3.1. Consider equation (3.3) in which f ∈ R̄L2(F; V ′) for some R̄.
Assume that the deterministic equation AU = F is uniquely solvable in

the normal triple (V, H, V ′), that is, for every F ∈ V ′, there exists a unique
solution U = A−1F ∈ V so that ‖U‖V ≤ CA‖F‖V ′ . Assume also that each
Mk is a bounded linear operator from V to V ′ so that, for all v ∈ V

(3.7) ‖A−1Mkv‖V ≤ Ck‖v‖V ,
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with Ck independent of v.
Then there exists an operator R and a unique solution u ∈ RL2(F; V ) of

(3.1).

Proof � By assumption, equation (3.5) has a unique solution uα ∈ V for
every α ∈ J . Then direct computations show that one can take

rα = min
(

r̄α,
(2N)−κα

1 + ‖uα‖V

)
, κ > 1/2.

Remark 3.1 - The assumption of the theorem about solvability of the deter-
ministic equation holds if the operator A satis�es 〈Av, v〉 ≥ κ‖v‖2V for every
v ∈ V, with κ > 0 independent of v.

While Theorem 3.1 establishes that, under very broad assumptions, one can
�nd an operatorR such that equation (3.1) has a unique solution inRL2(F; V ),
the choice of the operator R is not su�ciently explicit (because of the presence
of ‖uα‖V ) and is not necessarily optimal.

Consider equation (3.1) with non-random f and u0. In this situation, it
is possible to �nd more constructive expression for rα and to derive explicit
formulas, both for Ru and for each individual uα, using multiple integrals.

Introduce the following notation to write the multiple integrals:

δ
(0)
B (η) = η, δ

(n)
B (η) = δ(Bδ

(n−1)
B (η)), η ∈ RL2(F; V ),

where B is a bounded linear operator from V to V ⊗ U .

Theorem 3.2. Under the assumptions of Theorem 3.1, if f is non-random,
then the following holds:

1. the coe�cient uα, corresponding to the multi-index α with |α| = n ≥ 1
and the characteristic set Kα = {k1, . . . , kn}, is given by

(3.8) uα =
1√
α!

∑

σ∈Pn

Bkσ(n) · · ·Bkσ(1)u(0),

where
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• Pn is the permutation group of the set (1, . . . , n);
• Bk = −A−1Mk;
• u(0) = A−1f .

2. the operator R can be de�ned by the weights rα in the form

(3.9) rα =
qα

2|α|
√
|α|! , where qα =

∞∏

k=1

qαk

k ,

where the numbers qk, k ≥ 1 are chosen so that
∑

k≥1 q2
kk2C2

k < 1, and
Ck are de�ned in (3.7).

3. With rα and qk de�ned by (3.9),

(3.10)
∑

|α|=n

qαuαξα = δ
(n)

B
(A−1f),

where B = −(q1A−1M1, q2A−1M2, . . .), and

(3.11) Ru = A−1f +
∑

n≥1

1
2n
√

n!
δ
(n)

B
(A−1f),

Proof � De�ne ũα =
√

α!uα. If f is deterministic, then ũ(0) = A−1f and,
for |α| ≥ 1,

Aũα +
∑

k≥1

αkMkũα−εk
= 0,

or
ũα =

∑

k≥1

αkBkũα−εk
=

∑

k∈Kα

Bkũα−εk
,

where Kα = {k1, . . . , kn} is the characteristic set of α and n = |α|. By induction
on n,

ũα =
∑

σ∈Pn

Bkσ(n) · · ·Bkσ(1)u(0),

and (3.8) follows.
Next, de�ne

Un =
∑

|α|=n

qαuαξα, n ≥ 0.
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Let us �rst show that, for each n ≥ 1, Un ∈ L2(F;V ). By (3.8) we have

(3.12) ‖uα‖2V ≤ C2
A

(|α|!)2
α!

‖f‖2V ′
∏

k≥1

Cαk

k .

By (2.1),
∑

|α|=n

q2α‖uα‖2V ≤ C2
A22n n!

∑

|α|=n

∏

k≥1

(kCkqk)2αk

= C2
A22n n!


∑

k≥1

k2C2
kq2

k




n

< ∞,

because of the selection of qk, and so Un ∈ L2(F; V ). If the weights rα are
de�ned by (3.9), then

∑

α∈J
r2
α‖u‖2V =

∑

n≥0

∑

|α|=n

r2
α‖u‖2V ≤ C2

A

∑

n≥0


∑

k≥1

k2C2
kq2

k




n

< ∞,

because of the assumption
∑

k≥1 k2C2
kq2

k < 1.
Since (3.11) follows directly from (3.10), it remains to establish (3.10), that

is,

(3.13) Un = δB(Un−1), n ≥ 1.

For n = 1 we have

U1 =
∑

k≥1

qkuεk
ξk =

∑

k≥1

Bku(0)ξk = δB(U0),

where the last equality follows from (2.10). More generally, for n > 1 we have
by de�nition of Un that

(Un)α =





qαuα, if |α| = n,

0, otherwise.

From the equation

qαAuα +
∑

k≥1

qk
√

αk Mkqα−εkuα−εk
= 0
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we �nd

(Un)α =





∑

k≥1

√
αk qkBkqα−εkuα−εk

, if |α| = n,

0, otherwise.

=
∑

k≥1

√
αk Bk(Un−1)α−εk

,

and then (3.13) follows from (2.11). Theorem 3.2 is proved.

Here is another result about solvability of (3.3), this time with random f .
We use the space (S)ρ,q, de�ned by the weights (2.6).

Theorem 3.3. In addition to the assumptions of Theorem 3.1, let CA ≤ 1
and Ck ≤ 1 for all k. If f ∈ (S)−1,−`(V ′) for some ` > 1, then there exists a
unique solution u ∈ (S)−1,−`−4(V ) of (3.3) and

(3.14) ‖u‖(S)−1,−`−4(V ) ≤ C(`)‖f‖(S)−1,−`(V ′).

Proof � Denote by u(g; γ), γ ∈ J , g ∈ V ′, the solution of (3.3) with
fα = gI(α=γ), and de�ne ūα = (α!)−1/2uα. Clearly, uα(g, γ) = 0 if |α| < |γ|
and so

(3.15)
∑

α∈J
‖uα(fγ ; γ)‖2V r2

α =
∑

α∈J
‖uα+γ(fγ ; γ)‖2V r2

α+γ .

It follows from (3.5) that

(3.16) ūα+γ(fγ ; γ) = ūα

(
fγ(γ!)−1/2; (0)

)
.

Now we use (3.12) to conclude that

(3.17) ‖ūα+γ(fγ ; γ)‖V ≤ |α|!√
α!γ!

‖f‖V ′ .

Coming back to (3.15) with r2
α = (α!)−1(2N)(−`−4)α and using inequality (2.1)

we �nd:
‖u(fγ ; γ)‖(S)−1,−`−4(V ) ≤ C(`)(2N)−2γ ‖fγ‖V ′

(2N)(`/2)γ
√

γ!
,
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where

C(`) =

(∑

α∈J

( |α|!
α!

)2

(2N)(−`−4)α

)1/2

;

(2.2) and (2.1) imply C(`) < ∞. Then (3.14) follows by the triangle inequality
after summing over all γ and using the Cauchy-Schwartz inequality.

Remark 3.2 - Example 3.1, in which f ∈ (S)0,0 and u ∈ (S)−1,q, q < 0, shows
that, while the results of Theorem 3.3 are not sharp, a bound of the type
‖u‖(S)ρ,q(V ) ≤ C‖f‖(S)ρ,`(V ′) is, in general, impossible if ρ > −1 or q ≥ `.

4. Elliptic SPDEs of the Full Second Order

Let G be a smooth bounded domain in Rd and {hk, k ≥ 1}, an orthonormal
basis in L2(G). We assume that

(4.1) sup
x∈G

|hk(x)| ≤ ck, k ≥ 1.

A space white noise on L2(G) is a formal series

(4.2) Ẇ (x) =
∑

k≥1

hk(x)ξk,

where ξk, k ≥ 1, are independent standard Gaussian random variables.
Consider the following Dirichlet problem:

(4.3)
−Di

(
aij (x) Dju (x)

)
+

Di

(
σij (x)Dj (u (x))

)
¦ Ẇ (x) = f (x) , x ∈ G,

u|∂G = 0,

where Ẇ is the space white noise (4.2) and Di = ∂/∂xi. Assume that the
functions aij , σij , f, and g are non-random. For brevity, in (4.3) and in similar
expressions below we use the summation convention and assume summation
over the repeated indices.

We make the following assumptions:
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E1 The functions aij = aij(x) and σij = σij(x) are measurable and bounded
in the closure Ḡ of G.

E2 There exist positive numbers A1, A2 so that A1|y|2 ≤ aij(x)yiyj ≤ A2|y|2
for all x ∈ Ḡ and y ∈ Rd.

E3 The functions hk in (4.2) are bounded and Lipschitz continuous.

Clearly, equation (4.3) is a particular case of equation (3.3) with

(4.4) Au(x) := −Di

(
aij (x) Dju (x)

)

and

(4.5) Mku(x) := hk(x)Di

(
σij (x)Dju (x)

)
.

Assumptions E1 and E3 imply that each Mk is a bounded linear operator from
◦

H2
1(G) to H−1

2 (G). Moreover, it is a standard fact that under the assumptions
E1 and E2 the operator A is an isomorphism from V onto V ′ (see e.g. [4]).
Therefore, for every k there exists a positive number Ck such that

(4.6)
∥∥A−1Mkv

∥∥
V
≤ Ck ‖v‖V , v ∈ V.

Theorem 4.1. Under the assumptions E1 and E2, if f ∈ H−1
2 (G), then there

exists a unique solution of the Dirichlet problem (4.3) u ∈ RL2(F;
◦
H1

2(G)) such
that

(4.7) ‖u‖
RL2(F;

◦
H1

2(G))
≤ C · ‖f‖H−1

2 (G).

The weights rα can be taken in the form

(4.8) rα =
qα

2|α|
√
|α|! , where qα =

∞∏

k=1

qαk

k ,

and the numbers qk, k ≥ 1 are chosen so that
∑

k≥1 C2
kq2

kk2 < 1, with Ck from
(4.6).

Proof � This follows from Theorem 3.2.
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Remark 4.1 - With an appropriate change of the boundary conditions, and
with extra regularity of the basis functions hk, the results of Theorem 4.1 can
be extended to stochastic elliptic equations of order 2m. The corresponding
operators are

Au = (−1)m
Di1 · · ·Dim

(
ai1...imj1...jm (x)Dj1 · · ·Djmu (x)

)
,(4.9)

Mku = hk(x) Di1 · · ·Dim

(
σi1...imj1...jm (x)Dj1 · · ·Djmu (x)

)
.(4.10)

Since G is a smooth bounded domain, regularity of hk is not a problem: we can
take hk as the eigenfunctions of the Dirichlet Laplacian in G. Equation (1.1) is
also covered, with A = Di(aijDju) and Mku = hkεijDiju + εij(Dihk)(Dju).

Some related results and examples could be found in [7, 11]
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