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Abstract
A parameter estimation problem is considered for a one-dimensional stochas-

tic wave equation driven by additive space-time Gaussian white noise. The
estimator is of spectral type and utilizes a �nite number of the spatial Fourier
coe�cients of the solution. The asymptotic properties of the estimator are
studied as the number of the Fourier coe�cients increases, while the observa-
tion time and the noise intensity are �xed.

1. Introduction

Consider the stochastic wave equation

(1.1) ∂2u

∂t2
= θ1

∂2u

∂x2
+ θ2

∂u

∂t
+ Ẇ (t), 0 < t < T, 0 < x < π,

with zero initial boundary conditions, driven by space-time white noise Ẇ . The
solution of this equation can be written as a Fourier series

u(t, x) =

√
2
π

∞∑

k=1

uk(t) sin(kx).

The objective is to construct and investigate the maximum likelihood estima-
tors of the unknown numbers θ1 > 0 and θ2 ∈ R, given {u1(t), . . . , uN (t)},
t ∈ [0, T ], the �rst N Fourier coe�cients of the solution.

A similar problem for stochastic parabolic equations is relatively well stud-
ied, with the �rst result announced in the paper by Huebner, Khasminskii, and
Rozovskii [3]. While most of the existing work in the parabolic setting has been
about estimating either a single parameter [3, 6, 13] or a function of time [4, 5],
estimation of several parameters in parabolic equations has also been studied
[2, 11]. A more detailed survey of the existing results is in [12].

In the parabolic setting, the observations, being Fourier coe�cients of the
solution, are essentially discrete in space, but are usually continuous in time.
While such observations might not always be available in reality, absence of time
discretization makes it possible to isolate and study the in�nite-dimensional
e�ects of the model. Continuous in time observations ensure that all the esti-
mators are available in closed form and the only asymptotic parameter is the
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number of the Fourier coe�cients. Estimation from discrete-time observations
is a somewhat di�erent problem and so far has only being studied in [14].

Accordingly, in this paper we adopt the traditional approach from the
parabolic setting and assume that the spatial Fourier coe�cients of the so-
lution of (1.1) are observed in continuous time. The main result of the paper,
which can be viewed as an extension of [2] to hyperbolic equations, is as follows.

Theorem 1.1. The (joint) maximum likelihood estimator of the parameters
θ1, θ2 is strongly consistent and asymptotically normal as N → ∞. The nor-
malizing matrix is diagonal, with the diagonal elements N3/2 and N1/2; these
elements specify the rate of convergence of the estimator to θ1 and θ2, respec-
tively.

This theorem is proved in Section 3. In Section 2, we establish existence,
uniqueness, and regularity of the solution of (1.1).

Throughout the presentation below, we �x a stochastic basis

F = (Ω,F , {Ft}t≥0,P)

with the usual assumptions (completeness of F0 and right-continuity of Ft).
We also assume that F is large enough to support countably many indepen-
dent standard Brownian motions. For a random variable ξ, Eξ denotes the
expectation. Rn is an n-dimensional Euclidean space; C(A;B) is the space of
continuous functions from A to B; N (m,σ2) is a Gaussian random variable
with mean m and variance σ2.

Finally, for the convenience of the reader, we recall that a cylindrical Brow-
nian motion W = W (t), t ≥ 1, over (or on) a Hilbert space H is a linear
mapping

W : f 7→ Wf (·)

from H to the space of zero-mean Gaussian processes such that, for every
f, g ∈ H and t, s > 0,

(1.2) E
(
Wf (t)Wg(s)

)
= min(t, s)(f, g)H .

If {hk, k ≥ 1} is an orthonormal basis in H and wk, k ≥ 1, are independent
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standard Brownian motions, then

(1.3) f 7→
∑

k≥1

(f, hk)Hwk(t)

is a cylindrical Brownian motion. Thus, a cylindrical Brownian motion W is
often represented by a generalized Fourier series

(1.4) W (t) =
∑

k≥1

wk(t)hk,

where wk = Whk
. The corresponding space-time white noise is then

Ẇ (t) =
∑

k≥1

ẇk(t)hk.

2. Stochastic Wave Equation

Consider the equation

(2.1) ∂2u

∂t2
= a2 ∂2u

∂x2
− 2b

∂u

∂t
+ Ẇ (t), 0 < t < T, 0 < x < π,

where W is a cylindrical Brownian motion over L2((0, π)). For simplicity, we
assume

a ≥ 1, 2|b| ≤ 1;(2.2)

u|t=0 =
∂u

∂t

∣∣∣∣∣
t=0

= 0, u|x=0 = u|x=π = 0;(2.3)

see Remark 2.1 below about relaxing these assumptions. In physical models,
a > 0 represents the speed of the wave and b characterizes damping (ampli�-
cation, if b < 0).

For γ ∈ R, de�ne the Hilbert space Hγ as the closure of the set of smooth
compactly supported functions on (0, π) with respect to the norm

(2.4) ‖f‖γ =


∑

k≥1

k2γf2
k




1/2

, where fk =

√
2
π

∫ π

0

f(x) sin(kx)dx.
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Note that each of the functions sin(kx) belongs to every Hγ , and if f is twice
continuously-di�erentiable on (0, π) with f(0) = f(π) = 0, then, after two
integrations by parts, |fk| ≤ k−2 supx∈(0,π) |f ′′(x)|, so that, in particular, f ∈
H1. More generally, every f ∈ Hγ can be identi�ed with a sequence {fk, k ≥ 1}
of real numbers such that

∑
k≥1 k2γf2

k < ∞. Even though f is a generalized
function when γ < 0, we will still occasionally write f = f(x), keeping in mind
a generalized Fourier series representation f(x) =

√
2/π

∑
k≥1 fk sin(kx).

Given γ > 0, f ∈ H−γ and g ∈ Hγ , we de�ne

(f, g) =
∑

k≥1

fkgk;

if f, g ∈ L2((0, π)), then

(f, g) =
∫ π

0

f(x)g(x)dx.

In other words, (·, ·) is the duality between Hγ and H−γ relative to the inner
product in H0 = L2((0, π)); see [8, Section IV.1.10].

Equation (2.1) is interpreted as a system of two �rst-order Itô equations

(2.5) du = vdt, dv = (a2uxx − 2bv)dt + dW (t).

More precisely, we have the following de�nition.

De�nition 2.1. An adapted process u ∈ L2

(
Ω × (0, T ) × (0, π)

)
is called a

solution of (2.1) if there exists an adapted process v such that

1. v ∈ L2

(
Ω; L2((0, T ); H−1)

)
;

2. For every twice continuously-di�erentiable on (0, π) function f = f(x)
with f(0) = f(π) = 0, the equalities

(u(t, ·), f) =
∫ t

0

(v(t, ·), f)(s)ds,

(v(t, ·), f) =
∫ t

0

(
a2(u(t, ·), f ′′)− 2b(v(t, ·), f)

)
ds + Wf (t)

(2.6)

hold for all t ∈ [0, T ] on the same set of probability one.
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Here is the main result about existence and uniqueness of solution of (2.1).

Theorem 2.1. Under assumptions (2.2) and (2.3), equation (2.1) has a unique
solution and, for every γ < 1/2,

(2.7) u ∈ L2

(
Ω; L2((0, T ); Hγ)

)
; v ∈ L2

(
Ω; L2((0, T ); Hγ−1)

)
.

Proof � While the result can be derived from the general theory of stochas-
tic hyperbolic equations (see, for example, Chow [1, Theorem 6.8.4]), we present
a di�erent, and a more direct, proof. This proof will also help in the construc-
tion and analysis of the estimators.

Take in (2.6) f(x) =
√

2/π sin(kx) and write uk(t) = (u(t, ·), f), vk(t) =
(v(t, ·), f), wk = Wf . Then

(2.8) uk(t) =
∫ t

0

vk(s)ds, vk(t) = −a2k2

∫ t

0

uk(s)ds− 2b

∫ t

0

vk(s)ds + wk(t),

or

(2.9) ük(t) + 2bu̇k(t) + a2k2uk(t) = ẇk(t), uk(0) = u̇k(0) = 0.

By assumption (2.2),

(2.10) a2k2 > b2

for all k ≥ 1. De�ne

(2.11) `k =
√

a2k2 − b2.

Using the variation of parameters formula for the linear second-order equation
with constant coe�cients, we conclude that the solution of (2.8) is

uk(t) =
1
`k

∫ t

0

e−b(t−s) sin
(
`k(t− s)

)
dwk(s),

vk(t) =
1
`k

∫ t

0

e−b(t−s)
(
`k cos

(
`k(t− s)

)− b sin
(
`k(t− s)

))
dwk(s).

(2.12)

By direct computation, there exists a number C = C(T, a, b) such that, for all
t, s ∈ [0, T ],

(2.13) Eu2
k(t) ≤ `−2

k C(T ) =
C(T )

a2k2 − b2
, Ev2

k(t) ≤ C(T ).
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Then the Gaussian processes

(2.14) u(t, x) =

√
2
π

∑

k≥1

uk(t) sin(kx), v(t, x) =

√
2
π

∑

k≥1

vk(t) sin(kx)

satisfy (2.6) and (2.7). Uniqueness of the solution follows from the completeness
of the system {

√
2/π sin(kx), k ≥ 1} in L2((0, π)).

Remark 2.1 - We can now comment on the signi�cance of assumptions (2.2)
and (2.3). Assumption (2.2) can be relaxed to a > 0, because we will still have
a2k2 > b2 for all su�ciently large k, and so representation formulas (2.12) for
the solution of equation (2.9) will continue to hold for all su�ciently large k.
In other words, if a > 0, then the free motion (any solution of the homogeneous
version of (2.9)) is oscillatory for all su�ciently large k ≥ 1; the oscillations
are damped if b > 0, harmonic if b = 0, and ampli�ed if b > 0. This is also
the reason to call b the damping coefficient, with an understanding that
negative damping means ampli�cation. Thus, (2.2) is only needed to simplify
the computations by ensuring that equalities (2.12) hold for all k ≥ 1.

Non-zero initial conditions, if su�ciently regular, will not a�ect existence
and regularity of the solution. Similarly, the analysis will not change much for
zero Neumann or other homogeneous boundary conditions.

3. Estimating the Coefficients

In this section, we study the question of estimating the numbers a2, b from
the observations of the solution u = u(t, x), v = v(t, x) of equation (2.1). It
will be convenient to introduce the notations

(3.1) θ1 = a2, θ2 = −2b,

so that (2.1) becomes

(3.2) ∂2u

∂t2
= θ1

∂2u

∂x2
+ θ2

∂u

∂t
+ Ẇ (t), t < 0 < T, 0 < x < π.

To simplify the presentation, we keep the assumptions (2.2) and (2.3). By
Theorem 2.1, the solution of (3.2) has a Fourier series expansion (2.12). We
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will construct the maximum likelihood estimators of θ1 and θ2 using the obser-
vations of the 2N -dimensional process {uk(t), vk(t), k = 1, . . . , N, t ∈ [0, T ]}
and study the asymptotic properties of the estimators in the limit N → ∞.
Note that both the amplitude of noise and the observation time are �xed.

By (2.8),

(3.3) uk(t) =
∫ t

0

vk(s)ds, vk(t) = −θ1k
2

∫ t

0

uk(s)ds + θ2

∫ t

0

vk(s)ds + wk(t).

For each k ≥ 1, the processes uk, vk, and wk generate measures Pu
k , Pv

k, Pw
k in

the space C((0, T );R) of continuous, real-valued functions on [0, T ]. Since uk is
a continuously-di�erentiable function, the measures Pu

k and Pw
k are mutually

singular. On the other hand, we can write

(3.4) dvk(t) = Fk(v)dt + dwk,

where Fk(v) = −θ1k
2
∫ t

0
vk(s)ds + θ2vk(t) is a non-anticipating functional of v.

Thus, the process v is a process of di�usion type in the sense of Liptser and
Shiryaev [10, De�nition 4.2.7]. Further analysis shows that the measure Pv

k is
absolutely continuous with respect to the measure Pw

k , and

dPv
k

dPw
k

(vk) = exp

( ∫ T

0

(− θ1k
2uk(t) + θ2vk(t)

)
dvk(t)

− 1
2

∫ T

0

(− θ1k
2uk(t) + θ2vk(t)

)2
dt

)
;

(3.5)

see [10, Theorem 7.6]. Since the processes wk are independent for di�erent k, so
are the processes vk. Therefore, the measure Pv,N generated in C((0, T );RN )
by the vector process {vk, k = 1, . . . , N} is absolutely continuous with respect
to the measure Pw,N generated in C((0, T );RN ) by the vector process {wk, k =
1, . . . , N}, and the density is

dPv,N

dPw,N
(vk) = exp

(
N∑

k=1

∫ T

0

(− θ1k
2uk(t) + θ2vk(t)

)
dvk(t)

− 1
2

N∑

k=1

∫ T

0

(− θ1k
2uk(t) + θ2vk(t)

)2
dt

)
;

(3.6)
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the corresponding log-likelihood ratio is

ZN (θ1, θ2) =
N∑

k=1

(∫ T

0

(− θ1k
2uk(t) + θ2vk(t)

)
dvk(t)

− 1
2

∫ T

0

(− θ1k
2uk(t) + θ2vk(t)

)2
dt

)
.

(3.7)

Introduce the following notations:

J1,N =
N∑

k=1

k4

∫ T

0

u2
k(t)dt, J2,N =

N∑

k=1

∫ T

0

v2
k(t)dt,

J12,N =
N∑

k=1

k2

∫ T

0

uk(t)vk(t)dt;

B1,N = −
N∑

k=1

k2

∫ T

0

uk(t)dvk(t), ξ1,N =
N∑

k=1

k2

∫ T

0

uk(t)dwk(t);

B2,N =
N∑

k=1

∫ T

0

vk(t)dvk(t), ξ2,N =
N∑

k=1

∫ T

0

vk(t)dwk(t).

(3.8)

Note that the numbers J and B are computable from the observations of uk

and vk, k = 1, . . . , N , and also

B1,N = θ1J1,N − θ2J12,N − ξ1,N , B2,N = −θ1J12,N + θ2J2,N + ξ2,N ,(3.9)

J12,N =
1
2

N∑

k=1

k2u2
k(T ).(3.10)

We consider the problem of estimating simultaneously both θ1 and θ2 from the
observations {

uk(t), vk(t), k = 1, . . . , N, t ∈ [0, T ]
}

.

The maximum likelihood estimators θ̂1,N , θ̂2,N satisfy

∂ZN (θ1, θ2)
∂θ1

∣∣∣∣∣
θ1=θ̂1,N ,θ2=θ̂2,N

= 0 and
∂ZN (θ1, θ2)

∂θ2

∣∣∣∣∣
θ1=θ̂1,N ,θ2=θ̂2,N

= 0,

or, after solving the system of equations,

(3.11) θ̂1,N =
B1,NJ2,N + B2,NJ12,N

J1,NJ2,N − J2
12,N

, θ̂2,N =
B1,NJ12,N + B2,NJ1,N

J1,NJ2,N − J2
12,N

.
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For T > 0 and θ2 ∈ R, de�ne

(3.12) C(θ2, T ) =





eθ2T − θ2T − 1
2θ2

2

, if θ2 6= 0;

T 2

4
, if θ2 = 0.

Note that C(θ2, T ) > 0 for all T > 0 and θ2 ∈ R.
The following theorem describes the asymptotic behavior of the estimators

(3.11).

Theorem 3.1. Under assumptions (2.2) and (2.3),

lim
N→∞

θ̂1,N = θ1, lim
N→∞

θ̂2,N = θ2

with probability one and

lim
N→∞

N3/2(θ̂1,N − θ1) = N
(

0,
3θ1

C(θ2, T )

)
,

lim
N→∞

N1/2(θ̂2,N − θ2) = N
(

0,
1

C(θ2, T )

)

in distribution.

Proof � De�ne
DN =

J2
12,N

J1,NJ2,N
.

It follows from (3.9) and (3.11) that

θ̂1,N = θ1 +
1

1−DN

(
ξ1,N

J1,N
+ ξ2,N

J12,N

J1,NJ2,N

)
,

θ̂2,N = θ2 +
1

1−DN

(
ξ2,N

J2,N
+ ξ1,N

J12,N

J1,NJ2,N

)
.

(3.13)

By direct computations using (2.12) (and keeping in mind (3.1)),

(3.14) lim
k→∞

k2E
∫ T

0

u2
k(t)dt =

C(θ2, T )
θ1

,

and

(3.15) lim
N→∞

N−3EJ1,N =
C(θ2, T )

3θ1
.
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Since each uk is a Gaussian process,

sup
k

k4E
∫ T

0

u4
k(t)dt < ∞,

and then the strong law of large numbers implies

lim
N→∞

J1,N

EJ1,N
= 1, lim

N→∞
ξ1,N

EJ1,N
= 0,

both with probability one [apply the �rst theorem in Appendix, taking ξk =
k4

∫ T

0
u2

kdt and then, ξk = k2
∫ T

0
uk(t)dwk(t)]. The central limit theorem im-

plies
lim

N→∞
ξ1,N√
EJ1,N

= N (0, 1)

in distribution [apply the second theorem in Appendix, taking fk(t) = k2uk(t)].
Similarly,

(3.16) lim
k→∞

E
∫ T

0

v2
k(t)dt = C(θ2, T ),

and

(3.17) lim
N→∞

N−1EJ2,N = C(θ2, T ).

Since each vk is a Gaussian process,

sup
k
E

∫ T

0

v4
k(t)dt < ∞,

and then the strong law of large numbers implies

lim
N→∞

J2,N

EJ2,N
= 1, lim

N→∞
ξ2,N

EJ2,N
= 0,

both with probability one. The central limit theorem implies

lim
N→∞

ξ2,N√
EJ2,N

= N (0, 1)

in distribution. Finally, de�ne

C̃(θ2, T ) =





eθ2T − 1
2θ2

, if θ2 6= 0;
T

2
, if θ2 = 0.
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Then (3.10) and (2.12) imply

lim
N→∞

N−1EJ12,N =
C̃(θ2, T )

2θ1
,

and, by the strong law of large numbers,

lim
N→∞

J12,N

EJ12,N
= 1

with probability one. Then (3.15) and (3.17) imply

lim
N→∞

DN = 0, lim
N→∞

J12,N

J2,N
=

C̃(θ2, T )
2θ1C(θ2, T )

,

both with probability one. The conclusions of the theorem now follow.

Unlike the iid case, where the rate of convergence is always N1/2, the con-
vergence rates in the above theorem, N3/2 for θ̂1,N and N1/2 for θ̂2,N , are
hard, if not impossible, to guess without going through the proof. Still, it is
not surprising that the estimator of θ1 converges faster than the estimator of
θ2: by Theorem 2.1, the term uxx is less regular than ut,

uxx ∈ L2

(
Ω; L2((0, T ); Hγ−2)

)
; ut ∈ L2

(
Ω; L2((0, T ); Hγ−1)

)
,

which makes the term uxx, together with the coe�cient θ1, more �visible� in
the noise.
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Appendix

Below, we formulate the strong law of large numbers and the central limit
theorem used in the proof of Theorem 3.1.
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Theorem 4.1 (Strong Law of Large Numbers). Let ξk, k ≥ 1, be independent
random variables with the following properties:

• Eξk = 0, Eξ2
k > 0,

• There exist real numbers c > 0 and α ≥ −1 such that

lim
k→∞

k−αEξ2
k = c.

Then, with probability one,

lim
N→∞

∑N
k=1 ξk∑N

k=1 Eξ2
k

= 0.

If, in addition, Eξ4
k ≤ c1

(
Eξ2

k

)2

for all k ≥ 1, with c1 > 0 independent of k,
then, also with probability one,

lim
N→∞

∑N
k=1 ξ2

k∑N
k=1 Eξ2

k

= 1.

Proof � This is a particular case of Kolmogorov's strong law of large num-
bers; see, for example, Shiryaev [15, Theorem IV.3.2].

Theorem 4.2 (Central Limit Theorem). Let wk = wk(t) be independent stan-
dard Brownian motions and let fk = fk(t) be adapted, continuous, square-
integrable processes such that

lim
N→∞

∑N
k=1

∫ T

0
f2

k (t)dt
∑N

k=1 E
∫ T

0
f2

k (t)dt
= 1

in probability. Then

lim
N→∞

∑N
k=1

∫ T

0
fk(t)dwk(t)

(∑N
k=1 E

∫ T

0
f2

k (t)dt
)1/2

= N (0, 1)

in distribution.

Proof � This is a particular case of a martingale limit theorem; see, for
example Jacod and Shiryaev [7, Theorem VIII.4.17] or Liptser and Shiryaev [9,
Theorem 5.5.4(II)].
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